首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小江断裂带周边地区三维P波速度结构及其构造意义   总被引:18,自引:6,他引:12       下载免费PDF全文
作为青藏高原的东南边界,小江断裂带在高原物质的侧向逃逸中发挥着重要的作用.本文利用流动地震台阵及固定台站的走时观测资料,对小江断裂带及周边区域的壳幔三维P波速度结构进行了研究.结果表明,在中上地壳,小江断裂带内部主要为低速异常,其东侧主要为高速异常.在中下地壳,小江断裂带中部为低速异常,北部和南部主要为高速异常,其中北部的高速异常可延伸到地表附近,南部的高速异常可一直延伸到上地幔.我们推测,小江断裂带中部的低速异常与深部热作用有关;北部的高速异常可能是晚古生代地幔柱活动导致大量基性和超基性幔源物质侵入地壳引起的,它的存在对青藏高原物质向南逃逸起到了一定的阻挡作用,可能是导致川滇活动块体北部次级块体快速抬升的重要因素;南部顶界面向北倾斜的高速异常体对川滇活动块体向南滑移起到了进一步的阻挡作用,导致其上覆的中上地壳低速异常区发生较强的变形和强烈的地震活动,同时在上地幔深度范围起到了稳定的作用,使其南部区域的介质受青藏高原物质向南挤出的影响明显减小.  相似文献   

2.
We use 23298 Pn arrival-time data from Chinese national and provincial earthquake bulletins to invert fine structure of Pn velocity and anisotropy at the top of the mantle beneath the Sichuan-Yunnan and its adjacent region. The results suggest that the Pn velocity in this region shows significant lateral variation; the Pn velocity varies from 7.7 to 8.3 km/s. The Pn-velocity variation correlates well with the tectonic activity and heat flow of the region. Low Pn velocity is observed in southwest Yunnan, Tengchong volcano area, and the Panxi tectonic area. These areas have very active seismicity and tectonic activity with high surface heat flow. On the other hand, high Pn velocity is observed in some stable regions, such as the central region of the Yangtze Platform; the most pronounced high velocity area is located in the Sichuan Basin, south of Chengdu. Pn anisotropy shows a complex pattern of regional deformation. The Pn fast direction shows a prominent clockwise rotation pattern from east of the Tibetan block to the Sichuan-Yunnan diamond block to southwest Yunnan, which may be related to southeastward escape of the Tibetan Plateau material due to the collision of the Indian Plate to the Eurasia Plate. Thus there appears to be strong correlation between the crustal deformation and the upper mantle structure in the region. The delay times of events and stations show that the crust thickness decreases from the Tibetan Plateau to eastern China, which is consistent with the results from deep seismic sounding.  相似文献   

3.
Fine structure of Pn velocity beneath Sichuan-Yunnan region   总被引:3,自引:0,他引:3  
We use 23298 Pn arrival-time data from Chinese national and provincial earthquake bulletins to invert fine structure of Pn velocity and anisotropy at the top of the mantle beneath the Sichuan-Yunnan and its adjacent region. The results suggest that the Pn velocity in this region shows significant lateral variation; the Pn velocity varies from 7.7 to 8.3 km/s. The Pn-velocity variation correlates well with the tectonic activity and heat flow of the region. Low Pn velocity is observed in southwest Yunnan , Tengchong volcano area, and the Panxi tectonic area. These areas have very active seismicity and tectonic activity with high surface heat flow. On the other hand, high Pn velocity is observed in some stable regions, such as the central region of the Yangtze Platform; the most pronounced high velocity area is located in the Sichuan Basin, south of Chengdu. Pn anisotropy shows a complex pattern of regional deformation. The Pn fast direction shows a prominent clockwise rotation pattern from east of the Tibetan block to the Sichuan-Yunnan diamond block to southwest Yunnan, which may be related to southeastward escape of the Tibetan Plateau material due to the collision of the Indian Plate to the Eurasia Plate. Thus there appears to be strong correlation between the crustal deformation and the upper mantle structure in the region. The delay times of events and stations show that the crust thickness decreases from the Tibetan Plateau to eastern China, which is consistent with the results from deep seismic sounding.  相似文献   

