首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The recent tectonics of the Arctic Basin and northeastern Asia are considered as a result of interaction between three lithospheric plates: North-America, Eurasia and Spitsbergen. Seismic zones (coinciding in the Norway-Greenland basin with the Kolbeinsey, Mohns and Knipovich ridges, and in the Arctic Ocean with the Gakkel Ridge) clearly mark the boundaries between them. In southernmost Svalbard (Spitsbergen), the secondary seismic belt deviates from the major seismic zone. This belt continues into the seismic zone of the Franz Josef Land and then merges into the seismic zone of the Gakkel Ridge at 70°–90°E. The smaller Spitsbergen plate is located between the major seismic zone and its secondary branch.Within northeastern Asia, earthquake epicenters with magnitude over 4.5 are concentrated within a 300-km wide belt crossing the Eurasian continent over a distance of 3000 km from the Lena estuary to the Komandorskye Islands. A single seismic belt crosses the northern sections of the Verkhoyansky Ridge and runs along the Chersky Ridge to the Kolymo-Okhotsk Divide.To compute the poles of relative rotation of the Eurasian, North-American and Spitsbergen plates we use 23 new determinations of focal-mechanism solutions for earthquakes, and 38 azimuths of slip vectors obtained by matching of symmetric mountain pairs on both sides of the Knipovich and Gakkel ridges; we also use 14 azimuths of strike-slip faults within the Chersky Ridge determined by satellite images. The following parameters of plate displacement were obtained: Eurasia/North America: 62.2°N, 140.2°E (from the Knipovich Ridge section south of the triple junction); 61.9°N, 143.1°E (from fault strikes in the Chersky Ridge); 60.42°N, 141.56°C (from the Knipovich section and from fault strikes in the Chersky Ridge); 59.48°N, 140.83°E, α = 1.89 · 10−7 deg/year (from the Knipovich section, from fault strikes in the Chersky Ridge and from the Gakkel Ridge section east of the triple junction). The rate was calculated by fitting the 2′ magnetic lineations within the Gakkel Ridge).North-America/Spitsbergen: 70.96°N, 121.18°E, α = −2.7 · 10−7 deg/year from the Knipovich Ridge section north of the triple junction, from earthquakes in the Spitsbergen fracture zone and from the Gakkel Ridge section west of the triple junction). Eurasia/Spitsbergen: 70.7°N, 25.49°E, α = −0.99 · 10−7 deg/year (from closure of vector triangles).  相似文献   

2.
The walls of the Knipovich Ridge are complicated by normal and reverse faults revealed by a high-frequency profilograph. The map of their spatial distribution shows that the faults are grouped into domains a few tens of kilometers in size and are a result of superposition of several inequivalent geodynamic factors: the shear zone oriented parallel to the Hornsunn Fault and superposed on the typical dynamics of the midocean ridge with offsets along transform fracture zones and rifting along short segments of the Mid-Atlantic Ridge (MAR). According to the anomalous magnetic field, the Knipovich Ridge as a segment of the MAR has formed since the Oligocene including several segments with normal direction of spreading separated by a multitransform system of fracture zones. In the Quaternary, the boundary of plate interaction along the tension crack has been straightened to form the contemporary Knipovich Ridge, which crosses the previously existing magmatic spreading substrate and sedimentary cover at an angle of about 45° relative to the direction of accretion. The sedimentary cover along the walls of the Knipovich is Paleogene in age and has subsided into the rift valley to a depth of 500–1000 m along the normal faults.  相似文献   

