首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The origin of dike-like bodies along the Hilina fault scarp on the south flank of Kilauea Volcano. Hawaii has been the subject of recent controversy. Some geologists favour an origin by intrusion of magma from below, others favour « intrusion » of lava derived from above — lava derived from fluid surface flows which poured down open cracks. In order to distinguish between deep versus surface sources for the bodies, a suite of dike and other samples were analyzed for S, H2O, and Cl. All surface flows are degassed, whereas known dikes are volatile-rich. Samples of the Hilina dikes, and dikes from the Ninole Formation, Mauna Loa are degassed, indicating that these dikes were surface-fed — formed by magma which had been de-volatized by surface transport. A model is presented whereby the Hilina dikes form in talus and lava cones that drape the Hilina fault scarp. Seismic activity during eruption may have played an important role in the formation of the Hilina dikes. Similar dikes in the Ninole Formation probably formed in a similar environment.  相似文献   

2.
Flow by flow mapping of the 65-km-long anbaerial part of the southwest rift zone and adjacent flanks of Mauna Loa Volcano, Hawaii, and about 50 new14C dates on charcoal from beneath these flows permit estimates of rates of lava accumulation and volcanic growth over the past 10,000 years. The sequence of historic eraptions along the southwest rift zone, beginning in 1868, shows a general pattern of uprift migration and increasing eruptive volume, culminating in the great 1950 eruption. No event comparable to 1950, in terms of volume or vent length, is evident for at least the previous 1,000 years. Rates of lava accumulation during the historic period were several times higher than the average rate for the preceding few thousand years along the southwest rift zone and adjacent flanks. Rates of lava accumulation along the zone have been subequal to those of Kilauea Volcano during the historic period but they were much lower in late prehistoric time (anpubl. Kilauea data byR.T. Holcomb). Thus, only about 30% of the surface of the southwest side of Mauna Loa has been covered by lava during the last 1,000 years, as contrasted with about 90% of the subaerial surface of Kilauea. Rates of surface covering and volcanic growth have been markedly asymmetric along Mauna Loa’s southwest rift zone. Accumulation rates have been about half again as great on the northwest side of the rift zone in comparison with the southeast side. The difference apparently reflects a westward lateral shift of the rift zone of Mauna Loa away from Kilauea Volcano, which may have acted as a barrier to symmetrical growth of the rift zone.  相似文献   

3.
Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1–0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1–0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa.  相似文献   

4.
Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1–0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1–0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa.  相似文献   

5.
A 200-m section of Koolau basalt was sampled in the 1.6-km Trans-Koolau (T–K) tunnel. The section includes 126 aa and pahoehoe lava flows, five dikes and ten thin ash units. This volcanic section and the physical characteristics of the lava flows indicate derivation from the nearby northwest rift zone of the Koolau shield. The top of the section is inferred to be 500–600 m below the pre-erosional surface of the Koolau shield. Therefore, compared with previously studied Koolau lavas, this section provides a deeper, presumably older, sampling of the shield. Shield lavas from Koolau Volcano define a geochemical end-member for Hawaiian shields. Most of the tunnel lavas have the distinctive major and trace element abundance features (e.g. relatively high SiO2 content and Zr/Nb abundance ratio) that characterize Koolau lavas. In addition, relative to the recent shield lavas erupted at Kilauea and Mauna Loa volcanoes, most Koolau lavas have lower abundances of Sc, Y and Yb at a given MgO content; this result is consistent with a more important role for residual garnet during the partial melting processes that created Koolau shield lavas. Koolau lavas with the strongest residual garnet signature have relatively high 87Sr/86Sr, 187Os/188Os, 18O/16O, and low 143Nd/144Nd. These isotopic characteristics have been previously interpreted to reflect a source component of recycled oceanic crust that was recrystallized to garnet pyroxenite. This component also has high La/Nb and relatively low 206Pb/204Pb, geochemical characteristics which are attributed to ancient pelagic sediment in the recycled crust. Although most Koolau lavas define a geochemical endmember for Hawaiian shield lavas, there is considerable intrashield geochemical variability that is inferred to reflect source characteristics. The oldest T–K tunnel lava flow is an example. It has the lowest 87Sr/86Sr, Zr/Nb and La/Nb, and the highest 143Nd/144Nd ratio found in Koolau lavas. In most respects it is similar to lavas from Kilauea Volcano. Therefore, the geochemical characteristics of the Koolau shield, which define an end member for Hawaiian shields, reflect an important role for recycled oceanic crust, but the proportion of this crust in the source varied during growth of the Koolau shield. Received: 1 June 1998 / Accepted: 30 August 1998  相似文献   