4.
Introduction Major tectonic activities occur in collisions zones between plates or intra-plate continental blocks. Therefore, it is significant to investigate collision processes. We know that orogenic and seismic belts in plate margins are closely relate…  相似文献   

5.
印度-欧亚碰撞与洋-陆碰撞的差异   总被引:1,自引:0,他引:1       下载免费PDF全文
观测的证据充分表明,印度——欧亚的缝合带雅鲁藏布江上存在自南向北的地壳俯冲带,它穿过莫霍面,深度大约达到100 km. 喜马拉雅中可能存在多重的地壳俯冲. 它们有别于海洋碰撞时所产生的整个岩石圈俯冲. 作者观测到雅鲁藏布江以北上地幔的板片构造,它可以解释为印度向欧亚俯冲时上地幔岩石圈的痕迹. 它们说明与洋——陆的俯冲不同,印度向欧亚俯冲时,地壳与上地幔岩石圈出现拆层现象. 综合现有的地壳上地幔构造,显示在不同地质年代中,印度与欧亚之间产生自南向北以及自北向南相反方向的俯冲,而且俯冲带周围出现某些速度异常区.   相似文献   

6.
Ample observational evidence shows that there is a northward crustal subduction zone underneath the Yarlung Zangbo suture between India and Eurasia. It penetrates Moho to a depth of about 100 km. There are probably multiple such crustal subductions under the Himalayas. They are different from lithosphere subduction during oceanic collisions. The detected slabs in the upper mantle north of the Yarlung Zangbo suture can be interpreted as remains of the Indian Plate’s mantle lithosphere. In contrary to ocean-continent subduction, the mantle lithosphere is delaminated from the crust as the Indian Plate subducts underneath Eurasia. Existing structural images of the crust and upper mantle of the Tibetan Plateau reveal that there were both northward and southward subductions over different geological periods, causing some seismic velocity anomalies around those subduction zones.  相似文献   

7.
Tong  WeiWei  Wang  LiangShu  Mi  Ning  Xu  MingJie  Li  Hua  Yu  DaYong  Li  Cheng  Liu  ShaoWen  Liu  Mian  SanDvol  Eric 《中国科学:地球科学(英文版)》2007,50(2):227-233

A portable broadband seismic array was deployed from the northeast Tibetan Plateau to the southwest Ordos block, China. The seismic structure of the crust and uppermost mantle of the Liupanshan area is obtained using receiver function analysis of teleseismic body waves. The crustal thickness and Poisson’s ratios are estimated by stacking the weighted amplitudes of receiver functions. Our results reveal complex seismic phases in the Liupanshan area, implying intense deformation at the boundary between the Tibetan Plateau and the Ordos block. The average crustal thickness is 51.5 km in the northeast Tibetan Plateau, 53.5 km in the Liupan Mountain and 50 km in the southwest Ordos block, resulting in a concave Moho beneath the Liupan Mountain. The Poisson’s ratio of the Liupanshan area varies between 0.27–0.29, higher than the value of 0.25–0.26 to the east and west of the Liupan Mountain, suggesting partial melting in the lower crust. The variance in Poisson’s ratio across the Liupan Mountain indicates notable changes in the crustal composition and mechanical properties, which may be formed by the northeastward flow of the Tibetan lower crust during the India-Eurasia collision.