3.
The geological and geophysical data primarily on the structure of the upper sedimentary sequence of the northern Knipovich Ridge (Norwegian-Greenland Basin) that were obtained during Cruise 24 of the R/V Akademik Nikolai Strakhov are considered. These data indicate that the recent kinematics of the northern Knipovich Ridge is determined by dextral strike-slip displacements along the Molloy Fracture Zone (315° NW). This stress field is superimposed by a system related to rifting and latitudinal opening of rifts belonging to the ridge proper. Thus, the structural elements formed under the effect of two stress fields are combined in this district. Several stages of tectonic movements are definable. The first stage (prior to 500 ka ago) is marked by the dominant normal faults, which are overlain by the lower and upper sedimentary sequences. The second stage (prior to 120–100 ka ago) is characterized by development of normal and reverse faults, which displace the lower sequence and are overlain by the upper sequence. Both younger and older structural features reveal peaks of tectonic activity separated by intermediate quiet periods 50–60 ka long. The stress field of the regional strike-slip faulting is realized in numerous oblique NE-trending normal and normal-strike-slip faults that divide the rift valley and its walls into the segments of different sizes. Their strike (20°–30° NE) is consistent with a system of secondary antithetic sinistral strike-slip faults. The system of depressions located 40 km west of the rift valley axis may be considered a paleorift zone that is conjugated at 78°07′ N and 5°20′ W with the NW-trending fault marked by the main dextral offset. The stress field that existed at this stage was identical to the recent one. The rift valley axis migrated eastward to its present-day position approximately 2 Ma ago (if the spreading rate of ~0.7 cm/yr is accepted). The obtained data substantially refine the understanding of the initial breakup of continents with the formation of oceanic structural elements. The neotectonic stage is characterized by combination of different stress fields that resulted in the formation of a complex system of tectonic structural units, including those located beyond the recent extension zone along the rift axis of the Knipovich Ridge. The tectonic deformations occurred throughout the neotectonic stage as discrete recurrent events.  相似文献   

4.
Heat flow taken between Svalbard and Greenland reveal three thermal provinces:
1. (1) the Molloy Ridge within the Spitsbergen Transform,
2. (2) the Yermak Plateau
3. (3) the northeastern margin of Svalbard (Nordaustlandet).
The Molloy Ridge is a short spreading segment and the average heat flow is much above the Sclater et al. (1971), cooling curve but agrees with values from the Norwegian-Greenland Sea. An additional zone of intrusion identified by heat flow lies to the northwest of the Molloy Ridge. It straddles both the visible fracture zone and part of the Yermak Plateau. A thermal boundary lies between the warm western segment of the Yermak Plateau and the shelf off Nordaustlandet. If the thermal subsidence of the western Yermak Plateau can be traced to the latest heating episode then it is likely that the crust is similar to oceanic in composition and not older than 13 m.y. (approximately 20 m.y. younger than the northeastern segment of the plateau). Plate rotation shows that there was no room for the western segment of the plateau prior to anomaly 7. We postulate that the original transform is associated with the Hornsund Fault zone. In response to deviatoric stress across the oblique ridge-transform system, the Nansen Ridge propagated southwestward aborting the old transform trace, and shifted to its present position.It is suggested that this propagation and migration of the ridge-transform system across a zone of extensional deviatoric stress allowed the massive intrusion of basalt forming the Western Yermak Plateau. The propagation phenomenon coincides with large-scale Tertiary volcanic activity on Svalbard.Readjustment and migration of the oblique transform is still taking place. As the transform-ridge system is liberated from continental constraints, the migration rate will diminish as orthogonality is approached.  相似文献   

