首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study provides the first attempt to combine terrestrial (in situ) cosmogenic nuclide (10Be) surface exposure dating with Schmidt hammer relative-age dating for the age estimation of Holocene moraines at Strauchon Glacier, Southern Alps, New Zealand. Numerous Schmidt hammer tests enable a multi-ridged lateral moraine system to be related to three late-Holocene ‘Little Ice Age’-type events. On the basis of cosmogenic 10Be ages, those events are dated to c. 2400, 1700, and 1100 years ago. Linear age-calibration curves are constructed in order to relate Schmidt hammer R-values to cosmogenic 10Be ages. The high explanation yielded reveals the causal link between both data sets. The potential of combining both methods in a ‘’multiproxy approach’ is discussed alongside possible future improvements. Terrestrial cosmogenic nuclide dating delivers absolute ages needed as fixed points for Schmidt hammer age-calibration curves. The Schmidt hammer technique can be used to crosscheck the boulder surfaces chosen for surface exposure dating by terrestrial cosmogenic nuclides. It should, therefore, reduce the number of samples necessary and costs.  相似文献   

2.
A Schmidt hammer was used in conjunction with lichenometry to examine the relative age of the outermost Neoglacial moraines in front of glaciers in the Jotunheimen mountains of southern Norway. Particular attention was directed at (1) the magnitude of the 'Little Ice Age' glacier expansion episode relative to any others of Neoglacial age, and (2) the potential and limitations of the Schmidt hammer in the context of Holocene glacial chronologies. Schmidt hammer R-values were measured at 34 glaciers and the sizes of the lichen Rhizocarpon geographicum agg. at 80 glaciers. Unusually low R-values and large lichens suggest the occurrence of pre- 'Little lee Age' Neoglacial moraines at only a small minority (< 10 %) of the sampled glaciers. The traditional model of relatively large southern Norwegian glaciers during the 'Little Ice Age' is substantiated and it is tentatively suggested that differences in climate or glacier type may account for a regional difference in the status of the 'Little Ice Age' between northern and southern Scandinavia. The incorporation of weathered boulders into 'Little Ice Age' moraines by glacier push mechanisms, and the altitudinally-related variation in boulder surface textures, are identified as major sources of potential error in the use of the Schmidt hammer R-values for relative-age determination of Neoglacial surfaces.  相似文献   

3.
Degree of rock surface weathering was measured on sites in Oldedalen and Brigsdalen, where dates of deglaciation have been estimated. and on an altitudinal transect on the slopes of Skåla. representing one of the highest supra-marine reliefs in western Norway. The Schmidt hammer is useful only for distinguishing sites deglaciated during the Little Ice Age from those deglaciated during the Lateglacial and early Holocene. Degree of roughness of granitic augen gneiss bedrock surfaces was quantified from profiles measured in situ using a micro-roughness-meter and profile gauge. There is a significant increase in surface roughness above a clear trimline at c. 1350 m a.s.I. but no significant increase above a higher trimline previously proposed as the vertical limit of the last ice sheet in this area (c. 1560 m a.s.I.). The roughness of boulder surfaces on the summit blockfield does not direr significantly from the roughness of bedrock surfaces downslope as far as the lower trimline. These unexpected results suggest that bedrock surfaces between the two trimlines were not glacially abraded during the Late Weichselian, so that the upper trimline is unlikely to represent the vertical limit of ice during either the Late Weichselian or a subsequent readvance. Preliminary results of 10Be dating of surface quartz samples from above the lower trimline support the proposal that the site was not abraded during the last glaciation. The results can be interpreted in two ways: (1) The upper trimline represents the vertical limit of a pre-Late Weichselian advance. During the Late Weichselian the mountains were completely covered but surfaces down to the lower trimline were protected by cold-based ice. (2) The lower trimline marks the vertical limit of the Late Weichselian ice and the upper limit an older and more extensive glaciation.  相似文献   