  相似文献   

8.
In the last decade, several international joint projects were conducted in the Tibetan Plateau by Chinese, American and French geophysicists and geologists. In the present review, the results from vertical reflections, wide-angle reflections and broadband digital seismic recordings are reviewed and compared. Constraints for the dynamics of continent-continent collision from the lithospheric structures, seismicity, focal mechanism and anisotropy are discussed.The velocities ofPn,Sn, , were accurately determined by using their travel times from local events. They evidenced that the uppermost mantle underneath the Tibetan Plateau was similar to that of the ordinary continental mantle.The reflection profile from INDEPTH-I furnishes convincing evidence that the Indian crust penetrates into the Tibetan lower crust. The results from teleseismic waveform inversion reveal that the Moho discontinuity dips northwards, and an offset of Moho occurs near Bangong suture.The fact that materials within the Tibetan Plateau escape laterally has been proposed by several authors. Recent data and studies provide further convincing evidence that eastward mass transfer does occur, and their paths and natures are investigated.Some authors suggested that the large strike slip faults (Kun Lun, Xianshuihe) in the eastern plateau may be related to the lateral extrusion. However, most of the strike slips are left-lateral, and extrusion could not occur without right-lateral strike slips. Recent observations of the focal mechanisms and geological structure indicate that the earthquakes in the Yanshiping-Changdu belt are left-lateral strike slip. It is the southeast zone of the left-lateral slip faults in the eastern Tibetan plateau. Geological and seismological evidence show that the Bencuo-Jiali belt is the only large right-lateral fault in the eastern plateau. It was proposed that the present eastward extrusion occurs between the Yangshiping-Changdu left-lateral strike slip and the Bencuo-Jiali right-lateral strike slip. The other left-lateral strike slips north of the Yangshiping-Changdu belt are considered to be the fossils of the ancient flow paths.  相似文献   

9.
To investigate the relationship between velocity structure and earthquake activity on the southeastern front of the Tibetan Plateau, we make use of continuous observations of seismic ambient noise data obtained at 55 broadband stations from the regional Yunnan Seismic Network. These data are used to compute Rayleigh wave Green's Functions by cross-correlating between two stations, extracting phase velocity dispersion curves, and finally inverting to image Rayleigh wave phase velocity with periods between 5 and 34 s by ambient noise tomography. The results show significant lateral variations in crustal and uppermost mantle structures in the studied region. Phase velocity anomalies at short periods(5–12 s) are closely related to regional tectonic features such as sediment thickness and the depth of the crystalline basement. The Sichuan-Yunnan rhombic block, enclosed by the Honghe, Xiaojiang and Jianchuan faults, emerges as a large range of low-velocity anomalies at periods of 16–26 s, that inverts to high-velocity anomalies at periods of 30–34 s. The phase velocity variation in the vicinity of the Sichuan-Yunnan rhombic block suggests that the low-velocity anomaly area in the middle-lower crust may correspond to lower crustal channelized flow of the Tibetan Plateau. The spatial distribution of strong earthquakes since 1970 reveals that the Yunnan region is inhomogeneous and shows prominent characteristics of block motion. However, earthquakes mostly occur in the upper crust, with the exception of the middle-Yunnan block where earthquakes occur at the interface zone between high and low velocity as well as in the low-velocity zones, with magnitudes being generally less than 7. There are few earthquakes of magnitude 5 at the depths of 15–30 km, where gather earthquakes of magnitude 7 or higher ones which mainly occur in the interface zone between high and low velocities with others extending to the high-velocity abnormal zone.  相似文献   

10.
通过对位于印度板块与欧亚板块碰撞带缅甸弧附近三塔断裂带活动性的野外考察研究,探讨了位于缅甸弧东侧的滇缅泰板缘地区现代构造与地震活动动力来源和空间不均匀性。指出印度板块与欧亚板块沿兴都库什弧的正面碰撞和青藏高原隆起导致的侧向挤出作用对滇缅泰板缘地区现代构造与地震活动的影响可能大于印度板块与欧亚板块沿缅甸弧的碰撞对上述地区的影响。  相似文献   