6.
Rejuvenated-stage tuff cones (Honolulu Volcanics) on Koolau volcano, Oahu, Hawaii, contain xenoliths of Koolau shield basalt. Because Koolau subaerial shield lavas represent a Hawaiian geochemical 'end member', and submarine shield lavas have compositions with some affinities to Mauna Loa and Kilauea, we analyzed 28 xenolithic basalts from Salt Lake and Koko Head cones to determine how these seemingly random samplings of the Koolau profile compare to established Koolau geochemistry. Analyses reveal that 24 are shield tholeiitic basalt—the focus of this study—and 4 are rejuvenated-stage basaltic rocks. The tholeiitic xenoliths represent largely upper Koolau shield lavas, as these samples (8.3 to 5.8 wt% MgO) have, with one exception, overall major- and trace-element compositions that overlap those of Koolau subaerial shield lavas. Secondary processes, however, created some distinctions—namely, enrichments/depletions in K, Ba, Sr, SiO2, and FeO, and, due to zeolitization (chabazite with attending okenite and apophyllite), elevated CaO. One xenolithic basalt with 8.2 wt% MgO has higher Ti, Zr, Nb, and Sc, and lower Zr/Nb than subaerial lavas, and appears to represent relatively early, deeper shield—thereby reinforcing that the Koolau shield source varied temporally. Olivine, orthopyroxene, and plagioclase are the phenocrysts (clinopyroxene is rare), and their core compositions range widely across the suite—Fo87.8–72, orthopyroxene Mg#s 85–72, and An74–60. Several xenolithic basalts have both normally and reversely zoned orthopyroxene and plagioclase with a variety of core compositions (e.g., orthopyroxene-core Mg#s 82, 77, and 72, all in one sample). These compositions and zonations record evidence for wide compositional ranges of replenishment (MgO ~13–8 wt%) and reservoir (MgO ~7 to <5 wt%) magmas mixing in varying proportions; however, extreme MgO lavas (~13 and <5 wt%) are not observed as either subaerial or xenolithic basalt, but are indicated by phenocryst cores of Fo87.8 and orthopyroxene-Mg# 72. The Koolau magma-mixing history resembles that of Kilauea, and is unlike the 'steady-state' mixing known for Mauna Loa. Finally, these basalt samples show that any xenolithic occurrence of Koolau lava is subject to the zeolitization prevalent in the tuff-cone hosts.Editorial handling: M. Carroll  相似文献   

7.
Condensate samples were collected in 1992 from a high-temperature (300° C) fumarole on the floor of the Halemaumau Pit Crater at Kilauea. The emergence about two years earlier of such a hot fumarole was unprecedented at such a central location at Kilauea. The condensates have hydrogen and oxygen isotopic compositions which indicate that the waters emitted by the fumarole are composed largely of meteoric water, that any magmatic water component must be minor, and that the precipitation that was the original source to the fumarole fell on a recharge area on the slopes of Mauna Loa Volcano to the west. However, the fumarole has no tritium, indicating that it taps a source of water that has been isolated from atmospheric water for at least 40 years. It is noteworthy, considering the unstable tectonic environment and abundant local rainfall of the Kilauea and Mauna Loa regions, that waters which are sources to the hot fumarole remain uncontaminated from atmospheric sources over such long times and long transport distances. As for the common, boiling point fumaroles of the Kilauea summit region, their 18O, D and tritium concentrations indicate that they are dominated by recycling of present day meteoric water. Though the waters of both hot and boiling point fumaroles have dominantly meteoric sources, they seem to be from separate hydrological regimes. Large concentrations of halogens and sulfur species in the condensates, together with the location at the center of the Kilauea summit region and the high temperature, initially suggested that much of the total mass of the emissions of the hot fumarole, including the H2O, might have come directly from a magma body. The results of the present study indicate that it is unreliable to infer a magmatic origin of volcanic waters based solely on halogen or sulfur contents, or other aspects of chemical composition of total condensates.  相似文献   

