首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In the Dharwar tectonic province, the Peninsular Gneiss was considered to mark an event separating the deposition of the older supracrustal Sargur Group and the younger supracrustal Dharwar Supergroup. Compelling evidence for the evolution of the Peninsular Gneiss, a polyphase migmatite, spanning over almost a billion years from 3500 Ma to 2500 Ma negates a stratigraphic status for this complex, so that the decisive argument for separating the older and younger supracrustal groups loses its basis. Correlatable sequence of superposed folding in all the supracrustal rocks, the Peninsular Gneiss and the banded granulites, indicate that the gneiss ‘basement’ deformed in a ductile manner along with the cover rocks. An angular unconformity between the Sargur Group and the Dharwar Super-group, suggested from some areas in recent years, has been shown to be untenable on the basis of detailed studies, A number of small enclaves distributed throughout the gneissic terrane, with an earlier deformational, metamorphic and migmatitic history, provide the only clue to the oldest component which has now been extensively reworked.  相似文献   

2.
The earliest decipherable record of the Dharwar tectonic province is left in the 3.3 Ga old gneissic pebbles in some conglomerates of the Dharwar Group, in addition to the 3.3–3.4 Ga old gneisses in some areas. A sialic crust as the basement for Dharwar sedimentation is also indicated by the presence of quartz schists and quartzites throughout the Dharwar succession. Clean quartzites and orthoquartzite-carbonate association in the lower part of the Dharwar sequence point to relatively stable platform and shelf conditions. This is succeeded by sedimentation in a rapidly subsiding trough as indicated by the turbidite-volcanic rock association. Although conglomerates in some places point to an erosional surface at the contact between the gneisses and the Dharwar supracrustal rocks, extensive remobilization of the basement during the deformation of the cover rocks has largely blurred this interface. This has also resulted in accordant style and sequence of structures in the basement and cover rocks in a major part of the Dharwar tectonic province. Isoclinal folds with attendant axial planar schistosity, coaxial open folds, followed in turn by non-coaxial upright folds on axial planes striking nearly N-S, are decipherable both in the “basement” gneisses and the schistose cover rocks. The imprint of this sequence of superposed deformation is registered in some of the charnockitic terranes also, particularly in the Biligirirangan Hills, Shivasamudram and Arakalgud areas. The Closepet Granite, with alignment of feldspar megacrysts parallel to the axial planes of the latest folds in the adjacent schistose rocks, together with discrete veins of Closepet Granite affinity emplaced parallel to the axial planes of late folds in the Peninsular Gneiss enclaves, suggest that this granite is late-tectonic with reference to the last deformation in the Dharwar tectonic province. Enclaves of tonalite and migmatized amphibolite a few metres across, with a fabric athwart to and overprinted by the earliest structures traceable in the supracrustal rocks as well as in a major part of the Peninsular Gneiss, point to at least one deformation, an episode of migmatization and one metamorphic event preceding the first folding in the Dharwar sequence. This record of pre-Dharwar deformation and metamorphism is corroborated also by the pebbles of gneisses and schists in the conglomerates of the Dharwar Group. Volcanic rocks within the Dharwar succession as well as some of the components of the Peninsular Gneiss give ages of about 3.0 Ga. A still younger age of about 2.6 Ga is recorded in some volcanic rocks of the Dharwar sequence, a part of the Peninsular Gneiss, Closepet Granite and some charnockites. These, together with the 3.3 Ga old gneisses and 3.4 Ga old ages of zircons in some charnockites, furnish evidence for three major thermal events during the 700 million year history of the Archaean Dharwar tectonic province.  相似文献   