5.
Abstract: Interstitial waters extracted from the sediment cores from the exploration wells, “BH‐1” and “MITI Nankai Trough”, drilled ~60 km off Omaezaki Peninsula in the eastern Nankai Trough, were analyzed for the chloride and sulfate concentrations to examine the depth profiles and occurrence of subsurface gas hydrates. Cored intervals from the seafloor to 310 mbsf were divided into Unit 1 (~70 mbsf, predominated by mud), Unit 2 (70–150 mbsf, mud with thin ash beds), Unit 3 (150–250+ mbsf, mud with thin ash and sand), and Unit 4 (275–310 mbsf, predominated by mud). The baseline level for Cl “concentrations was 540 mM, whereas low chloride anomalies (103 to 223 mM) were identified at around 207 mbsf (zone A), 234–240 mbsf (zone B), and 258–265 mbsf (zone C) in Unit 3. Gas hydrate saturation (Sh %) of sediment pores was calculated to be 60 % (zone A) to 80 % (zones B and C) in sands whereas only a few percent in clay and silt. The total amount of gas hydrates in hydrate‐bearing sands was estimated to be 8 to 10 m3 of solid gas hydrate per m2, or 1.48 km3 CH4 per 1 km2. High saturation zones (A, B and C) were consistent with anomaly zones recognized in sonic and resistivity logs. 2D and high‐resolution seismic studies revealed two BSRs in the study area. Strong BSRs (BSR‐1) at ~263 mbsf were correlated to the boundary between gas hydrate‐bearing sands (zone C) and the shallower low velocity zone, while the lower BSRs (BSR‐2) at~289 mbsf corresponded to the top of the deeper low velocity zone of the sonic log. Tectonic uplift of the study area is thought to have caused the upward migration of BGHS. That is, BSR‐1 corresponds to the new BGHS and BSR‐2 to the old BGHS. Relic gas hydrates and free gas may survive in the interval between BSR‐1 and BSR‐2, and below BSR‐2, respectively. Direct measurements of the formation temperature for the top 170 m interval yield a geothermal gradient of ~4.3d?C/ 100 m. Extrapolation of this gradient down to the base of gas hydrate stability yields a theoretical BGHS at~230 mbsf, surprisingly ~35 m shallower than the base of gas hydrate‐bearing sands (zone C) and BSR‐1. As with the double BSRs, another tectonic uplift may explain the BGHS at unreasonably shallow depths. Alternatively, linear extrapolation of the geothermal gradient down to the hydrate‐bearing zones may not be appropriate if the gradient changes below the depths that were measured. Recognition of double BSRs (263 and 289 mbsf) and probable new BGHS (~230 mbsf) in the exploration wells implies that the BGHS has gradually migrated upward. Tectonically induced processes are thought to have enhanced dense and massive accumulation of gas hydrate deposits through effective methane recycling and condensation. To test the hypothetical models for the accumulation of gas hydrates in Nankai accretionary prism, we strongly propose to measure the equilibrium temperatures for the entire depth range down to the free gas zone below predicted BGHS and to reconstruct the water depths and uplift history of hydrate‐bearing area.  相似文献   

6.
Heat flow and gas hydrates of the Baikal Rift Zone   总被引:3,自引:0,他引:3  
Multi-channel seismic studies (MCS), performed during a Russian expedition in 1989 and a joint Russian-American expedition in 1992, have for the first time revealed a “bottom simulating reflector” (BSR) in Lake Baikal. These data have shown that gas hydrates occur in the southern and central basins of Lake Baikal in those places where the water depth exceeds 500–700 m. Four types of tectonic influence on the distribution of the gas hydrate were revealed: (a) Modern faults displace the BSR as they do with normal seismic boundaries. (b) Older faults displace normal reflectors, whereas the BSR is not displaced. (c) Modern faults form zones, where the BSR has been totally destroyed. (4) Processes that occur within older fault zones situated close to the base of the hydrated sediment layer lead to undulations of the BSR. The thickness of the hydrate stability field (inferred from seismic data) ranges between 35 and 450 m. Heat-flow values determined from BSR data range from 48 to 119 mW/m2. A comparison between heat-flow values from BSR data and values measured directly on the lake bottom shows an overall coincidence. Changes in water level and bottom-water temperature that occurred in the past have had no noticeable influence on the present BSR depths or heat-flow values. Determination of deep heat flow from BSR data is in this case more reliable than by direct measurements. Received: 10 December 1998 / Accepted: 15 November 1999  相似文献   