8.
The magmatic plumbing system of Kilauea Volcano consists of a broad region of magma generation in the upper mantle, a steeply inclined zone through which magma rises to an intravolcano reservoir located about 2 to 6 km beneath the summit of the volcano, and a network of conduits that carry magma from this reservoir to sites of eruption within the caldera and along east and southwest rift zones. The functioning of most parts of this system was illustrated by activity during 1971 and 1972. When a 29-month-long eruption at Mauna Ulu on the east rift zone began to wane in 1971, the summit region of the volcano began to inflate rapidly; apparently, blockage of the feeder conduit to Mauna Ulu diverted a continuing supply of mantle-derived magma to prolonged storage in the summit reservoir. Rapid inflation of the summit area persisted at a nearly constant rate from June 1971 to February 1972, when a conduit to Mauna Ulu was reopened. The cadence of inflation was twice interrupted briefly, first by a 10-hour eruption in Kilauea Caldera on 14 August, and later by an eruption that began in the caldera and migrated 12 km down the southwest rift zone between 24 and 29 September. The 14 August and 24–29 September eruptions added about 107 m3 and 8 × 106 m3, respectively, of new lava to the surface of Kilauea. These volumes, combined with the volume increase represented by inflation of the volcanic edifice itself, account for an approximately 6 × 106 m3/month rate of growth between June 1971 and January 1972, essentially the same rate at which mantle-derived magma was supplied to Kilauea between 1952 and the end of the Mauna Ulu eruption in 1971.The August and September 1971 lavas are tholeiitic basalts of similar major-element chemical composition. The compositions can be reproduced by mixing various proportions of chemically distinct variants of lava that erupted during the preceding activity at Mauna Ulu. Thus, part of the magma rising from the mantle to feed the Mauna Ulu eruption may have been stored within the summit reservoir from 4 to 20 months before it was erupted in the summit caldera and along the southwest rift zone in August and September.The September 1971 activity was only the fourth eruption on the southwest rift zone during Kilauea's 200 years of recorded history, in contrast to more than 20 eruptions on the east rift zone. Order-of-magnitude differences in topographic and geophysical expression indicate greatly disparate eruption rates for far more than historic time and thus suggest a considerably larger dike swarm within the east rift zone than within the southwest rift zone. Characteristics of the historic eruptions on the southwest rift zone suggest that magma may be fed directly from active lava lakes in Kilauea Caldera or from shallow cupolas at the top of the summit magma reservoir, through fissures that propagate down rift from the caldera itself at the onset of eruption. Moreover, emplacement of this magma into the southwest rift zone may be possible only when compressive stress across the rift is reduced by some unknown critical amount owing either to seaward displacement of the terrane south-southeast of the rift zone or to a deflated condition of Mauna Loa Volcano adjacent to the northwest, or both. The former condition arises when the forceful emplacement of dikes into the east rift zone wedges the south flank of Kilauea seaward. Such controls on the potential for eruption along the southwest rift zone may be related to the topographic and geophysical constrasts between the two rift zones.  相似文献   

9.
Active thermal areas are concentrated in three areas on Mauna Loa and three areas on Kilauea. High-temperature fumaroles (115–362° C) on Mauna Loa are restricted to the summit caldera, whereas high-temperature fumaroles on Kilauea are found in the upper East Rift Zone (Mauna Ulu summit fumaroles, 562° C), middle East Rift Zone (1977 eruptive fissure fumaroles), and in the summit caldera. Solfataric activity that has continued for several decades occurs along border faults of Kilauea caldera and at Sulphur Cone on the southwest rift zone of Mauna Loa. Solfataras that are only a few years old occur along recently active eruptive fissures in the summit caldera and along the rift zones of Kilauea. Steam vents and hot-air cracks also occur at the edges of cooling lava ponds, on the summits of lava shields, along faults and graben fractures, and in diffuse patches that may reflect shallow magmatic intrusions.  相似文献   

