首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groundwater in coastal areas is commonly disturbed by tidal fluctuations. A two‐dimensional analytical solution is derived to describe the groundwater fluctuation in a leaky confined aquifer system near open tidal water under the assumption that the groundwater head in the confined aquifer fluctuates in response to sea tide whereas that of the overlying unconfined aquifer remains constant. The analytical solution presented here is an extension of the solution by Sun for two‐dimensional groundwater flow in a confined aquifer and the solution by Jiao and Tang for one‐dimensional groundwater flow in a leaky confined aquifer. The analytical solution is compared with a two‐dimensional finite difference solution. On the basis of the analytical solution, the groundwater head distribution in a leaky confined aquifer in response to tidal boundaries is examined and the influence of leakage on groundwater fluctuation is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Faults can act as flow barriers or conduits to groundwater flow by introducing heterogeneity in permeability. We examine the hydrogeology of the Sandwich Fault Zone, a 137 km long zone of high-angle faults in northern Illinois, using a large-scale historic aquifer test. The fault zone is poorly understood at depth due to the majority of the faults being buried by glacial deposits and its near-vertical orientation which limits geologic sampling across faults. The aquifer test—perhaps one of the largest in terms of overall withdrawal in North American history—was conducted in 1942 at a facility adjacent to the fault zone. More than 34,000 m3/day was pumped for 37 days from nine multiaquifer wells open to the stratified Cambrian-Ordovician sandstone aquifer system. We modeled the aquifer test using a transient MODFLOW-USG model and simulated pumping wells with the CLN package. We tested numerous fault core/damage zone conceptualizations and calibrated to drawdown values recorded at production and observation wells. Our analysis indicates that the fault zone is a low-permeability feature that inhibits lateral movement of groundwater and that there is at least an order of magnitude decrease in horizontal hydraulic conductivity in the fault core compared to the undeformed sandstone. Large head declines have occurred north of the fault zone (over 300 m since predevelopment conditions) and modifying fault zone parameters significantly affects calibration to regional drawdown on a decadal scale. The flow-barrier behavior of the fault zone has important implications for future groundwater availability in this highly stressed region.  相似文献   

3.
Strack OD 《Ground water》2006,44(1):91-98
We deal in this paper with an ongoing development of the analytic element method. We present in outline new analytic line elements that are suitable to model general flow fields, i.e., flow fields that possess a continuously varying areal inflow or outflow. These elements are constructed specifically to model the leakage through leaky layers that separate aquifers in leaky systems and to model transient effects. The leakage or release from storage underneath linear features is modeled precisely by the new elements; the singularity in leakage is matched exactly by the approximate solution. Applications are given for a problem involving leakage and for a case of transient flow. We note that the analytic elements can be used also to reproduce the effect of continuously varying aquifer properties, e.g., the hydraulic conductivity or the elevation of the base of the aquifer. In the latter case, the elements would reproduce the rotation of the flow field caused by the variation in properties, rather than the divergence as for the case of leakage.  相似文献   

4.
Abstract

A simplified method has been developed for solving leaky aquifer non-Darcian flow hydraulics. The principle of volumetric approach is combined with the confined-aquifer, time-dependent drawdown equation in an observation well. The groundwater flow in the leaky aquifer is assumed to obey a non-Darcian flow law of exponential type. The results are obtained in the form of type-curve expressions from which the necessary bundles of curves are drawn for a set of selective non-Darcian flow aquifer parameters. Although application of the methodology appears as rather limited but it provides a scientific contribution and extension of leaky aquifer theory towards nonlinear flow conditions. The methodology developed herein is applied to some actual field data from the eastern sedimentary basin in the Kingdom of Saudi Arabia.  相似文献   

5.
A mathematical model is developed to investigate the effects of tidal fluctuations and leakage on the groundwater head of leaky confined aquifer extending an infinite distance under the sea. The leakages of the offshore and inland aquitards are two dominant factors controlling the groundwater fluctuation. The tidal influence distance from the coast decreases significantly with the dimensionless leakage of the inland aquitard (ui). The fluctuation of groundwater level in the inland part of the leaky confined aquifer increases significantly with the dimensionless leakage of the offshore aquitard (uo). The influence of the tidal propagation parameter of an unconfined aquifer on the head fluctuation of the leaky confined aquifer is comparatively conspicuous when ui is large and uo is small. In other words, ignoring water table fluctuation of the unconfined aquifer will give large errors in predicting the fluctuation, time lag, and tidal influence distance of the leaky confined aquifer for large ui and small uo. On the contrary, the influence of the tidal propagation parameter of a leaky confined aquifer on the head fluctuation of the leaky confined aquifer is large for large uo and small ui.  相似文献   