7.
 A high-resolution seismic survey was carried out at the accretionary prism on the continental slope off Vancouver Island, Canada. Two GI-Gun data sets with different source frequency ranges of 50–150 and 100–500 Hz were combined with 4 kHz narrow-beam echosounding data (Parasound). The data allow spatial correlation between a gas hydrate bottom simulating reflector (BSR) and distinct areas of high near-sea-floor reflectivity. An integrated interpretation of the multi-frequency data set provides insight into the regional distribution of tectonically induced fluid migration and gas hydrate formation in the vicinity of ODP Leg 146 Sites 889 and 890. The BSR at the base of the gas hydrate stability field is observed within accreted and deformed sediments, but appears to be absent within bedded slope basin deposits. It is suggested that these basin deposits inhibit vertical fluid flow and prevent the formation of a BSR, whereas the hydraulic conductivity of the accreted sediments is sufficiently high to allow for pervasive gas migration. An elevation of the BSR beneath the flanks of a topographic high is interpreted as an indicator for local upflow of warm fluids along permeable pathways within outcropping accreted sediments. Parasound data reveal discontinuous zones of high reflectivity at or directly beneath the sea floor, which may indicate local cementation of surface sediments. In combination with GI-Gun data, the occurrence of these reflective areas can be related to the location of slope sedimentary basins acting as hydraulic seals. It is proposed that the seals sometimes fail along faults extending beneath the BSR, leading to focused upflow of methane-bearing fluid and the formation of carbonate pavements at the sea floor. Received: 9 November 1998 / Accepted: 6 April 1999  相似文献   

8.
We calculate the heat flow from the depth of bottom-simulating seismic reflectors (BSRs) on a seismic profile in the Xisha Trough of the South China Sea, and compare them with the probe heat flow measurements. The BSR heat flow turn out to be 32–80 mW/m2, significantly lower than the measurements of 83–112 mW/m2. Such big disparity cannot be ascribed only to the errors from parameters (parameter errors) that traditionally believed to influence the BSR heat flow. Besides the parameter errors, we discuss emphatically the errors coming from the theoretical assumption for the BSR heat flow determination (theoretical errors), which occur when the BSR depth does not coincide with the base of the methane hydrate stability zone (MHSZ). If BSR stays bellow the base of MHSZ, lying at the top of free gas zone, the derived heat flow would be underestimated. Compared with the parameter errors, the theoretical errors would be relatively larger in some geological settings. The disparity between measured and BSR heat flow in the Xisha Trough might be mainly due to the theoretical error. Based on the theoretical model, assuming that the BSR lying at the top of the free gas zone, the methane flux along the Xisha seismic profile is estimated, and the thickness of the methane hydrate occurrence zone is predicted.  相似文献   

9.
The recent tectonics of the arid northern Chile Andean western forearc is characterized by trench‐parallel normal faults within the Atacama Fault System (AFS). Since the 1995‐Mw 8.1 Antofagasta earthquake, the mechanism driving this recent and localized extension is considered to be associated with the seismic cycle within the subduction zone. Analyzing morphotectonic patterns along these faults allows examining the seismic potential associated with the subduction zone. Using field Digital Elevation Models and in situ‐produced cosmogenic 10Be, we determined a 0.2 mm/a long‐term slip rate along the Mejillones Fault, one of the most prominent structures within the AFS. This result suggests that the AFS corresponds to slow slip rate faults despite the rapid subduction context. However, the size of coseismic slips observed along the AFS faults suggests that larger subduction earthquakes (Mw > 8.1) may occur episodically in the area.  相似文献   

10.
Recent geophysical measurements, including multi-channel seismic reflection, on the Svalbard passive margin have revealed that it has undergone a complex geological history which largely reflects the plate tectonic evolution of the Greenland Sea and the Arctic Ocean. The western margin (75–80°N) is of a sheared-rifted type, along which the rifted margin developed subsequent to a change in the pole of plate rotation about 36 m.y. B.P. The north-trending Hornsund Fault on the central shelf and the eastern escarpment of the Knipovich Ridge naturally divide the margin into three structural units. These main marginal structures strike north, paralleling the regional onshore fault trends. This trend also parallels the direction of Early Tertiary plate motion between Svalbard and Greenland. Thus, the western Svalbard margin was initially a zone of shear, and the shear movements have affected the adjacent continental crust. Although, the nature and location of the continent—ocean crustal transition is somewhat uncertain, it is unlikely to lie east of the Hornsund Fault. The northern margin, including the Yermak marginal plateau, is terminated to the west by the Spitsbergen Fracture Zone system. This margin is of a rifted type and the preliminary analysis indicates that the main part of the investigated area is underlain by continental crust.  相似文献   