4.
Matthews, J. A. & Winkler, S. 2010: Schmidt‐hammer exposure‐age dating (SHD): application to early Holocene moraines and a reappraisal of the reliability of terrestrial cosmogenic‐nuclide dating (TCND) at Austanbotnbreen, Jotunheimen, Norway. Boreas, 10.1111/j.1502‐3885.2010.00178.x. ISSN 0300‐9483. Schmidt‐hammer exposure‐age dating (SHD) and terrestrial cosmogenic‐nuclide dating (TCND) are complementary techniques that can be used for mutual testing. SHD is low‐cost but requires local control points of known age and may be affected by local geological variation and other environmental factors that influence weathering rates. TCND is vulnerable to the occurrence of anomalous boulders, other geomorphological uncertainties and the effects of snow‐shielding at high altitudes. Both techniques are sensitive to post‐depositional disturbances if other than solid bedrock is sampled. SHD was applied to two moraine ridges beyond the Little Ice Age limit of Austanbotnbreen in the Hurrungane massif, southern Norway. Independent regional and experimental local age‐calibration curves were used to reappraise previous TCND results. Neither the two boulder surfaces nor their proximal bedrock surfaces could be differentiated statistically in terms of SHD exposure ages or their mean R‐values (±95% confidence intervals), which ranged from 40.73±1.72 to 43.34±0.69. The best of the independent regional‐calibration curves produced SHD exposure ages of 9413±723 and 9304±602 years, which are consistent with moraine formation early (c. 10.2 ka) and late (c. 9.7 ka) within the late‐Preboreal Erdalen Event. The current precision of SHD, as reflected in 95% confidence intervals of ±500–900 years, enables rejection of a Finse Event (c. 8.2 ka) age for either moraine. Results are consistent with a retracted Austanbotnbreen between the Erdalen Event and the Little Ice Age, and a modified model of Neoglaciation.  相似文献   

5.
Talus-derived landforms from Rondanc National Park, southern Norway, are described and classified as protalus ramparts, valley-floor and valley-side talus-foot rock glaciers, and a 'push-deformation' moraine. A morphological and developmental continuum of talus and derivative large-scale landforrns is proposed. with simple talus slopes at one end and more complex ridge, lobe and bench forms at the other. The various types of feature probably develop from simple talus slopes via separate developmental routes, rather than as a linear sequence. Lichen size and Schmidt hammer R-values were used to indicate the relative ages of the features. Although all are thought to have originated during the early Holocene, they differ in the presence or extent of recent activity. Hence an age and activity continuum is also suggested, the recency of activity increasing in the direction protalus rampart → rock glacier →'push-deformation' moraine.  相似文献   

6.
In order to determine the palaeoclimatic and palaeo‐permafrost conditions in the northern Japanese Alps in central Japan, the ages of rock glaciers were investigated by relative age dating techniques such as weathering‐rind thickness and Schmidt hammer measurements. The results of the relative age dating suggest that the formation of the investigated rock glaciers may have started during the early phase of the Late Glacial or around the onset of the Holocene. The lower limit of current discontinuous permafrost in the northern Japanese Alps, which is indicated by the terminus of the lowest active/inactive rock glacier, lies at 2530 m a.s.l., while that of discontinuous permafrost during the Late Glacial or early phase of the Holocene, which is indicated by the terminus of the lowest relict rock glacier, lies at 2220 m a.s.l. Therefore, the lower limit of discontinuous permafrost during these periods would have been at least about 300 m lower than that of the current discontinuous permafrost. Climatic and geomorphological conditions during the Late Glacial led to a change in the environment from a glacial environment to a periglacial (permafrost) environment in the current alpine zone of the northern Japanese Alps. A large number of cirques were deglaciated and several of them were occupied by active rock glaciers around the onset of the Holocene. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
This paper considers the controversial issue of the existence of pre-'Little Ice Age' Neoglacial moraines in southern Norway. Schmidt hammer rebound values are combined with measures of boulder roundness and weathering rind thickness in an attempt to isolate moraines that include weathered boulders. A critical approach is used in distinguishing sites where boulders have weathered in situ from those where previously weathered clasts have been incorporated into relatively young moraines. The results confirm that possible pre-'Little Ice Age' Neoglacial moraines seem to be restricted to small, high-altitude glaciers in eastern Jotunheimen. It is concluded that at these glaciers a particularly large response to a short-lived earlier Holocene climatic event is more likely to explain the survival of such moraines than a particularly subdued response to the climatic deterioration of the 'Little Ice Age'. More refined dating techniques are required to determine the age of formation of the anomalous moraines, but before the palaeoclimatic significance of such dates can be assessed, a critical test is required to establish whether the moraines mark former ice-front positions, and therefore reflect lowering of equilibrium line altitudes, or whether they have been displaced forwards by later and more extensive glacier advances.  相似文献   