6.
The hydraulic diffusivity gives a measure of diffusion speed of pressure disturbances in groundwater system; large values of hydraulic diffusivity lead to fast propagation of signals in aquifer. This research provides a novel design and derives spectral representation to determine hydraulic diffusivity using spectral analysis of groundwater levels coupled with time-dependent boundary adjacent to marine system and no flow boundary in aquifer system. To validate the proposed method, water levels of fluctuated boundary and groundwater well in a sandy confined aquifer were collected. The hydraulic diffusivity is then obtained by an inverse process in the non-linear complex form of spectral relationship. The method essentially is constructed on the conceptual design of natural forcing transmitted in large aquifer. It is unlike the conventional field pumping test which is only used to determine hydraulic properties of groundwater in small range around the well. Hydraulic diffusivity of the confined aquifer is determined using real observation and then checked by comparing to the published range. It suggests that without local aquifer test to estimate hydraulic diffusivity in a coastal aquifer using spectral representation with its relevant flow system and boundary has become feasible.  相似文献   

7.
While recent studies have revealed that tidal fluctuations in an estuary significantly affect groundwater flows and salt transport in the riparian zone, only seawater salinity in the estuary has been considered. A numerical study is conducted to investigate the influence of estuarine salinity variations on the groundwater flow and salt dynamics in the adjacent aquifer to extend our understanding of these complex and dynamic systems. Tidal salinity fluctuations (synchronous with estuary stage) were found to alter the magnitude and distribution of groundwater discharge to the estuary, which subsequently impacted on groundwater salinity patterns and residence times, especially in the riparian zone. The effects of salinity fluctuations were not fully captured by adopting a constant, time-averaged estuarine salinity. The modelling analysis also included an assessment of the impact of a seasonal freshwater flush in the estuary, similar to that expected in tropical climates (e.g. mean estuary level during flood significantly greater than average), on adjacent groundwater flow and salinity conditions. The three-month freshwater flushing event temporarily disrupted the salt distribution and re-circulation patterns predicted to occur under conditions of constant salinity and tidal water level fluctuations in the estuary. The results indicate that the salinity variations in tidal estuaries impact significantly on estuary–aquifer interaction and need to be accounted for to properly assess salinity and flow dynamics and groundwater residence times of riparian zones.  相似文献   

8.
Abstract

An analytical solution is developed to delineate the capture zone of a pumping well in an aquifer with a regional flow perpendicular to a stream, assuming a leaky layer between the stream and the aquifer. Three different scenarios are considered for different pumping rates. At low pumping rates, the capture zone boundary will be completely contained in the aquifer. At medium pumping rates, the tip of the capture zone boundary will intrude into the leaky layer. Under these two scenarios, all the pumped water is supplied from the regional groundwater flow in the aquifer. At high pumping rates, however, the capture zone boundary intersects the stream and pumped water is supplied from both the aquifer and the stream. The two critical pumping rates which separate these three scenarios, as well as the proportion of pumped water from the stream and the aquifer, are determined for different hydraulic settings.

Editor D. Koutsoyiannis; Associate editor A. Koussis

Citation Asadi-Aghbolaghi, M., Rakhshandehroo, G.R., and Kompani-Zare, M., 2013. An analytical approach to capture zone delineation for a well near a stream with a leaky layer. Hydrological Sciences Journal, 58 (8), 1813–1823.  相似文献   

9.
Accurate representation of groundwater flow and solute transport requires a sound representation of the underlying geometry of aquifers. Faults can have a significant influence on the structure and connectivity of aquifers, which may allow permeable units to connect, and aquifers to seal when juxtaposed against lower permeability units. Robust representation of groundwater flow around faults remains challenging despite the significance of faults for flow and transport. We present a methodology for the inclusion of faults utilizing the unstructured grid features of MODFLOW-USG and MODFLOW 6. The method focuses on the representation of fault geometries using non-neighbor connections between juxtaposed layers. We present an illustration of the method for a synthetic fluvial aquifer. The combined impact of the heterogeneous aquifer and fault offset is clearly visible where channel features at different depths in the aquifer were connected at the fault. These results highlight the importance of representing fault features in groundwater flow models.  相似文献   