11.
New petrological and geochemical data were obtained for basalts recovered during cruise 24 of the R/V “Akademik Nikolay Strakhov” in 2006. These results significantly contributed to the understanding of the formation of tholeiitic magmatism at the northern end of the Knipovich Ridge of the Polar Atlantic. Dredging was performed for the first time both in the rift valley and on the flanks of the ridge. It showed that the conditions of magmatism have not changed since at least 10 Ma. The basalts correspond to slightly enriched tholeiites, whose primary melts were derived at the shallowest levels and were enriched in Na and depleted in Fe (Na-TOR type). The most enriched basalts are typical of the earlier stages of the opening and were found on the flanks of the ridge in its northernmost part. Variations in the ratios of Sr, Nd, and Pb isotopes and lithophile elements allowed us to conclude that the primary melts generated beneath the spreading zone of the Knipovich Ridge were modified by the addition of the enriched component that was present both in the Neogene and Quaternary basalts of Spitsbergen Island. Compared with the primitive mantle, the extruding magmas were characterized by positive Nb and Zr anomalies and a negative Th anomaly. The formation of primary melts involved melting of the metasomatized depleted mantle reservoir that appeared during the early stages of opening of the Norwegian-Greenland Basin and transformation of the paleo-Spitsbergen Fault into the Knipovich spreading ridge, which was accompanied by magmatism in western Spitsbergen during its separation from the northern part of Greenland.  相似文献   

12.
We investigate background seismic activity of the Abruzzo region, a 5000 km2 area located within the Central Apennines of Italy, where in the past 600 years at least 5 large earthquakes (I = XI–X) have occurred.Between April 2003 and September 2004, a dense temporary seismic network composed of 30 digital three-component seismic stations recorded 850 earthquakes with 0.9 < ML < 3.7. We present earthquake locations and focal mechanisms obtained by standard procedures and an optimized velocity model computed with a search technique based on genetic algorithms.The seismicity occurs at a low and constant rate of  2.6 e− 04 events/daykm2 and is sparsely distributed within the first 15 km of the crust. Minor increases in the seismicity rate are related to the occurrence of small and localised seismic sequences that occur at the tip of major active normal faults along secondary structures.We observe that during the 16 months of study period, the Fucino fault system responsible for the 1915 Fucino earthquake (MS = 7.0), and the major normal faults of the area, did not produce significant seismic activity.Fault plane solutions evaluated using P-wave polarity data show the predominance of normal faulting mechanisms ( 55%) with NE-trending direction of extension coherent with the regional stress field active in this sector of the Apennines. Around 27% of the focal solutions have pure strike–slip mechanisms and the rest shows transtensional faulting mechanisms that mainly characterise the kinematics of the secondary structures activated by the small sequences.We hypothesize that the largest known NW-trending normal faults are presently locked and we propose that in the case of activation, the secondary structures located at their tips may act as transfer faults accommodating a minor part of the extensional deformation with strike–slip motion.  相似文献   

13.
东海与泥底辟构造有关的天然气水合物初探   总被引:6,自引:2,他引:4  
根据所获得的高分辨率地震资料分析,发现冲绳海槽南部西侧槽坡附近以及海槽内部发育有一系列泥火山(底辟)构造,在地形上表现为泥火山地貌,在穿过泥火山的地震剖面上,表现出典型的泥底辟构造。对穿过泥底辟构造的DMS01-5地震剖面进一步的处理和解释发现,泥底辟构造顶部存在明显的似海底反射(BSR),其与海底反射波组极性相反,在BSR之上存在振幅空白带,在速度谱上出现速度异常,指示存在与泥火山有关的天然气水合物。从世界广泛发现的与泥底辟构造有关的天然气水合物来看,天然气水合物既可以在泥底辟构造的丘状外围成藏,也可以在其外围的海底沉积物中产出。在泥底辟构造的丘状外围附近,天然气水合物的形成机制类似于传统的矿物低温热液的形成;在泥底辟构造外围海底沉积物中,其形成过程类似于传统的矿物交代形成机制。冲绳海槽泥底辟构造的发育与很高的沉积速率和槽坡的活动断层有关。在冰期期间,长江携带大量的陆源物质直接输送到大陆坡地区,沉积速率达300 m/Ma,产生异常高压,同时张性断层极为发育,为流体的迁移提供了良好的通道,在异常压力以及上覆地层压力作用下大量流体向上运移,从而发育大量的泥底辟构造。富含甲烷的流体易在其外围及外围海底沉积物中形成天然气水合物藏。  相似文献   