3.
The Peninsular Gneiss around Gorur in the Dharwar craton, reported to be one of the oldest gneisses, shows nealy E-W striking gneissosity parallel to the axial planes of a set of isoclinal folds (DhF1). These have been over printed by near-coaxial open folding (DhF12) and non-coaxial upright folding on almost N-S trend (DhF2). This structural sequence is remarkably similar to that in the Holenarasipur schist belt bordering the gneisses as well as in the surpracrustal enclaves within the gneisses, suggesting that the Peninsular Gneiss has evolved by migmatization synkinematically with DhF1 deformation. The Gorur gneisses are high silica, low alumina trondhjemites enriched in REE (up to 100 times chondrite), with less fractionated REE patterns (CeN/YbN < 7) and consistently negative Eu anomalies (Eu/Eu* = 0.5 to 0.7). A whole rock Rb-Sr isochron of eight trondhjemitic gneisses sampled from two adjacent quarries yields an age of 3204 ± 30 Ma with Sr i of 0.7011 ± 6 (2σ). These are marginally different from the results of Beckinsale and coworkers (3315 ± 54 Ma, Sr i = 0.7006 ± 3) based on a much wider sampling. Our results indicate that the precursors of Gorur gneisses had a short crustal residence history of less than a 100 Ma.  相似文献   

4.
华北克拉通在新太古代末期发生克拉通化,形成了现今规模的古陆,大量的太古宙岩石均经历了~2500Ma左右的区域高级变质作用(高角闪岩相-麻粒岩相)。而华北克拉通北部冀北地区出露一套中低级变质(绿片岩相-角闪岩相)的火山-沉积岩系,主要包括胡麻营地区红旗营子表壳岩和大阴山地区单塔子表壳岩中变质程度较低的部分。胡麻营地区红旗营子表壳岩系主要岩石组合为变基性火山岩、绿帘角闪岩、斜长角闪岩、含石榴石斜长角闪岩、角闪斜长片麻岩、黑云斜长片麻岩、黑云角闪斜长片麻岩、黑云二长片麻岩、石英片岩、磁铁石英岩等,SIMS锆石U-Pb定年结果表明斜长角闪岩形成于2486±18Ma(MSWD=1.4),而黑云斜长片麻岩形成于2507±37Ma(MSWD=2.0)。大阴山地区单塔子中低级变质表壳岩系主要由浅变质火山岩、云母石英片岩、斜长角闪岩、磁铁石英岩和大理岩等组成,SHRIMP锆石U-Pb定年结果显示,浅变质火山岩中的变玄武岩形成于2490±19Ma(MSWD=2.0),而变英安岩形成于2502±8Ma(MSWD=0.83)。因此,冀北中低级变质的表壳岩系主要形成于新太古代末期,形成年龄为2507~2486Ma;结合冀东青龙地区新太古代末期(2511~2503Ma)的浅变质火山-沉积岩系(青龙表壳岩),我们认为新太古代末期,中低级变质表壳岩系广泛分布于华北克拉通的核部和边缘地区,此套岩系覆盖在太古宙高级变质杂岩之上,代表华北克拉通化之后的稳定盖层,是克拉通化的主要标志之一。  相似文献   

5.
Abstract Two varieties of charnockites are recognized in the Dharwar craton of southern India. The style and sequence of structures in one charnockite variety, and related intermediate to basic granulites, are similar to those in the supracrustal rocks of the Dharwar Supergroup and the adjacent Peninsular Gneiss. This style has isoclinal folds with long limbs and sharp hinges with an axial planar fabric in some instances. Additional evidence of flattening is provided by pinch-and-swell and boudinage structures, with basic granulites forming boudins in the more ductile charnockites/enderbites in the limbs of isoclinal folds. These folds are involved in near-coaxial upright folding resulting in the bending of the axial planes of the isoclinal folds and the associated boudins. All these structures are overprinted by non-coaxial upright folds with axial planes striking nearly N–S. The map pattern of charnockites suggests that this sequence of structures is present not only on a mesoscopic scale, but also on a macroscopic scale. Charnockites of this variety provide, in some instances, evidence of having been migmatized to give rise to hornblende–biotite gneiss and biotite gneiss, which form a part of the Peninsular Gneiss terrane.
The second variety comprises charnockite sensu stricto with an entirely different structural style. This type occurs in the tensional domains of the hinge zones of the later buckle folds, in the necks of foliation boudinage, in shear zones and in release joints parallel to the axial planes of the later folds in the Peninsular Gneiss. Because the non-coaxial later folds are associated with a strain pattern different from, and later than, that of the isoclinal folds of the first generation, it follows that charnockites of the Dharwar craton have evolved in at least two distinct phases, separate both in time and in process.  相似文献   