10.
230Th-238U radioactive disequilibrium was studied in the historical lava flows of the Mauna Loa and Kilauea, Hawaii. Large variations of the (230Th/232Th) ratio among lavas of the same volcano that were erupted at a few years' interval are interpreted as due to contamination. The contamination probably occurs by assimilation of zeolitic minerals formed by seawater interaction while the magma resides in a superficial chamber.  相似文献   

11.
The geochemical data of Hualalai tholeiitic basalts allow extension of the temporal variations established at Mauna Loa back in time, and provide important information for the long-term temporal variation of the Hawaiian lavas. We report new Hf, Pb, Nd, and Sr isotope compositions for 32 Hualalai tholeiitic basalts collected from deep submarine portions of the North Kona region. The samples were collected from the lower section of the North Kona bench (dives K218 and K219), a submarine stratigraphic section at Hualalai volcano's northwest rift zone (dive S690), and an elongate ridge outboard of the central section of the bench (dive S692), during two JAMSTEC Hawaii cruises in 2001 and 2002. The Hualalai shield-stage tholeiitic basalts have magma source isotopic signatures similar to Mauna Loa. The new data shows temporal Pb and Sr isotope trends that correspond to the long-term temporal variations in Loa-trend lavas, and the Hualalai–Mauna Loa lavas seem to show inter-shield geochemical excursions. Variation in Pb and Sr isotopes at Hualalai appears to take place over a longer time scale than at Mauna Loa. The merged Hualalai–Mauna Loa isotopic trends support models where heterogeneous material in the plume conduit is distributed chaotically, with variable cross-sectional density and length scale.  相似文献   

12.
Studies of ERT Satellite photographic documents and of acrial photographs with complementary lield work reveal the presence of recent very large nuée ardente deposits north-west of Socompa Volcano (Andean Cordillera of Atacama, northern Chile). Three zones are distinguishable from the bottom of Socompa Volcano to the front of the nuée ardente deposits: 1) pumice blocks are covered with parallel ridges of debris (lava blocks) from the north-western flank of Socompa Volcano, 2) pumice blocks lie upon small cones and flows from El Negrillar volcanoes located inside the graben of Negros de Aras, 3) pumice flow threads its way between cones and flows from El Negrillar volcanoes and stops more than 40 km away from the base of Socompa Volcano. The calculated thermal energy of this cruption is 7.9 × 1025 ergs, being in the range of of the most important recorded eruptions on earth. The pumice is almost aphyric (rare plagioclase, hypersthene and hornblende phenocrysts) and is of dacite composition lying pertectly on the K2O-SiO2 trend of the Socompa Volcano. Trace and major element data of the pumice are similar to those of two dacites from a pre-nuée lava flow and a post-nuée lava dome of Socompa Volcano and support a common magmatic origin with the Socompa Volcano lavas. A relative chronology is proposed.  相似文献   

13.
Tanna, one of the southernmost islands of the New Hebrides volcanic arc, is made of Late Pliocene to Recent island arc tholeiitic basalts and andesites, with SiO2 contents ranging from 45 to 57%. These lavas are highly porphyritic (30–50% in volume): phenocrysts of plagioclase are the most abundant, together with olivine and clinopyroxene. The groundmass contain plagioclase, augite, olivine, magnetite and glass; pigeonite, tridymite, sanidine and, rarely, biotite may also occur. The olivines and clinopyroxenes show an iron enrichment from the cores of phenocrysts to their rims and the groundmass crystals, but their compositional variations are not correlated with the Mg/Fe ratio of bulk host rocks, the most Fe-rich compositions being found in Mg-rich lavas. Plagioclase compositions range from An95 to An60 in the basalts and An60 to An50 in the andesites, but, within each group, they are not correlated with SiO2 or Na2O contents of host lavas. Consequently, the bulk major element compositions of Tanna volcanic rocks cannot be considered as primarily controlled by crystal separation from successive liquids. The oxyde-SiO2 variations diagrams, and the modal compositions and mineral chemistry show that crystal accumulation is the predominant mechanism accounting for bulk rock compositions. However, this does not exclude fractional crystallization: the variation of the calculated groundmass mineralogy strongly suggest the occurrence of crystal removal mainly clinopyroxene and magnetite.  相似文献   

