首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment components and their fluxes of Cores MD12-3428(water depth: 903 m), MD12-3433(water depth: 2125 m),and MD12-3434(water depth: 2995 m), obtained along a transect on the continental slope of the northern South China Sea, have been conducted to reveal the spatiotemporal variations and the controlling factors of the sediment components and of their fluxes.Results show that deep-sea sediments in the northern South China Sea are composed mainly of terrigenous(59–89%) and carbonate(6–38%) particles, with minor components of opal(1.6–9.4%) and organic matter(0.7–1.9%). Fluxes of terrigenous and carbonate particles reach up to 2.4–21.8 and 0.4–6.5 g cm–2 kyr–1, respectively, values that are one to two orders of magnitude higher than the fluxes of opal and organic matter. Temporal variations of the percentages and fluxes of deep-sea sediment components have displayed clear glacial-interglacial cyclicity since the last glaciation. Terrigenous, opal, and organic matter percentages and their fluxes increas clearly during marine isotope stage 2, while carbonate percentages and fluxes show an opposite variation pattern or are characterized by an unremarkable increase. This implies that deep-sea carbonate in the South China Sea is affected by the dilution of terrigenous inputs during the sea-level lowstand. With increasing water depth along the transect, the terrigenous percentage increases but with largely decreased fluxes. Both the percentage and flux of carbonate decrease, while the percentages and fluxes of opal and organic matter display much more complicated variational features. The spatiotemporal variations of deep-sea sediment components and of their fluxes since the last glaciation in the northern South China Sea are strongly controlled by sea-level fluctuations. Simultaneously, terrigenous supply associated with monsoonal rainfall, marine primary productivity,and the dilution effect between terrigenous and biogenic particles, also play interconnected roles in the sediment accumulation processes.  相似文献   

2.
The source and transport mechanisms of land-derived Okinawa Trough sediments were studied using the field data of temperature, salinity and turbidity in the East China Seas. The results suggest that there are two primary sediments sources from the Chinese Mainland to the Okinawa Trough: one is the Old Huanghe River submarine delta, and the other is the Changjiang River sediments, which are distributed at the Changjiang River estuary and the off-coast of Zhejiang and Fujian provinces. It is difficult for the Huanghe River suspended sediments to arrive in the Okinawa Trough via the new estuary. Although the Taiwan warm current blocks the seaward terrigenous transportation to a certain extent, part of the coastal suspended sediments are transported to the outer shelf. Suspended particulate matter is unable to get through the barrier of the Kuroshio Current under normal conditions. However, episodic events, such as winter storms, internal-tidal waves and turbidity flows, are capable of transporting suspended particulate matter into the Okinawa Trough. The super typhoon “Ewiniar” induced strong waves and influenced the thermocline depth and suspended sediment concentration of the East China Seas. The typhoon-induced waves pushed the thermocline depth down to around 40 m and caused the resuspension of large volumes of sediments in its path. In the other East China Seas regions, the typhoon-induced swells deepened the thermocline depth by about 5 m and increased suspended sediment concentrations. The typhoon effect on suspended sediment concentration of the East China Seas disappeared within 2 weeks.  相似文献   

3.
Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea   总被引:13,自引:0,他引:13  
X-ray diffraction (XRD) mineralogical and grain-size analyses indicate that inner continental shelf sediments in the East China Sea (ECS) represent a unique mixing of clays derived from the Yangtze River and silts/sands from small western Taiwanese rivers. Taiwanese (e.g., Choshui) clays (<2 μm) display no smectite but the best illite crystallinity and are only distributed along southeastern Taiwan Strait. Both Yangtze and Taiwanese river clays are illite-dominated, but the poor illite crystallinity and the presence of smectite and kaolinite indicate that Taiwan Strait clays are mainly Yangtze-dominated. In contrast, medium silts (20–35 μm) and very fine sands (63–90 μm) in the Taiwan Strait are characterized by low feldspar/quartz, low K-feldspar/plagioclase and high kaolinite/quartz, indicating their provenance from Taiwanese rivers. Taiwanese silts and sands are introduced primarily by the way of typhoon-derived floods and transported northward by the Taiwan Warm Current during summer–fall months. Yangtze clays, in contrast, are widely dispersed southward about 1000 km to the western Taiwan Strait, transported by the China Coastal Current during winter–spring months. Since most Taiwan Strait samples were collected in May 2006, clay results in this paper might only represent the winter–spring pattern of the dispersal of Yangtze sediments.  相似文献   