6.
The Banded Gneissic Complex (BGC) of Rajasthan, considered to form the basement underlying the Precambrian (Proterozoic) Aravalli metasediments, shows an erosion surface marked by a conglomerate and an angular unconformity, with gneissic foliation crossing the metasedimentary bands at only a few places. The BGC is a composite gneiss, evolved by extensive migmatization of metasedimentary rocks of diverse composition, and possibly metaigneous rocks. The contact between the BGC and the Aravalli rocks is a gently curved surface, whereas the gneissic foliation, as well as the large-scale metasedimentary enclaves within the gneissic complex, show all the intricate patterns of super-imposed folding traceable in the Aravalli rocks. This implies that the “basement” gneisses have been involved in ductile deformation with the Aravalli rocks, the migmatization being synkinematic with the first deformation in the latter. All these apparently conflicting lines of evidence can be resolved if the gneisses, as we see them now, represent not the original, but the mobilized basement, with the BGC-Aravalli boundary representing, for a large part, a migmatite front, rather than the original basement-cover interface. Only at a few places was there a chance of the original basement escaping mobilization and thus, little chance of identifying this original interface.  相似文献   

7.
辽西地区中元古代变质岩系的初步研究   总被引:3,自引:0,他引:3       下载免费PDF全文
辽西地区中元古代变质表壳岩包括石英岩、千枚岩-片岩、大理岩及细粒长英质片麻岩和少量阳起石片岩,为中酸性火山活动及钙碱性玄武岩活动之后的海进型沉积旋回,显示出一套较为连续的火山-沉积系列。变质深成岩以斜长花岗质片麻岩为主体。根据同位素测年、微古植物化石分析及与地层的接触关系等,厘定它们为中元古代产物。在中元古代该区经历了大陆边缘岛弧的形成、发展过程。  相似文献   

8.
耿元生  周喜文 《岩石学报》2012,28(9):2667-2685
在阿拉善变质基底中发现了大量的早二叠世的弱变形花岗岩类。采自阿拉善东部的闪长质片麻岩(AL0705-1)、含石榴英云闪长质片麻岩(AL0709-1)、英云闪长岩(AL0718-1)、条痕状黑云斜长片麻岩(AL0822-1)和片麻状花岗岩(AL0822-3)的锆石U-Pb年龄分别为270±1.6Ma、276±1.8Ma、269±2.4Ma、276±2.4Ma和287±2.5Ma。采自阿拉善变质基底西部的花岗闪长质片麻岩(AL0805-1)、闪长质片麻岩(AL0805-4)、粗粒花岗闪长质片麻岩(AL0810-1)和中粒闪长质片麻岩(AL0810-2)的锆石LA-ICP-MSU-Pb年龄分别为284±3Ma、289±3Ma、276±2Ma和279±2Ma。尽管早二叠世花岗岩的岩石类型和化学成分不同,但它们都形成于269~289Ma一个较短的时间范围,属于同一期岩浆热事件的产物。早二叠世花岗岩的形成年龄与基底变质岩中角闪石39Ar-40Ar的坪年龄277~288Ma近于一致,表明这期岩浆热事件对基底变质岩石产生了改造,使角闪石等变质矿物的Ar-Ar同位素体系发生了重置。在阿拉善变质基底中大量早二叠世花岗岩类侵入体的发现表明,阿拉善变质基底在古生代晚期受到中亚造山带碰撞造山作用的强烈影响和改造。  相似文献   

9.
Archaean gneiss-greenstone relationships are still unresolved in many ancient cratonic terrains although there is growing evidence that most of the late Archaean greenstone assemblages were deposited on older tonalitic crust.We report here well defined basement-cover relationships from a late Archaean greenstone belt in Lapland, north of the Polar Circle. The basal greenstone sequence contains quartzite, schist, komatiitic volcanics and an unusual volcanic conglomerate with well preserved granite pebbles of an older basement. These rocks surround a gneiss dome composed of foliated tonalite which shows a polyphase deformation pattern not seen in the neighbouring greenstones.Zircon fractions of the gneisses plot on two discordia lines and give upper intercept ages with concordia at 3,069±16 Ma and 3,110±17 Ma respectively. One fraction contains metamict zircons with components at least 3,135 Ma old. These are the oldest reliable ages yet reported from the Archaean of the Baltic Shield. Rb-Sr whole-rock dating of the tonalitic gneiss yielded an isochron age of 2,729±122 Ma and an ISr of 0.703±0.001. This is interpreted to reflect a resetting event during which the gneisses may have acquired their present tectonic fabric.Rb-Sr model age calculations yield mantle values for ISr at about 2,950±115 Ma and suggest that the tonalite was intruded into the crust as juvenile material at about 3.1 Ga ago as reflected by the zircon ages. It was subsequently deformed and isotopically reset at about 2.7 Ga ago, prior to greenstone deposition.Comparison with tonalitic gneisses of eastern Karelia displays significant differences and suggests that the Archaean of Finland may contain several generations of pre-greenstone granitoid rocks.  相似文献   