8.
Ice-dammed lake Boverbrevatnet existed for 75–125 years in the 'Little Ice Age'. After about A.D. 1826, glacier retreat led to a fall in lake level and to exposure of the former shoreline, which includes well-developed platforms cut in metamorphic bedrock. The rock platforms, up to 5.3 m wide and backed by cliffs up to 1.55 m high, are partially covered by large angular boulders which form pavements. Accurate levelling has permitted correlation of platform fragments, overflow cols and related features of the shoreline, such as benches eroded in moraines, ice-push ridges, a perched delta, vegetation trim-lines, lichen limits and a 'lichen-kill' zone. The evolution of the lake, the chronology of deglaciation and the period of formation of the rock platforms have been dated by lichenometry, supported by 14C dating, Schmidt hammer 'R'-values and historical data. The morphology of the rock platforms, together with estimates of their rate of erosion ranging from 1.4 to 7.1 cm/year, indicate the importance of frost shattering (frost riving, frost wedging or macrogelivation) at the lake margin under a periglacial climate, while the permanence of such platforms as landscape features suggests their use in the reconstruction of former periglacial environments. A semi-quantitative model is outlined for the development of rock platforms which emphasises deep penetration of the annual freeze-thaw cycle, the movement of unfrozen lake water towards the freezing plane, and the growth of segregation ice in fissures and cracks at the interface between lake ice and bedrock. Ice-push and ice-pull processes are involved primarily as transporting agents in the formation of boulder pavements and in the removal of debris from the platforms. Analogous processes may occur on polar coasts producing coastal rock platforms.  相似文献   

9.
The Northern Prince Gustav Ice Stream located in Prince Gustav Channel, drained the northeastern portion of the Antarctic Peninsula Ice Sheet during the last glacial maximum. Here we present a chronology of its retreat based on in situ produced cosmogenic 10Be from erratic boulders at Cape Lachman, northern James Ross Island. Schmidt hammer testing was adopted to assess the weathering state of erratic boulders in order to better interpret excess cosmogenic 10Be from cumulative periods of pre-exposure or earlier release from the glacier. The weighted mean exposure age of five boulders based on Schmidt hammer data is 12.9 ± 1.2 ka representing the beginning of the deglaciation of lower-lying areas (< 60 m a.s.l.) of the northern James Ross Island, when Northern Prince Gustav Ice Stream split from the remaining James Ross Island ice cover. This age represents the minimum age of the transition from grounded ice stream to floating ice shelf in the middle continental shelf areas of the northern Prince Gustav Channel. The remaining ice cover located at higher elevations of northern James Ross Island retreated during the early Holocene due to gradual decay of terrestrial ice and increase of equilibrium line altitude. Schmidt hammer R-values are inversely correlated with 10Be exposure ages and could be used as a proxy for exposure history of individual granite boulders in this region and favour the hypothesis of earlier release of boulders with excessive 10Be concentrations from glacier directly at this site. These data provide evidences for an earlier deglaciation of northern James Ross Island when compared with other recently presented cosmogenic nuclide based deglaciation chronologies, but this timing coincides with rapid increase of atmospheric temperature in this marginal part of Antarctica.  相似文献   

10.
海南岛南岸全新世珊瑚礁的发育   总被引:6,自引:0,他引:6       下载免费PDF全文
海南岛南岸的珊瑚礁,是我国全新世珊瑚岸礁最为发育的地区之一,仅次于台湾岛南端的恒春半岛沿岸。前人从生物学[1-5]、地貌学[6-8]和地质学[9-12]角度对海南岛南岸的珊瑚礁进行过较为广泛的研究。作者报道过崖县鹿回头水尾岭剖面珊瑚礁样品的C14年代测定结果[13,14]。1979年底至1980年初,作者在海南岛南岸东起小东海沿岸西至西瑁岛西岸地区进行了野外调查与采样。根据野外和室内分析资料,本文公布了一批新测试的C14年代数据,并进一步讨论了全新世珊瑚礁的发育历史及其与海岸变迁、海面变化和地壳运动的关系等问题。  相似文献   