10.
Global errors in head and/or discharge may be introduced when groundwater flow to a stream is modeled using the Dupuit approximation. We consider a simple case of steady groundwater flow in the vertical plane to a horizontal stream bed in direct connection with the aquifer, and compare solutions to the exact problem with Dupuit solutions where common representations of the stream are chosen. In all cases considered, adopting the Dupuit approximation introduces global errors into the mathematical model, and the magnitude of the errors depends on the regional flow conditions. This behavior makes calibration of a model difficult and limits the predictive abilities of the model under conditions of changed regional flow. The global errors and their dependence on flow conditions can be minimized, but not eliminated by treating the resistance of a fictitious leaky stream bed as an effective parameter.We propose an alternate Dupuit model of groundwater–surface water interaction and demonstrate, for the case considered, that adding a second effective parameter allows us to eliminate global errors in head and discharge, and eliminate the dependence of the effective values on the flow field. Explicit expressions are provided to evaluate the two effective properties. We propose that the results be used as a general guideline for modeling groundwater–surface water interaction at streams.  相似文献   

11.
This study presents analytical solutions of the three‐dimensional groundwater flow to a well in leaky confined and leaky water table wedge‐shaped aquifers. Leaky wedge‐shaped aquifers with and without storage in the aquitard are considered, and both transient and steady‐state drawdown solutions are derived. Unlike the previous solutions of the wedge‐shaped aquifers, the leakages from aquitard are considered in these solutions and unlike similar previous work for leaky aquifers, leakage from aquitards and from the water table are treated as the lower and upper boundary conditions. A special form of finite Fourier transforms is used to transform the z‐coordinate in deriving the solutions. The leakage induced by a partially penetrating pumping well in a wedge‐shaped aquifer depends on aquitard hydraulic parameters, the wedge‐shaped aquifer parameters, as well as the pumping well parameters. We calculate lateral boundary dimensionless flux at a representative line and investigate its sensitivity to the aquitard hydraulic parameters. We also investigate the effects of wedge angle, partial penetration, screen location and piezometer location on the steady‐state dimensionless drawdown for different leakage parameters. Results of our study are presented in the form of dimensionless flux‐dimensionless time and dimensionless drawdown‐leakage parameter type curves. The results are useful for evaluating the relative role of lateral wedge boundaries and leakage source on flow in wedge‐shaped aquifers. This is very useful for water management problems and for assessing groundwater pollution. The presented analytical solutions can also be used in parameter identification and in calculating stream depletion rate and volume. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The study on the hydraulic properties of coastal aquifers has significant implications both in hydrological sciences and environmental engineering. Although many analytical solutions are available, most of them are based on the same basic assumption that assumes aquifers extend landward semi‐infinitely, which does not necessarily reflect the reality. In this study, the general solutions for a leaky confined coastal aquifer have been developed that consider both finitely landward constant‐head and no‐flow boundaries. The newly developed solutions were then used to examine theoretically the joint effects of leakage and aquifer length on hydraulic head fluctuations within the leaky confined aquifer, and the validity of using the simplified solution, which assumes the aquifer is semi‐infinite. The results illustrated that the use of the simplified solution may cause significant errors, depending on joint effects of leakage and aquifer length. A dimensionless characteristic parameter was then proposed as an index for judging the applicability of the simplified solution. In addition, practical application of the general solution for the constant‐head inland boundary was used to characterize the hydraulic properties of a leaky confined aquifer using the data collected from a field site at the Seine River estuary, France, and the versatility of the general solution was further justified.  相似文献   