14.
A thorough examination of geophysical data from the Greenland-Norwegian Sea, Eurasia Basin and southern Labrador Sea shows significant asymmetry of several parameters (basement topography adjusted for sediment loading, free-air gravity anomaly, spreading half-rate and seismicity) with respect to crustal age:
1. (1) Average zero-age depth (0–57 m.y. B.P.), depth of highest rift mountain summits, and depth to magnetic basement (10–30 km from axis of Mohns and Knipovich ridges) is less on the North American plate flanks. The zero-age depth asymmetry is 400–500 m for the Eurasia Basin (0–57 m.y. B.P.) and for Mohns Ridge (57-22 m.y. B.P.), and 150–200 m for younger Mohns Ridge crust (22-0 m.y. B.P.) and for the extinct Aegir Ridge (57-27 m.y. B.P.). There is little or no asymmetry in the Labrador Sea except near the extinct rift valley, where the east flank is 150–300 m shallower. Magnetic depth-to-source computations provide an independent confirmation of basement asymmetry: The belts 10–30 km from the axis of Mohns and Knipovich ridges are 100–150 m shallower on the west flank of these ridges. The shallower ridge flank is topographically rougher, so that average rift mountain summits are 300 m shallower on the west flanks of the Mohns-Knipovich ridges, a larger asymmetry than for average zero-age depth. The amount of topographic asymmetry is greatest near the Mohns-Knipovich bend. Asymmetry appears to be greatest for ridges oriented normal to the spreading direction, and less for oblique spreading.
2. (2) Free-air gravity anomaly asymmetries of +5 to +20 mGal ( + sign indicates west flank is more positive) are associated with topographic asymmetry at least within 10–15 m.y. of the axis of Mohns and Knipovich ridges. Gravity is reduced on the older flanks west of the extinct Mid-Labrador Ridge and east of Mohns Ridge; asymmetric crustal layer thicknesses or densities provide one possible explanation, although deep-seated sources (e.g., mantle convection), unrelated to the crust, cannot be excluded.
3. (3) Spreading half-rate was about 5–15% lower on the North American plate flanks of Mohns Ridge (57-35 m.y.) and in the Eurasia Basin (0–57 m.y.); thus the fast-spreading flank tends to produce deeper, smoother crust. However, topographic asymmetry cannot relate only to spreading-rate asymmetry, since for the young Mohns Ridge crust (<9 m.y. B.P.) faster spreading and higher topography are both associated with the west flank.
4. (4) Mid-plate seismicity is higher on the Eurasia (eastern) flank of Mohns and Knipovich ridge, but this effect may be unrelated to the other three.
The fluid-dynamical model of Stein et al. correctly explains the sense of spreading-rate asymmetry (the North American plate, moving faster over mantle, is growing more slowly). However, the other asymmetries and their causal relationships remain theoretically unexplained.  相似文献   