11.
A portable broadband seismic array was deployed from the northeast Tibetan Plateau to the southwest Ordos block, China. The seismic structure of the crust and uppermost mantle of the Liupanshan area is obtained using receiver function analysis of teleseismic body waves. The crustal thickness and Poisson's ratios are estimated by stacking the weighted amplitudes of receiver functions. Our results reveal complex seismic phases in the Liupanshan area, implying intense deformation at the boundary between the Tibetan Plateau and the Ordos block. The average crustal thickness is 51.5 km in the northeast Tibetan Plateau, 53.5 km in the Liupan Mountain and 50 km in the southwest Ordos block, resulting in a concave Moho beneath the Liupan Mountain. The Poisson's ratio of the Liupanshan area varies between 0.27-0.29, higher than the value of 0.25-0.26 to the east and west of the Liupan Mountain, suggesting partial melting in the lower crust. The variance in Poisson's ratio across the Liupan Mountain indicates notable changes in the crustal composition and mechanical properties, which may be formed by the northeastward flow of the Tibetan lower crust during the India-Eurasia collision.  相似文献   

12.
青藏高原地震波三维速度结构的研究   总被引:14,自引:0,他引:14  
丁志峰  何正勤  吴建平  孙为国 《中国地震》2001,17(2):202-209,T001
根据青藏高原及其邻区的模拟地震台站和宽频带数字地震记录资料,采用区域体波层析成你和瑞利面波层析成像,反演得到了青藏高原地区的三维地震波速度结构。两种层析成像方法得到的地壳上地幔P波和S波速度结构的结果非常相似,它们显示,青藏高原南部的拉萨块体的上地壳存在明显的低速区,青藏高原北部的羌塘地区的下地壳和上地幔顶部相对速度较低。这些结果与青藏高原南、北部处于碰撞过程中的不同阶段有关。  相似文献   

13.
The deep structure of the eastward-subducting Indian plate can provide new information on the dynamics of the India-Eurasia collision. We collected and processed waveform data from temporary seismic arrays (networks) on the eastern Tibetan Plateau, seismic arrays in Northeast India and Myanmar, and permanent stations of the China Digital Seismic Network in Tibet, Gansu, Qinghai, Yunnan, and Sichuan. We combined these data with phase reports from observation stations of the International Seismological Center on the Indian plate and selected 124,808 high-quality P-wave relative travel-time residuals. Next, we used these data to invert the 3-D P-wave velocity structure of the upper mantle to a depth of 800 km beneath the eastern segment of the arcuate Himalayan orogen, at the southeastern margin of the Tibetan Plateau. The results reveal a high-angle, easterly dipping subducting plate extending more than 200 km beneath the Indo-Myanmese arc. The plate breaks off at roughly 96°E; its fragments have passed through the 410-km discontinuity (D410) into the mantle transition zone (MTZ). The MTZ beneath the Tengchong volcanic area contains a high-velocity anomaly, which does not exceed the Red River fault to the east. No other large-scale continuous subducted plates were observed in the MTZ. However, a horizontally spreading high-velocity anomaly was identified on the D410 in some regions. The anomaly may represent the negatively buoyant 90°E Ridge plate or a thickened and delaminated lithospheric block experiencing collision and compression at the southeastern margin of the Tibetan Plateau. The Tengchong volcano may originate from the mantle upwelling through the slab window formed by the break-off of the subducting Indian continental plate and oceanic plate in the upper mantle. Low-velocity upper mantle materials on the west side of the Indo-Myanmese arc may have supplemented materials to the Tengchong volcano.  相似文献   

14.
Using the P-and S-wave arrivals from the 150 earthquakes distributed in Tibetan Plateau and its neighboring areas, recorded by Tibetan seismic network, Sichuan seismic network, WWSSN and the mobile network situated in Tibetan Plateau, we have obtained the average P-and S-wave velocity models of the crust and upper mantle for this region:
(1)  The crust of 70 km average thickness can be divided into two main layers: 16 km thick upper crust with P-wave velocity 5.55 km/s and S-wave velocity 3.25 km/s; and 54 km thick lower crust with P-wave velocity 6.52 km/s and S-wave velocity 3.76 km/s.
(2)  The p-wave velocity at the upper most mantle is 7.97 km/s, and the S-wave 4.55 km/s. The low velocity layer in the upper mantle occurs approximately at 140 km deep with a thickness of about 55–62 km. The prominent velocity gradient beneath the LVZ is comparable to the gradient above it.
The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 573–579, 1992.  相似文献   