11.
Moraine sequences in front of seven relatively low‐altitude glaciers in the Breheimen region of central southern Norway are described and dated using a ‘multi‐proxy’ approach to moraine stratigraphy. Lichenometric dating, based on the Rhizocarpon subgenus, is used to construct a composite moraine chronology, which indicates eight phases of synchronous moraine formation: AD 1793–1799, 1807–1813, 1845–1852, 1859–1862, 1879–1885, 1897–1898, 1906–1908 and 1931–1933. Although the existence of a few cases of older moraines, possibly dating from earlier in the eighteenth or late in the seventeenth centuries cannot be ruled out by lichenometry, Schmidt hammer R‐values from boulders on outermost moraine ridges suggest an absence of Holocene moraines older than the Little Ice Age. Twenty‐three radiocarbon dates from buried soils and peat associated with outermost moraines at three glaciers—Tverreggibreen, Storegrovbreen and Greinbreen—also indicate that the ‘Little Ice Age’ glacier maximum was the Neoglacial maximum at most if not all glaciers. Several maximum age estimates for the Little Ice Age glacier maximum range between the fifteenth and seventeenth centuries, with the youngest from a buried soil being AD 1693. A pre‐Little Ice Age maximum cannot be ruled out at Greinbreen, however, where the age of buried peat suggests the outermost moraine dates from AD 981–1399 (at variance with the lichenometric evidence). Glaciofluvial stratigraphy at Tverreggibreen provides evidence for minor glacier advances about AD 655–963 and AD 1277–1396, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Krüger, L. C., Paus, A., Svendsen, J. I. & Bjune, A. E. 2011: Lateglacial vegetation and palaeoenvironment in W Norway, with new pollen data from the Sunnmøre region. Boreas, 10.1111/j.1502‐3885.2011.00213.x. ISSN 0300‐9483. Two sediment sequences from Sunnmøre, northern W Norway, were pollen‐analytically studied to reconstruct the Lateglacial vegetation history and climate. The coastal Dimnamyra was deglaciated around 15.3 ka BP, whereas Løkjingsmyra, further inland, became ice‐free around 14 ka BP. The pioneer vegetation dominated by snow‐bed communities was gradually replaced by grassland and sparse heath vegetation. A pronounced peak in Poaceae around 12.9 ka BP may reflect warmer and/or drier conditions. The Younger Dryas (YD) cooling phase shows increasing snow‐bed vegetation and the local establishment of Artemisia norvegica. A subsequent vegetation closure from grassland to heath signals the Holocene warming. Birch forests were established 500–600 years after the YD–Holocene transition. This development follows the pattern of the Sunnmøre region, which is clearly different from the Empetrum dominance in the Lateglacial interstadial further south in W Norway. The Lateglacial oscillations GI‐1d (Older Dryas) and GI‐1b (Gerzensee) are hardly traceable in the north, in contrast to southern W Norway. The southern vegetation was probably closer to an ecotone and more susceptible to climate changes.  相似文献   

13.
The main objective of this study was to establish statistical relationship between Schmidt hammer rebound numbers with impact strength index (ISI), slake durability index (SDI) and P-wave velocity. These are important properties to characterize a rock mass and are being widely used in geological and geotechnical engineering. Due to its importance, Schmidt hammer rebound number is considered as one of the most important property for the determination of other properties, like ISI, SDI and P-wave velocity. Determination of these properties in the laboratory is time consuming and tedious as well as requiring expertise, whereas Schmidt hammer rebound number can be easily obtained on site which in addition is non-destructive. So, in this study, an attempt has been made to determine these index properties in the laboratory and each index property was correlated with Schmidt hammer rebound values. Empirical equations have been developed to predict ISI, SDI and P-wave velocity using rebound values. It was found that Schmidt hammer rebound number shows linear relation with ISI and SDI, whereas exponential relation with P-wave velocity. To check the sensitivity of empirical relations, Student’s t test was done to verify the correlation between rebound values and other rock index properties.  相似文献   