15.
Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid. Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a useful tool in the search for potential hydrothermal vents, thus guiding the exploration of modern seafloor sulfides. Considering the Mid-Atlantic Ridge 20°N–24°N (NMAR) and North Chile Rise (NCR) as examples, fault elements such as Fault Spacing (?S) and Fault Heave (?X) can be identified and quantitatively measured. The methods used include Fourier filtering of the multi-beam bathymetry data, in combination with measurements of the topographic slope, curvature, and slope aspect patterns. According to the Sequential Faulting Model of mid-ocean ridges, the maximal migration distance of an active fault on either side of mid-ocean ridges—that is, the distribution range of active faults—can be measured. Results show that the maximal migration distance of active faults at the NMAR is 0.76–1.01 km (the distance is larger at the center than at the ends of this segment), and at the NCR, the distribution range of active faults is 0.38–1.6 km. The migration distance of active faults on the two study areas is positively related to the axial variation of magma supply. In the NCR study area, where there is an abundant magma input, the number of faults within a certain distance is mainly affected by the variation of lithospheric thickness. Here a large range of faulting clearly corresponds to a high proportion of magmatism to seafloor spreading near mid-ocean ridges (M) value, and in the study area of the NMAR, there is insufficient magmatism, and the number of faults may be controlled by both lithospheric thickness and magma supply, leading to a less obvious positive correlation between the distribution range of active faults and M.  相似文献   

16.
Four polymetamorphic complexes in the vicinity of regional faults in the Trans-Angarian region of the Yenisey Ridge were studied to determine their metamorphic evolution and to elucidate distinctive features of the regional geodynamic processes. Based on our geological and petrological studies using geothermobarometry and P–T path calculations, we show that a Neoproterozoic medium-pressure metamorphism of the kyanite-sillimanite type at c. 850 Ma overprinted regionally metamorphosed low-pressure andalusite-bearing rocks. A positive correlation between rock ages and P–T estimates for the kyanite-sillimanite metamorphism provides evidence for regional structural and tectonic heterogeneity. The medium-pressure recrystallization was characterized by (1) localized distribution of metamorphic zones in the area directly underlying thrust faults with a measured thickness of 2.5–8 km; (2) syntectonic formation of kyanite-bearing mineral assemblages related to thrusting; (3) gradual increase in metamorphic pressure towards the thrust faults associated with a low metamorphic field gradient (from 1–7 to 12°C/km); and (4) equally steep burial P–T paths recorded for the highest grade rocks. These specific features are typical of collisional metamorphism during overthrusting of continental blocks and are evidence of near-isothermal loading in accordance with the transient emplacement of thrust sheets. The proposed model for tectono-metamorphic evolution of the study areas due to crustal thickening at high thrusting rates and subsequent rapid exhumation explains these tectonic features. Data analysis allowed us to consider the medium-pressure kyanite-bearing metapelites as a product of collisional metamorphism, reflecting unidirectional thrusting of Siberian cratonal blocks onto Yenisey Ridge along regional deep faults (Angara, Mayakon, and Chapa areas) and by opposite movements in the zone of secondary splay faults (Garevka area).  相似文献   

17.
The segmented structure of the Karpinsky Ridge is determined by NE-trending transverse strikeslip faults with offsets of approximately 30–40 km. The newly recognized Pribrezhny Fault and the well-known Agrakhan Fault are the largest. A new correlation scheme for structural elements of the ridge’s eastern segment and its underwater continuation is proposed with account of offset along the Pribrezhny Fault. According to this scheme, the Semenovsky Trough rather than the Dzhanai Trough is an onshore continuation of the underwater Zyudevsky Trough. The uplift located south of the Zyudevsky Trough is correlated with the Promyslovy-Tsubuk Swell offset along the Pribrezhny Fault. In turn, this uplift is displaced along the right-lateral strike-slip fault that coincides with the Agrakhan Fault. The transverse faults were formed during the Early Permian collision related to the closure of the basin, which was presumably underlain by the oceanic crust. The faults were active during the Early Triassic rifting and Late Triassic inversion. Judging from the map of the surface of the Maikop sediments, the Agrakhan Fault does not cross the Terek-Caspian Trough. Bending arcwise, the fault joins a system of right-lateral strike-slip faults that border the Daghestan Wedge in the east. A system of rightlateral strike-slip faults may also be traced along the western coast of the Caspian Sea. The Agrakhan Fault as a northern element of this system functioned mostly in the Late Paleozoic-Early Mesozoic in connection with the formation of the fold-thrust structure of the Karpinsky Ridge. In the east the faults of the southern segment bound the Caucasus syntaxis of the Alpine Belt; they have retained their activity to the present day.  相似文献   