10.
Felsic tuff beds with some presumed sedimentary components were reported from the Owk Shale (Kurnool Group; bearing Neoproterozoic fossils) in the upper part of the sedimentary succession in the Cuddapah basin in India by Saha and Tripathy (2012a). Our optical and SEM petrographic study of three thin sections, however, indicates that the parent samples are sandy mudstones with variable amounts of a felsic volcaniclastic component. New highquality U-Pb (SHRIMP and LA-MC-ICPMS) ages of 133 detrital zircon grains from a sample show that one grain is ca. 1880 Ma, one grain is ca. 3300 Ma, and the ages of the remaining 131 grains fall between 2690 Ma and 2429 Ma, the population averaging 2522 ± 36 Ma. The data indicate that the zircons are detrital grains derived from the ca. 2.5 Ga granitic/gneissic/greenstone basement of the Dharwar cratons that also host minor older Archean enclaves. The single 1880 Ma grain could have come from a ca. 1.9 Ga LIP. In the absence of any younger magmatic zircon, the absolute age of the Owk Shale remains elusive.  相似文献   

11.
The Pan-African basement exposed in the Meatiq area west of Quseir, Egypt, consists of an infracrustal basement overthrusted by a supracrustal cover. The infracrustal rocks were developed as a result of an old orogeny referred to as the Meatiqian orogeny where granite—gneiss, migmatitic gneisses and migmatized amphibolites were formed. The granite—gneiss represents a deformed granite pluton emplaced at 626±2 Ma, whereas the migmatitic gneisses and amphibolites are of mixed igneous and sedimentary parentage. In view of the data so far available, the nature of the Meatiqian orogeny could not be deciphered. In spite of the young isotopic ages, it is suggested that at least the metasedimentary gneisses represent older rocks in the stratigraphic sequence of the infracrustal basement.The supracrustal cover represents a part of an extensive ophiolitic mélange obducted onto the infracrustal basement during the next orogeny (Abu Ziran orogeny) which culminated at 613±2 Ma. An active continental margin-type regime can adequately explain the evolution of such a supracrustal cover. During obduction, the ophiolitic mélange and the upper 2 km thick part of the infracrustal basement were intensely deformed and metamorphosed under PT conditions of the greenschist—epidote amphibolite facies. The deformed infracrustal basement was converted into mylonitic—blastomylonitic rocks and schists composing five thrust sheets, and subsequently intruded by synkinematic granitoid sheets. Later, both the infracrustal basement and the overlying supracrustal cover were isostatically uplifted, subjected to complex shallow folding giving rise to the major Meatiq domal structure, and were intruded by a postkinematic adamellite pluton at 579±6 Ma.  相似文献   

12.
鞍山地区太古代岩石同位素地质年代学研究   总被引:23,自引:4,他引:23       下载免费PDF全文
乔广生 《地质科学》1990,(2):158-165
鞍山本溪地区太古代变质岩可分为三套,即含铁的表壳岩建造、侵入于铁建造中的花岗质片麻岩和铁架山奥长花岗质-花岗质片麻岩,后者为表壳岩的基底。原划为上鞍山群樱桃园组(齐大山矿带)和山城子组(歪头山-北台矿带)的斜长角闪岩分别获得2729Ma和2724Ma的Sm-Nd等时线年龄。这就为有争议的鞍本地区铁建造属于同一时代提供了依据,并讨论了表壳岩中的变质沉积岩以及铁架山基底片麻岩的同位素年代。  相似文献   