14.
The Schmidt hammer in rock material characterization   总被引:2,自引:0,他引:2  
The Schmidt hammer provides a quick and inexpensive measure of surface hardness that is widely used for estimating the mechanical properties of rock material. However, a number of issues such as hammer type, normalization of rebound values, specimen dimensions, surface smoothness, weathering and moisture content, and testing, data reduction and analysis procedures continue to influence the consistency and reliability of the Schmidt hammer test results. This paper presents: a) a critical review of these basic issues; and b) the results of tests conducted on granitic rocks of various weathering grades in the light of the conclusions of this review. It was found that a very good correlation exists between L and N hammer rebound values and that both hammers are fairly sensitive to the physical properties, particularly to dry density though less so to effective and total porosities. The N hammer, producing a lesser scatter in the data, proved to be more efficient than the L hammer in predicting uniaxial compressive strength and Young's modulus. The exponential form of the correlation curves was found to reflect microstructural changes during the course of weathering and the differences in the probing scales or mechanisms in the means of measuring these mechanical properties, and could be generalized to other crystalline igneous rocks. The possibility of predicting weathering grades from rebound values was also explored. The changes in the rebound values during multiple impacts at a given point produced a better indication of the weathering grade than a single impact value. It was concluded that increasing the impact energy and plunger tip diameter should significantly reduce the scatter in coarse-grained weathered rocks and hence improve the reliability of the Schmidt hammer as a rock material characterization tool.  相似文献   

15.
14C dating and pollen analysis of the surface organic (LFH) horizons of several humo-ferric podzol profiles forming a soil catena close to the 'Little Ice Agc' outer moraine ridge of Haugabreen, southern Norway, are used to examine the timing and nature of podzol development at the low-/sub-alpine margin of the Jostedalsbreen area. Comparison with results from a palaeosol buried beneath the outer moraine shows that FH horizon development began as early as 5,265 ± 65 B.P., but that it was not synehronous across the profiles, the latest profile having a date of 3,590 ± 65 B.P. It is argued that surface organic horizons developed as a response to a deterioration of climate and possibly the recrudescence of the Myklebustbreen ice cap at c . 5,000 B.P., and that the dates for horizon initiation vary according to local topographic and soil-hydrologic conditions. It is still uncertain whether the hump-ferric podzols were preceded by brown earths or weakly podzolised sub-alpine podzolic soils, but at all sites where pollen evidence is available it appears that FH initiation took place beneath Betula woodland.  相似文献   

16.
A quantitative geographical approach is made to colonisation by vascular plant species on Storbreen gletschervorfeld, Jotunheimen, southern Norway. The approach adds a second dimension to the study of plant colonisation patterns on recently deglaciated terrain, allows inferences to be made about vegetation change and has implications for phytometric dating. An atlas of computer maps is presented based on the frequency of the most commonly occurring species over a dense pattern of sites. Nonmetric multidimensional scaling is used to compare the maps and to describe their similarities. Species diversity is mapped and described with the aid of trend surface analysis.
Colonisation is interpreted as proceeding by a series of environmentally-conditioned waves of immigration by species. A 'pioneer' species group is replaced by 'snowbed' species at high altitudes and by 'heath' species at lower altitudes. A peak of diversity is reached after 25–35 years but diversity later declines and may then rise or fall to the climax. The marked spatial discontinuity in species occurrence at the gletschervorfeld boundary indicates that a dynamic equilibrium (the climax state) is still to be reached after 220 years of development. Few species can be regarded as universal indicators of surface age but many species are potentially useful for phytometric dating over a limited environmental range. Species that are characteristic of a particular phase of a succession are most useful for dating purposes.  相似文献   