14.
A major carbonate reef which drowned 13 ka is now submerged 150 m below sea level on the west coast of the island of Hawaii. A 25-km span of this reef was investigated using the submersibleMakali'i. The reef occurs on the flanks of two active volcanoes, Mauna Loa and Hualalai, and the lavas from both volcanoes both underlie and overlie the submerged reef. Most of the basaltic lava flows that crossed the reef did so when the water was much shallower, and when they had to flow a shorter distance from shoreline to reef face. Lava flows on top of the reef have protected it from erosion and solution and now occur at seaward-projecting salients on the reef face. These relations suggest that the reef has retreated shoreward as much as 50 m since it formed. A 7-km-wide shadow zone occurs where no Hualalai lava flows cross the reef south of Kailua. These lava flows were probably diverted around a large summit cone complex. A similar shadow zone on the flank of Mauna Loa volcano in the Kealakekua Bay region is downslope from the present Mauna Loa caldera, which ponds Mauna Loa lava and prevents it from reaching the coastline. South of the Mauna Loa shadow zone the - 150 m reef has been totally covered and obscured by Mauna Loa lava. The boundary between Hualalai and Mauna Loa lava on land occurs over a 6-km-wide zone, whereas flows crossing the - 150 m reef show a sharper boundary offshore from the north side of the subaerial transition zone. This indicates that since the formation of the reef, Hualalai lava has migrated south, mantling Mauna Loa lava. More recently, Mauna Loa lava is again encroaching north on Hualalai lava.  相似文献   

15.
Emplacement of a giant submarine slide complex, offshore of South Kona, Hawaii Island, was investigated in 2001 by visual observation and in-situ sampling on the bench scarp and a megablock, during two dives utilizing the Remotely Operated Vehicle (ROV) Kaiko and its mother ship R/V Kairei. Topography of the bench scarp and megablocks were defined in 3-D perspective, using high-resolution digital bathymetric data acquired during the cruise. Compositions of 34 rock samples provide constraints on the landslide source regions and emplacement mechanisms. The bench scarp consists mainly of highly fractured, vesiculated, and oxidized aa lavas that slumped from the subaerial flank of ancestral Mauna Loa. The megablock contains three units: block facies, matrix facies, and draped sediment. The block facies contains hyaloclastite interbedded with massive lava, which slid from the shallow submarine flank of ancestral Mauna Loa, as indicated by glassy groundmass of the hyaloclastite, low oxidation state, and low sulfur content. The matrix facies, which directly overlies the block facies and is similar to a lahar deposit, is thought to have been deposited from the water column immediately after the South Kona slide event. The draped sediment is a thin high-density turbidite layer that may be a distal facies of the Alika-2 debris-avalanche deposit; its composition overlaps with rocks from subaerial Mauna Loa. The deposits generated by the South Kona slide vary from debris avalanche deposit to turbidite. Spatial distribution of the deposits is consistent with deposits related to large landslides adjacent to other Hawaiian volcanoes and the Canary Islands.  相似文献   

16.
Ceboruco is a major composite volcano at the western end of the Mexican Volcanic Belt, near the junction between the North American and Pacific plates. The volcano is built from successive eruptions of andesite lavas and pyroclastic rocks, and major eruptions during its history have resulted in the formation of two concentric calderas. The youngest volcanic activity has included the extrusion of dacites within the inner caldera and a voluminous flank eruption of andesite during 1870–72. Fumarolic activity persists to the present day. Chemical analyses show that the lavas are of cale-alkaline type and rangs from andesite (SiO2=58–61%) to acid dacite (SiO2=68%) in composition. The rate of increase of K2O relative to SiO is greater than that in volcanic rocks from the Mexican Volcanic Belt as a whole. This indicates that simple models based on the application of such relationships may not be adequate to explain the petrogenesis of calc-alkaline lavas.  相似文献   