18.
We have examined the distribution of microfractures in arenites and the evolution of vein forming fluids in the matrix of carbonate breccias within the damage zones of large detached blocks in order to characterize their modes of emplacement. Previous studies of microfractures in the damage zone associated with tectonic faulting have shown a clear pattern of increasing density as the fault is approached. Previous studies of carbonate breccia within damage zones of tectonic faults typically document evidence of multiple fluid events representing repeated rupture-healing processes. However, in this study, we find no change in the microfracture density with distance from the 45 km-displaced gravity-driven slide block at Heart Mountain, Wyoming. In a previous study of the same massive slide block there was no evidence of multiple fluid infiltration events related to emplacement. We interpret these observations as indicating the absence of rupture cycling that would be expected in the development of a process zone, instead being consistent with catastrophic emplacement of gravity-driven slide blocks. We use this distinct pattern of microfracture density and fluid infiltration to demonstrate that several large (>1 km2) detached blocks in the Basin and Range, previously thought to be allochthons related to hyperextension detachment faults, are actually slide blocks whose detachment surfaces represent no crustal extension.  相似文献   

19.
Understanding the roles of Cenozoic strike-slip faults in SE Asia observed in outcrop onshore, with their offshore continuation has produced a variety of structural models (particularly pull-apart vs. oblique extension, escape tectonics vs. slab-pull-driven extension) to explain their relationships to sedimentary basins. Key problems with interpreting the offshore significance of major strike-slip faults are: (1) reconciling conflicting palaeomagnetic data, (2) discriminating extensional, and oblique-extensional fault geometries from strike-slip geometries on 2D seismic reflection data, and (3) estimating strike-slip displacements from seismic reflection data.Focus on basic strike-slip fault geometries such as restraining vs. releasing bends, and strongly splaying geometries approach the gulfs of Thailand and Tonkin, suggest major strike-slip faults probably do not extend far offshore Splays covering areas 10,000’s km2 in extent are characteristic of the southern portions of the Sagaing, Mae Ping, Three Pagodas and Ailao Shan-Red River faults, and are indicative of major faults dying out. The areas of the fault tips associated with faults of potentially 100 km+ displacement, scale appropriately with global examples of strike-slip faults on log–log displacement vs. tip area plots. The fault geometries in the Song Hong-Yinggehai Basin are inappropriate for a sinistral pull-apart geometry, and instead the southern fault strands of the Ailao Shan-Red River fault are interpreted to die out within the NW part of the Song Hong-Yinggehai Basin. Hence the fault zone does not transfer displacement onto the South China Seas spreading centre. The strike-slip faults are replaced by more extensional, oblique-extensional fault systems offshore to the south. The Sagaing Fault is also superimposed on an older Paleogene–Early Miocene oblique-extensional rift system. The Sagaing Fault geometry is complex, and one branch of the offshore fault zone transfers displacement onto the Pliocene-Recent Andaman spreading centre, and links with the West Andaman and related faults to form a very large pull-apart basin.  相似文献   

20.
Multichannel seismic (MCS) data from the Yaquina forearc basin off Peru reveal a complex distribution of gas and gas hydrate related reflections. Lateral variations of the reflection pattern at the assumed base of the gas hydrate stability zone in terms of continuity, amplitude, and signal attenuation underneath are observed, as well as the possible occurrence of paleo-bottom simulating reflectors (BSRs). Phase reversed reflections above the bottom simulating reflector point to free gas within the gas hydrate stability zone (GHSZ). To constrain the interpretation of the observed reflection pattern we calculated the velocity distribution along the MCS line from high-resolution ocean bottom hydrophone recordings with two independent methods. Heat flux values estimated on the basis of the velocity-depth functions increase with decreasing amplitude of the BSR and peak near chemoherms. These results suggest a model of the Yaquina Basin where free gas is trapped under parts of the BSR, and within the GHSZ, particularly under the seafloor and under an erosional unconformity. The hypothesis of a paleo-BSR that reflects the uplift of the base of the hydrate stability zone caused by the deposition of a particular sediment sequence is supported by the estimated heat flux values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号