13.
Previous studies on tidal dynamics of coastal aquifers have focussed on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Aquifers at natural coasts can also be influenced by tidal waves in nearby estuaries, resulting in a more complex behaviour of head fluctuations in the aquifers. We present an analytical solution to the two-dimensional depth-averaged groundwater flow equation for a semi-infinite aquifer subject to oscillating head conditions at the boundaries. The solution describes the tidal dynamics of a coastal aquifer that is adjacent to a cross-shore estuary. Both the effects of oceanic and estuarine tides on the aquifer are included in the solution. The analytical prediction of the head fluctuations is verified by comparison with numerical solutions computed using a standard finite-difference method. An essential feature of the present analytical solution is the interaction between the cross- and along-shore tidal waves in the aquifer area near the estuary’s entry. As the distance from the estuary or coastline increases, the wave interaction is weakened and the aquifer response is reduced, respectively, to the one-dimensional solution for oceanic tides or the solution of Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour Res 1997;33:1429–35) for two-dimensional non-interacting tidal waves.  相似文献   

14.
This paper presents an analytical model for describing the tidal effects in a two‐dimensional leaky confined aquifer system in an estuarine delta where ocean and river meet. This system has an unconfined aquifer on top and a confined aquifer on the bottom with an aquitard in between the two. The unconfined and confined aquifers interact with each other through leakage. It was assumed that the aquitard storage was negligible and that the leakage was linearly proportional to the head difference between the unconfined and confined aquifers. This model's solution was based on the separation of variables method. Two existing solutions that deal with the head fluctuation in one‐dimensional or two‐dimensional leaky confined aquifers are shown as special cases in the present solution. Based on this new solution, the dynamic effect of the water table's fluctuations can be clearly explored, as well as the influence of leakage on the behaviour of fluctuations in groundwater levels in the leaky aquifer system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Two analytical solution methods are presented for regional steady-state groundwater flow in a two-dimensional stratified aquifer cross section where the water table is approximated by the topographic surface. For the first solution, the surficial aquifer is represented as a set of dipping parallel layers with different, but piecewise constant, anisotropic hydraulic conductivities, where the anisotropy is aligned with the dip of the layered formation. The model may be viewed as a generalization of the solutions developed by [Tóth JA. A theoretical analysis of groundwater flows in small drainage basins. J Geophys Res 1963;68(16):4795–812; Freeze R, Witherspoon P. Theoretical analysis of regional groundwater flow 1) analytical and numerical solution to the mathematical model, water resources research. Water Resour Res 1966;2(4):641–56; Selim HM. Water flow through multilayered stratified hillside. Water Resour Res 1975;11:949–57] to an multi-layer aquifer with general anisotropy, layer orientation, and a topographic surface that may intersect multiple layers. The second solution presumes curved (syncline) layer stratification with layer-dependent anisotropy aligned with the polar coordinate system. Both solutions are exact everywhere in the domain except at the topographic surface, where a Dirichlet condition is met in a least-squared sense at a set of control points; the governing equation and no-flow/continuity conditions are met exactly. The solutions are derived and demonstrated on multiple test cases. The error incurred at the location where the layer boundaries intersect the surface is assessed.  相似文献   

16.
 Stochastic analysis of one- and two-dimensional flow through a shallow semi-confined aquifer with spatially variable hydraulic conductivity K represented by a stationary (statistically homogeneous) random process is carried out by using the spectral technique. The hydraulic head covariance functions for flows in a semi-confined aquifer bounded by a leaky layer above and an impervious stratum below are derived by assuming that the randomness forcing the head variation to originate from the hydraulic conductivity field of the aquifer. The head covariance functions are studied using two convenient forms of the logarithmic hydraulic conductivity process. The results demonstrate the significant reduction in the head variances and covariances due to the presence of a leaky layer. The hydraulic head correlation distance is also reduced greatly due to the presence of the leaky layer.  相似文献   

17.
The soil and water assessment tool (SWAT) has been widely used and thoroughly tested in many places in the world. The application of the SWAT model has pointed out that 2 of the major weaknesses of SWAT are related to the nonspatial reference of the hydrologic response unit concept and to the simplified groundwater concept, which contribute to its low performance in baseflow simulation and its inability to simulate regional groundwater flow. This study modified the groundwater module of SWAT to overcome the above limitations. The modified groundwater module has 2 aquifers. The local aquifer, which is the shallow aquifer in the original SWAT, represents a local groundwater flow system. The regional aquifer, which replaces the deep aquifer of the original SWAT, represents intermediate and regional groundwater flow systems. Groundwater recharge is partitioned into local and regional aquifer recharges. The regional aquifer is represented by a multicell aquifer (MCA) model. The regional aquifer is discretized into cells using the Thiessen polygon method, where centres of the cells are locations of groundwater observation wells. Groundwater flow between cells is modelled using Darcy's law. Return flow from cell to stream is conceptualized using a non‐linear storage–discharge relationship. The SWAT model with the modified aquifer module, the so‐called SWAT‐MCA, was tested in 2 basins (Wipperau and Neetze) with porous aquifers in a lowland area in Lower Saxony, Germany. Results from the Wipperau basin show that the SWAT‐MCA model is able (a) to simulate baseflow in a lowland area (where baseflow is a dominant source of streamflow) better than the original model and (b) to simulate regional groundwater flow, shown by the simulated groundwater levels in cells, quite well.  相似文献   