13.
The coastal Changle-Nan’ao tectonic zone of SE China contains important geological records of the Late Mesozoic orogeny and post-orogenic extension in this part of the Asian continent. The folded and metamorphosed T3–J1 sedimentary rocks are unconformably overlain by Early Cretaceous volcanic rocks or occur as amphibolite facies enclaves in late Jurassic to early Cretaceous gneissic granites. Moreover, all the metamorphic and/or deformed rocks are intruded by Cretaceous fine-grained granitic plutons or dykes. In order to understand the orogenic development, we undertook a comprehensive zircon U–Pb geochronology on a variety of rock types, including paragneiss, migmatitic gneiss, gneissic granite, leucogranite, and fine-grained granitoids. Zircon U–Pb dating on gneissic granites, migmatitic gneisses, and leucogranite dyke yielded a similar age range of 147–135 Ma. Meanwhile, protoliths of some gneissic granites and migmatitic gneisses are found to be late Jurassic magmatic rocks (ca. 165–150 Ma). The little deformed and unmetamorphosed Cretaceous plutons or dykes were dated at 132–117 Ma. These new age data indicate that the orogeny lasted from late Jurassic (ca. 165 Ma) to early Cretaceous (ca. 135 Ma). The tectonic transition from the syn-kinematic magmatism and migmatization (147–136 Ma) to the post-kinematic plutonism (132–117 Ma) occurred at 136–132 Ma.  相似文献   

14.
The Río Negro-Juruena Province (RNJP) occupies a large portion of the western part of the Amazonian Craton and is a zone of complex granitization and migmatization. Regional metamorphism, in general, occurred in the upper amphibolite facies. The granites and gneisses of the RNJP yield Rb-Sr and Pb-Pb whole-rock isochron dates ranging from 1.8 Ga to 1.55 Ga, with initial 87Sr/86Sr ratios of ~ 0.703 and a single-stage model μ1 value of ~ 8.1. In order to improve the geochronological control, SHRIMP U-Pb zircon ages, conventional U-Pb zircon ages, and additional Pb-Pb whole-rock isochron ages were determined for samples of granitoids and gneisses from the Papuri-Uaupés and Guaviare-Orinoco rivers areas (northern part of the province) and Jamari-Machado rivers and Pontes de Lacerda areas (southern part). The granitoids from the northern part of the province yield conventional U-Pb zircon ages of 1709 ± 17 Ma and 1521 ± 31 Ma, and SHRIMP U-Pb concordant zircon results of 1800 ± 18 Ma. Samples of gneissic rocks from the southern part of the RNJP yielded SHRIMP U-Pb concordant ages of 1750 ± 24 Ma and 1570 ± 17 Ma and a Pb-Pb whole-rock isochron age of 1717 ± 120 Ma. These new U-Pb and Pb-Pb results confirm the previous Rb-Sr and Pb-Pb geochronological evidence that the main magmatic episodes within the RNJP occurred between 1.8 and 1.55 Ga, and suggest that this crustal province constitutes a segment of continental crust newly added to the Amazonian Craton at the end of the Early Proterozoic. In the area of the RNJP, there are several anorogenic rapakivi-type granite plutons. Because of the absence of recognized Archean material within the basement rocks, it is reasonable to consider the Early to Middle Proterozoic continental crust as the magmatic source for the rapakivi granite intrusions.  相似文献   

15.
为了确定鲁西莲花山地区新太古代晚期二长花岗岩中的表壳岩包体的形成时代,并探讨与相邻雁翎关地区的雁翎关岩组中的新太古代早期变质火山岩系的关系。本文对表壳岩包体及相关岩石进行了锆石年代学和地球化学研究。表壳岩包体主要由变质超基性岩和斜长角闪岩组成,另含少量(黑云)角闪变粒岩和黑云变粒岩。SHRIMP锆石U-Pb定年结果显示:角闪变粒岩的岩浆锆石年龄为2 757 Ma;侵入斜长角闪岩的奥长花岗岩脉的年龄为2 593 Ma;从变质超基性岩分选出很少锆石,它们普遍遭受强烈变质重结晶,207Pb/206Pb年龄为2 657~2 397 Ma。变质超基性岩具轻稀土亏损型或平坦型稀土模式,斜长角闪岩具平坦型稀土模式,角闪变粒岩具轻稀土略富集稀土模式,虽然大离子亲石元素相对富集,但都无明显Nb、Ta亏损。表壳岩包体的岩石组合、地球化学组成特征和形成时代可与相邻雁翎关地区的雁翎关岩组中的新太古代早期变质火山岩系对比,形成于大洋环境。新太古代早期表壳岩的原有分布范围应比现在所见到的更为广泛。  相似文献   