15.
Continent–continent collisions are an important tectonic process and have played a fundamental role in the evolution of the modern continents. A combination of geological and geophysical data has provided new constraints on the structure and temporal evolution of these orogens. Magnetotelluric (MT) studies have been an important part of these studies since they can constrain the fluid content and thermal structure which are key parameters for defining the rheology of the crust and upper mantle. MT studies of the Himalaya have defined the geometry of active faults associated with continued plateau growth. Orogen scale MT studies have shown that both the India–Asia collision (Tibetan Plateau and Himalaya) and the Arabia–Eurasia collision (Eastern Anatolia) have developed a low resistivity mid-crustal layer with upper surface at 10–20 km that is likely due to a combination of partial melt and associated aqueous fluids. The properties of this layer are consistent with a strength contrast that permits crustal flow over geological timescales. The upper mantle from the Moho to at least 100 km beneath both Northern Tibet and the Anatolian Plateau is characterized by low resistivity values (10–30 Ωm) indicating the presence of shallow asthenosphere. Future integrated seismic and MT studies of collision zones are needed fully to explore the 3D structures associated with deformation and further constrain geodynamic models.  相似文献   

16.
On the dynamics of extensional basin   总被引:2,自引:0,他引:2  
Geological and geophysical data from the North China-Bohai Basin and “Basin and Range” Province were examined and compared. They are similar to each other in many respects. Surficial geological structures are characterized by a series of half-grabens with their one flank constituted by normal fault. Those extensional structures usually extend to a depth of 6–8 km. Therefore, the stress condition in the upper 8 km can be written as $$\sigma _2 > \sigma _x > \sigma _y$$ wherex, y denote the directions of maximum compression and maximum tension on the horizontal plane, whilez signifies the vertical direction. Some people think that this kind of stress condition exists through the entire crust in the extensional basin. However, the focal mechanisms of the earthquakes in the extensional basins with focal depths usually at 12–20 km are dominated by strike-slip faults. The stress condition in the focal regions can be expressed by $$\sigma _x > \sigma _z > \sigma _y .$$ Geodetic measurements conducted before and after the Tangshan earthquake in 1976 and the Xingtai earthquake in 1966 showed that both horizontal and vertical surficial deformations with magnitudes of a similar order occurred during the earthquakes. The surficial deformations during the earthquakes can be explained by a summation of the motions produced by both stress fields in the upper crust and the middle crust. Dynamical processes other than the homogeneous horizontal regional tectonic field are required to explain the vertical variation of the stress condition in the upper and middle crusts. Evidence from the seismic refractions, reflections and the three-dimensional seismic tomography from both local earthquakes and teleseismic events provide convincing evidence that magmatic intrusions from the uppermost mantle to the middle crust occur near the hypocenters of both the Tangshan and Xingtai earthquakes. The variation from the extensional stress regime at the upper crust to the compressional stress regime in the middle and lower crusts is considered to be the common feature in extensional basins. And the magmatic intrusions from the upper mantle to the middle crust observed in the extensional basin is suggested to be its genetic cause. Numerical simulations of magmatic intrusion from the uppermost mantle to the middle crust were studied. Both the intruded compression and the thermal stress due to magmatic intrusion were considered, also the viscoelasticity of the middle and lower crusts were assumed. The results successfully explain the vertical variation of the stress condition in the crust and the process producing an extensional basin.  相似文献   