17.
The Skagafjörður fjord in northern Iceland is located between the Tröllaskagi Peninsula in the east and the Skagi Peninsula in the west. The tributary valleys of the fjord originate in the highland area about 15 km north of the Hofsjökull icecap. The results of this work improve the knowledge of the deglaciation pattern in Skagafjörður and explore the adequacy of the 36Cl cosmic ray exposure dating method in an Icelandic environment, where this method has rarely been applied to deglaciated surfaces. The 36Cl dating method was applied to 13 rock samples taken on a transect from the coastal areas towards the highlands. All samples were obtained from rock outcrops with glacier‐polished surfaces from the Last Glaciation and from one of the few well‐preserved erratic boulders. The cosmogenic results, combined with previous radiocarbon results, indicate that the ice margin was situated in the outermost sector of Skagafjörður at approximately 17–15 ka BP. Subsequently, it retreated and occupied the central part of the fjord between 15 and 12 ka BP and then the innermost sector of the fjord about 11 ka BP. The samples collected between this position and the highlands show an average age of approximately 11 ka, indicating rapid deglaciation after the early Preboreal. These results agree with earlier studies of the deglaciation history of northern Iceland, reinforce previous deglaciation models in the area and enable a better understanding of glacial evolution in the North Atlantic from the Late Pleistocene to Holocene transition.  相似文献   

18.
The consistent geographical and altitudinal distribution of autochthonous block fields (mantle of bedrock weathered in situ) and trimlines in southern Norway suggests a multi-domed and asymmetric Late Weichselian ice sheet. Low-gradient ice-sheet profiles in the southern Baltic region, in the North Sea, and along the outer fjord areas of southern Norway, are best explained by movement of ice on a bed of deforming sediment, although water lubricated sliding or a combination of the two, may not be excluded. The ice-thickness distribution of the Late Weichselian Scandinavian ice sheet is not in correspondence with the modern uplift pattern of Fennoscandia. Early Holocene crustal rebound was apparently determined by an exponential, glacio-isostatic rise. Later, however, crustal movements appear to have been dominated by large-scale tectonic uplift of the Fennoscandian Shield, centred on the Gulf of Bothnia, the region of maximum lithosphere thickness.  相似文献   

19.
This study represents the first attempt to develop and apply lichenometric dating curves of Rhizocarpon subgenus Rhizocarpon for dating glacier fluctuations in the Patagonian Andes. Six glaciers were studied along the Patagonian Andes. Surfaces of known ages (historical evidences and tree-ring analyses) were used as control sites to develop indirect lichenometric dating curves. Dating curves developed for the studied glaciers show the same general logarithmic form, indicating that growth rate of subgenus Rhizocarpon decreases over time. The strong west–east precipitation gradient across the Andean Cordillera introduces statistically significant differences in the growth curves, with faster growth rates in the moist west sites than the drier eastern sites. Latitudinal difference among the studied glaciers does not appear to be a major factor regulating lichen growth rates. Therefore, we developed two lichenometric curves for dating glacier fluctuations in wetter and drier sites in the Patagonian Andes during the past 450 yrs. Application of the developed curves to moraine dating allowed us to complement glacial chronologies previously obtained by tree-ring analyses. A first chronosequence for moraine formation in the Torrecillas Glacier (42°S) is presented. Our findings confirm the utility of lichenometry to date deglaciated surfaces in the Patagonian Andes.  相似文献   

20.
Floodplain deposition is an essential part of the Holocene sediment dynamics of many catchments and a thorough dating control of these floodplain deposits is therefore essential to understand the driving forces of these sediment dynamics. In this paper we date floodplain and colluvial deposition in the Belgian Dijle catchment using accelerator mass spectrometric radiocarbon and optical stimulated luminescence dating. Relative mass accumulation curves for the Holocene were constructed for three colluvial sites and 12 alluvial sites. A database was constructed of all available radiocarbon ages of the catchment and this database was analysed using relative sediment mass accumulation rates and cumulative probability functions of ages and site‐specific sedimentation curves. Cumulative probability functions of ages were split into different depositional environments representing stable phases and phases of accelerated clastic deposition. The results indicate that there is an important variation between the different dated sites. After an initial stable early and middle Holocene phase with mainly peat growth in the floodplains, clastic sedimentation rates increased from 4000 BC on. This first phase was more pronounced and started somewhat earlier for colluvial deposits then for alluvial deposits. The main part of the Holocene deposits, both in colluvial and alluvial valleys, was deposited during the last 1 ka. The sedimentation pattern of the individual dated sites and the catchment‐wide pattern indicate that land use changes are responsible for the main variations in the Holocene sediment dynamics of this catchment, while the field data do not provide indications for a climatological influence on the sediment dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号