17.
We show how a stochastic version of a general load-and-discharge model for volcanic eruptions can be implemented. The model tracks the history of the volcano through a quantity proportional to stored magma volume. Thus large eruptions can influence the activity rate for a considerable time following, rather than only the next repose as in the time-predictable model. The model can be fitted to data using point-process methods. Applied to flank eruptions of Mount Etna, it exhibits possible long-term quasi-cyclic behavior, and to Mauna Loa, a long-term decrease in activity. An extension to multiple interacting sources is outlined, which may be different eruption styles or locations, or different volcanoes. This can be used to identify an ‘average interaction’ between the sources. We find significant evidence that summit eruptions of Mount Etna are dependent on preceding flank eruptions, with both flank and summit eruptions being triggered by the other type. Fitted to Mauna Loa and Kilauea, the model had a marginally significant relationship between eruptions of Mauna Loa and Kilauea, consistent with the invasion of the latter's plumbing system by magma from the former.  相似文献   

18.
Age spectra from 40Ar/39Ar incremental heating experiments yield ages of 298 ± 25 ka and 310 ± 31 ka for transitional composition lavas from two cones on submarine Mahukona Volcano, Hawaii. These ages are younger than the inferred end of the tholeiitic shield stage and indicate that the volcano had entered the postshield alkalic stage before going extinct. Previously reported elevated helium isotopic ratios of lavas from one of these cones were incorrectly interpreted to indicate eruption during a preshield alkalic stage. Consequently, high helium isotopic ratios are a poor indicator of eruptive stage, as they occur in preshield, shield, and postshield stage lavas. Loihi Seamount and Kilauea are the only known Hawaiian volcanoes where the volume of preshield alkalic stage lavas can be estimated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Summit eruptions of Mauna Loa, on the Island of Hawaii, occurred in 1940 and 1949, and flank eruptions in 1942 and 1950. Lava poured out in 1940 and 1942 was about equal in amount, totaling approximately 76 million cubic meters in each eruption. The 1949 eruption was somewhat smaller, liberating approximately 59 million cubic meters. The 1950 eruption was one of the largest on record, producing five large lava flows and several smaller ones, totaling approximately 459 million cubic meters. Three of the 1950 flows entered the sea. In 1942 a lava flow threatened the city of Hilo, and was bombed from the air in an effort to divert it. Calculations indicate that the gas content of the lava extruded during the 1940 eruption probably was in the vicinity of one percent by weight of the total magma. Other calculations indicate the viscosity of fluid Hawaiian lava to be in the range of 103 to 105 poises. Temperature readings on the 1950 lava ranged from 10900 to 9000 C. Kilauea Volcano showed signs of uneasiness in 1944, with an apparent increase of magmatic pressure indicated by outward tilting of the moutain flanks and a series of earthquakes progressing toward the surface. In December 1950 a series of earthquakes accompanied a subsidence of the summit of Kilauea Volcano.  相似文献   

20.
The analyses of approximately 100 high temperature gas samples from erupting lavas of Surtsey, Erta Ale, Ardoukoba, Kilauea, Mount Etna and Nyiragongo exhibit erratic compositions resulting from analytical errors, condensation effects, reactions with sampling devices, and contamination by atmospheric gases, meteoric water and organic material. Computational techniques have been devised to restore reported analyses to compositions representative of the erupted gases. The restored analyses show little evidence of short-term variations. The principal species are H2O, CO2, SO2, H2, CO, H2S, S2, and HCl. The O2 fugacities range from nickel-nickel oxide to a half order of magnitude below quartz-magnetite-fayalite. There is no evidence for a unique magmatic gas composition; instead, the erupted gases show regular compositional trends characterized by decreasing CO2 with progressive outgassing. The gases from more alkaline lavas (Etna, Nyiragongo) are distinctly richer in CO2, while those from less alkaline (Surtsey) or tholeiitic lavas (Erta Ale, Ardoukoba) tend to be richer in H2O. Kilauean gases range from CO2-rich to H2O-rich. The total sulfur contents of the erupted gases show an excellent positive correlation with lava O2 fugacity. All restored analyses are significantly lower in H2O and enriched in sulfur and CO2 compared to the «excess volatiles».  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号