16.
Santunying is an important area for revealing nature of the late Neoarchean tectono-magmato-thermal events in the eastern Hebei part of the North China Craton. It is mainly composed of meta-intrusive rocks. Supracrustal rocks sporadically occur in the meta-intrusive rocks. The meta-intrusive rocks are subdivided into the Santunying tonalitic gneiss, Qiuhuayu tonalitic-trondhjemitic gneiss, Xiaoguanzhuang dioritic gneiss and Qingyangshu meta-gabbro. Respectively, SHRIMP U–Pb zircon dating on fourteen samples yielded weighted mean 207Pb/206Pb ages of 2525–2537, 2532–2546, 2530–2544 and ∼2531 Ma for magmatic zircons from them. Dioritic gneiss of the Xiaoguanzhuang gneiss contain abundant 2544–3487 Ma xenocrystic zircons. SHRIMP U–Pb dating on a garnet-biotite gneiss sample yielded a weighted mean 207Pb/206Pb age of 2537 Ma for detrital zircons. All rocks underwent strong metamorphism, deformation and anatexis, resulting in formation of leucosomes and residues, with some leucosomes concentrating to form large veins. They record a strong late Neoarchean event by metamorphic zircon ages of 2489–2519 Ma. Some rocks also record metamorphic zircon ages of 1772–1843 Ma. Magmatic zircons from the magmatic rocks show large variations in εHf(t) values ranging from −1.7 to +8.7. Combined with early studies, conclusions are: 1) Intrusive rocks with the involvement of mantle-derived materials have a narrow range of magmatic zircon ages from 2525 to 2546 Ma, and supracrustal rocks were formed during the same period. 2) Ancient crustal remnants (>2600 Ma) are present, consistent with the late Neoarchean arc magmatism involving older continental crust, similar to Phanerozoic Andean margins. 3) The Archean basement underwent a strong tectonothermal event at the end of the Neoarchean, with the metamorphic zircon ages being 10–30 million years younger than the timing of magmatism, a common feature of the North China Craton. 4) A late Paleoproterozoic tectonothermal event widely occurred in the western part of eastern Hebei, which is linked with regional ductile deformation.  相似文献   

17.
拉萨地体东南缘始新世早期变质作用及其构造意义   总被引:1,自引:1,他引:0  
林彦蒿  张泽明  董昕 《岩石学报》2013,29(6):1962-1976
本文对位于青藏高原拉萨地体东南缘林芝杂岩中的片麻岩进行了岩石学和锆石U-Pb年代学研究.所研究的样品包括正片麻岩和副片麻岩,它们经历了中压角闪岩相变质作用.岩石地球化学分析结果表明,所研究的正片麻岩的原岩具有钙碱性岛弧岩浆岩的特征.锆石U-Pb年代学分析结果表明,副片麻岩中的碎屑锆石核部为岩浆成因,它们给出的206Pb/238U年龄范围为3012~ 522Ma,其锆石的增生边给出了~51Ma的变质年龄.在正片麻岩中,黑云母片麻岩给出了~67Ma的原岩结晶年龄和~ 55 Ma的变质年龄;石榴石角闪黑云斜长片麻岩给出了~58Ma的原岩结晶年龄和~54Ma的变质年龄.因此,所研究的林芝杂岩并不能代表拉萨地体中的前寒武纪变质基底,而是古生代的沉积岩和晚白垩纪至早新生代的岩浆岩在始新世早期变质而成.这一时期,表壳岩和侵入岩一起经历的中压角闪岩相变质作用很可能跟新特提斯洋俯冲导致的地壳增生、加厚有关.  相似文献   