18.
Spane FA  Mackley RD 《Ground water》2011,49(6):794-807
Many contaminated unconfined aquifers are located in proximity to river systems. In groundwater studies, the physical presence of a river is commonly represented as a transient-head boundary that imposes hydrologic responses within the intersected unconfined aquifer. The periodic fluctuation of river-stage height at the boundary produces associated responses within the adjacent aquifer system, the magnitude of which is a function of the existing well, aquifer, boundary conditions, and characteristics of river-stage fluctuations. The presence of well responses induced by the river stage can significantly limit characterization and monitoring of remedial activities within the stress-impacted area. This article demonstrates the use of a time-domain, multiple-regression, convolution (superposition) method to develop well/aquifer river response function (RRF) relationships. Following RRF development, a multiple-regression deconvolution correction approach can be applied to remove river-stage effects from well water-level responses. Corrected well responses can then be analyzed to improve local aquifer characterization activities in support of optimizing remedial actions, assessing the area-of-influence of remediation activities, and determining mean groundwater flow and contaminant flux to the river system.  相似文献   

19.
The colloidal borescope consists of a set of lenses and miniature video cameras capable of observing natural particles in monitoring wells. Based on field observations of these particles, it appears possible to measure in situ groundwater velocity in a well bore. Field observations have shown that directional measurements using the colloidal borescope are generally in good agreement with expected flow directions. However, the magnitude of flow velocity is higher compared with values based on conventional test methods. High relative flow velocities, even after correction factors have been applied to compensate for well bore effects, are believed to be due to preferential flow zones in the surrounding aquifer. Low flow zones exhibit swirling multidirectional flow that does not allow for a linear velocity measurement. Consequently, groundwater flow velocities measured by the colloidal borescope in heterogeneous aquifers will be biased toward the maximum velocity values present in the aquifer. A series of laboratory experiments was conducted to assess the reliability of the instrument. Based on this work, a seepage velocity correction factor ( ) of 1–4 was found for quantifying groundwater seepage velocity in the adjacent aquifer from observations in a well bore. Laboratory measurements also indicate that preferential flow in the surrounding aquifer dominates flow in the well. Results of this work suggest the possibility of quantifying higher-flow velocities associated with preferential flow zones in the subsurface.  相似文献   

20.
In this second of two papers, analytical step-response functions, developed in the companion paper for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to stream-stage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream–aquifer systems in the northeastern and central United States. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank hydraulic properties, recharge rates, streambank seepage rates, and bank storage. Analysis of the water-table aquifer adjacent to the Blackstone River in Massachusetts suggests that the very shallow depth of water table and associated thin unsaturated zone at the site cause the aquifer to behave like a confined aquifer (negligible specific yield). This finding is consistent with previous studies that have shown that the effective specific yield of an unconfined aquifer approaches zero when the capillary fringe, where sediment pores are saturated by tension, extends to land surface. Under this condition, the aquifer's response is determined by elastic storage only. Estimates of horizontal and vertical hydraulic conductivity, specific yield, specific storage, and recharge for a water-table aquifer adjacent to the Cedar River in eastern Iowa, determined by the use of analytical methods, are in close agreement with those estimated by use of a more complex, multilayer numerical model of the aquifer. Streambank leakance of the semipervious streambank materials also was estimated for the site. The streambank-leakance parameter may be considered to be a general (or lumped) parameter that accounts not only for the resistance of flow at the river–aquifer boundary, but also for the effects of partial penetration of the river and other near-stream flow phenomena not included in the theoretical development of the step-response functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号