17.
This paper summarizes seismic and rockburst research activities related to South African deep-level gold mines over the period 1983 to 1987. It covers continued research in directions that were considered in the Seismicity in Mines Symposium in 1982 as well as in several new areas of research. Five broad areas are identified:
  1. Seismic data acquisition and processing. Improved seismic systems are being developed. Velocity models related to known stratigraphy are being used to provide more accurate estimates of seismic locations.
  2. Source mechanisms and near-source effects on seismic wave transmission. This work provides fundamental insights into seismicity and rock behaviour and is being applied in rockburst prediction research.
  3. Mine layouts. Excess shear stress is being investigated as a design parameter by analyzing mining configurations and resultant seismicity. In addition, better understanding of the behaviour of highly stressed remnants and pillars is also being obtained from seismic studies.
  4. Strong ground motion studies. Evaluation of the performance of support elements, including recently developed backfill materials, requires better knowledge of ground motion around underground excavations during seismic events and rockbursts.
  5. Rockburst prediction and control. Rockburst prediction research continues with some reported success. In addition, the feasibility of actively triggering fault slip or conditioning the rock ahead of the stope face to ameliorate the rockburst hazard is currently being investigated.
  相似文献   

18.
利用川滇地区长期积累的地震走时观测资料和汶川地震余震观测资料对汶川地震震源区及周边区域地壳和上地幔P波三维速度结构进行了研究.结果表明,浅部P波速度分布与地表地质之间具有很好的对应关系.龙门山断裂带在20 km以上深度表现为高速异常带,彭灌杂岩体和宝兴杂岩体为局部高速异常区.龙门山断裂带中上地壳的局部高速异常体对汶川地震的余震分布具有明显的控制作用.在余震带南端,余震全部发生在与宝兴杂岩体对应的高速异常体的东北侧;在余震带的中段,与彭灌杂岩体对应的高速异常体在一定程度上控制了余震的分布;在余震带的东北端,宁强-勉县一带的高速异常体可能阻止了余震进一步向东北扩展.龙门山断裂带中上地壳的P波高速异常表明介质具有相对较高的强度,在青藏高原物质向东挤出过程中起到了较强的阻挡作用,有利于深部能量积累.在30 km深度之下,扬子地块具有明显的高速特征,其前缘随深度增加向青藏高原方向扩展,在下地壳和上地幔顶部已达到龙门山断裂带以西.  相似文献   

19.
Strong seismic anisotropy beneath Tibet has recently been reported from the study of SKS shear wave splitting. The fast split waves are generally polarized in an easterly direction, close to the present day direction of motion of the Tibetan crust relative to stable Eurasia, as deduced from Holocene slip rates on the major active faults in and around Tibet. This correlation may be taken to suggest that the whole Tibetan lithosphere is being extruded in front of indenting India and that the anisotropic layer is the deforming asthenosphere, that accommodates the motion of the Tibetan lithosphere relative to the fixed mantle at depth. Uncertainties about this motion are at present too large to bring unambiguous support to that view. Assuming that this view is correct however, a simple forward model is used to compute theoretical delay times as a function of the thickness of the anisotropic layer. The observed delay times would require a 50–100 km thick anisotropic layer beneath south-central Tibet and an over 200 km thick layer beneath north-central Tibet, where particularly hot asthenosphere has been inferred. This study suggests that the asthenospheric anisotropy due to present absolute block motion might be dominant under actively deforming continents.  相似文献   

20.
青藏高原横波分裂的观测研究   总被引:32,自引:12,他引:32       下载免费PDF全文
1991年7月-1992年6月,中、美两国合作在青藏高原架设了11个宽频带数字记录的PASSCAL临时地震台站,它们分布在青藏公路沿线和青藏高原东部地区.利用这些台站记录到的高质量数据,对远震的SKS波进行分析和计算,在多数台站观测到了SKS波分裂的现象.用SC方法计算了青藏高原所记录到的SKS波分裂的参量,即快波偏振方向φ和快、慢波的到时差δt,探求台站下地幔介质的各向异性.φ从南(拉萨)往北(至格尔木)有一趋势变化,从南边的北东方向渐变至北边的近东西方向.快、慢波的到时差在高原上向北渐渐变大,在不冻泉达到最大;再往北至格尔木又迅速减小.认为在印度板块和欧亚大陆的碰撞挤压下,雅鲁藏布江以北青藏高原下面的上地幔物质在区域构造应力场的作用下,沿东西方向发生形变以至流动,它使上地幔中橄榄岩的晶格排列方向平行于物质形变或流动的方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号