18.
New mapping, geochemistry and zircon U-Pb ion microprobe geochronology of pre-3750 Ma rocks from West Greenland was used to identify sedimentary protoliths in a problematic high-grade metamorphic terrane. Samples were collected from southernmost part of the Itsaq Gneiss Complex where Akilia association supracrustal rocks have previously been noted. Supracrustal lithologies include laterally continuous and variably deformed units of amphibolite, ultramafics and ferruginous quartz-pyroxene rocks. Oxygen isotope and mass-independently fractionated sulfur isotopes, immobile trace elements and rare earth element patterns are consistent with origin of quartz-pyroxene rocks as chemical sediments deposited in a marine hydrothermal setting. We describe a further supracrustal lithology: Garnet-bearing quartz-biotite schists with elevated oxygen isotope values (δ18OSMOW ? +16‰) and mass-independently fractionated S isotopes consistent with a low-temperature aqueous sedimentary origin. In several enclaves, granitoid gneisses within low-strain limbs transect lithologic contacts and contain inclusions of surrounding rocks. This supports the interpretation that some orthogneisses were originally emplaced as igneous veins that cut supracrustal lithologies. Zircon geochronology on orthogneisses that preserve intrusive relationships confirms minimum ages of ca. 3750 Ma for the supracrustals and pooled [Th/U]zircon and δ18Ozircon values of older zircon populations are consonant with igneous growth in the bulk composition of the host rocks. Low [Zr]WR and high Zr saturation temperatures further minimize the possibility of zircon inheritance. A >3750 Ma age and chemical sedimentary origin for various Akilia association lithologies underscores the widespread occurrence of rocks of this kind beyond the type locality on Akilia (island) at the southern limit of the Itsaq Gneiss Complex.  相似文献   

19.
The Archean basement of Sierra Leone is a typical example of granite-greenstone terrains found in ancient continental nucleii. Reconnaissance field mapping showed that the area can be subdivided into old gneiss, which predates the greenstone belts, and young granite which is later than the greenstone belts.New Rb-Sr whole-rock age determinations on two suites of old tonalitic gneiss yield ages of 2786 ± 49 Ma and 2770 ± 137 Ma, which either reflect the time of formation of the original tonalites or their metamorphism. Three new Rb-Sr whole-rock age determination on young granites yield ages of 2786 ± 143 Ma, 2780 ± 79 Ma and 2770 ± 50 Ma, which are interpreted as the time of emplacement. The widespread occurrence of similar young granites, throughout the Archaean of West Africa, suggests that these results date a major event in the evolution of this segment of the crust.A published Pb-Pb age of the old gneiss and the new ages of the young granite bracket the age of the greenstone belts to 3000-2770 Ma. However, if the Rb-Sr ages of the old gneiss reported in this paper reflect the time of their formation, the age of the greenstone belts is tightly bracketed to ca. 2770 Ma. There is no isotopic evidence for rocks substantially older than 3000 Ma in the West African Archaean.  相似文献   

20.
The Pb-Pb whole-rock geochronology of Archaean granitic and gneissic rocks from the Diemals area in the Central Yilgarn granite-greenstone terrain provides important constraints on crustal evolution. The regionally extensive banded gneisses, previously considered as candidates for basement to the greenstones give a Pb-Pb whole-rock age of 2700 ± 97 Ma (2σ errors). This is within error of previously published Rb-Sr and Sm-Nd gneiss ages and also within error of the Sm-Nd ages on the greenstones in the Eastern Goldfields Province. Two synkinematic plutons give Pb-Pb whole-rock ages (2737 ± 62 Ma and 2700 ± 100 Ma) and Pb isotopic compositions consistent with the hypothesis, based on field and geochemical relations, that these plutons were derived by partial melting of the precursors to the banded gneisses. Assuming this, the combined data date the melting event at 2723 ± 25 Ma with a model source μ value of 8.18 ± 0.02. This source μ value is close to the range postulated for mantle values and restricts the crustal history of the precursors to less than ~200 Ma. A post-kinematic pluton with a whole-rock Pb-Pb age of 2685 ± 26 Ma and μ value of 8.26 ± 0.02 puts a younger limit on this relatively short lived crustal accretion-differentiation event.Comparison of Pb-Pb and Rb-Sr whole-rock dates for the plutons suggests that the latter became closed systems up to 200 Ma after the Pb-Pb ages, and that the plutons gained or lost Rb or Sr at this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号