4.
The Indonesian Throughflow (ITF) links upper ocean waters of the west Pacific and Indian Ocean, modulates heat and fresh water budgets between these oceans, and in turn plays an important role in global climate change. The climatic phenomena such as the East Asian monsoon and El Niño-Southern Oscillation (ENSO) exert a strong influence on flux, water properties and vertical stratification of the ITF. This work studied sediments of Core SO18462 that was retrieved from the outflow side of the ITF in the Timor Sea in order to investigate response of the ITF to monsoon and ENSO activities since the last glacial. Based on Mg/Ca ratios and oxygen isotopes in shells of planktonic foraminiferal surface and thermocline species, seawater temperatures and salinity of both surface and thermocline waters and vertical thermal gradient of the ITF outflow were reconstructed. Records of Core SO18462 were then compared with those from Core 3cBX that was recovered from the western Pacific warm pool (WPWP). The results displayed that similar surface waters occurred in the Timor Sea and the WPWP during the last glacial. Since ~16 ka, an apparent difference in surface waters between these two regions exists in salinity, indicated by much fresher waters in the Timor Sea than in the WPWP. In contrast, there is little change in difference of sea surface temperatures (SSTs). With regard to thermocline temperature (TT), it increased until ~11.5 ka since the last glacial, and then remained an overall unchanged trend in the WPWP but continuously decreased in the Timor Sea towards the late Holocene. Since ~6 ka, thermocline waters have tended to be close to each other in between the Timor Sea and the WPWP. It is indicated that intensified precipitation due to East Asian monsoon and possible ENSO cold phase significantly freshened surface waters over the Indonesian Seas, impeding the ITF surface flow and in turn having enhanced thermocline flow during the Holocene. Consequently, thermocline water of the ITF outflow was cooling and thermocline was shoaling towards the late Holocene. It is speculated that, in addition to strengthening of East Asian winter monsoon, increasing ENSO events during the late Holocene likely played an important role in influencing thermocline depth of the ITF outflow.  相似文献   

5.
Coastal deltaic deposits are the primary locations for sediment storage on Earth, and quantifying their source contributions is a critical prerequisite for delineating S2S patterns in marginal seas. In most cases, quantification for the contribution by fine-grained sediments (i.e. particle size < 63 μm) is considered to be representative to constrain the overall sediment supply. However, this approach may be inappropriate because large differences exist between the two quantities. Here we propose an approach to solve the problem, which is based on the maximum number of tracers from multiple sediment size fractions incorporating the content of all size fractions of sediment. Using this approach, absolute source contributions during the Holocene are reconstructed that provide a first-order model for the S2S pattern of the central Jiangsu coast, China. The Huanghe River is the strongest driver for the Holocene sedimentation, with a mean contribution of ~72 ± 6% (1417 × 108 t). The absolute contributions from the Changjiang and offshore areas were of secondary importance, (i.e. ~17 ± 1% (330 × 108 t) and ~11 ± 5% (217 × 108 t), respectively). The results show that a large difference between the relative and absolute source contributions and the assumption that the relative contribution represents the absolute contribution is invalid in a coastal setting. The impact of the Huanghe is mainly based on episodic events, such as the event of 1128–1855 AD . The model also reveals that the offshore sediments are as important as the Changjiang sediments for the central Jiangsu coast during the Holocene. Thus, the model provides both the time series and overall quantities of sediment supply during the formation and evolution of the Holocene tidal flats on the Jiangsu coast. Our findings shed new light on quantitative analysis of sediment sources applicable to future S2S studies of marginal seas. © 2020 John Wiley & Sons, Ltd.  相似文献   

6.
Sediment samples were collected from the lower channel of the Yangtze River and the Yellow River and the contents of rare earth elements (REEs) were measured. In addition, some historical REEs data were collected from published literatures. Based on the δ EuN-ΣREEs plot, a clear boundary was found between the sediments from the two rivers. The boundary can be described as an orthogonal polynomial equation by ordinary linear regression with sediments from the Yangtze River located above the curve and sediments from the Yellow River located below the curve. To validate this method, the REEs contents of sediments collected from the estuaries of the Yangtze River and the Yellow River were measured. In addition, the REEs data of sediment Core 255 from the Yangtze River and Core YA01 from the Yellow River were collected. Results show that the samples from the Yangtze River estuary and Core 255 almost are above the curve and most samples from the Yellow River estuary and Core YA01 are below the curve in the δEuN-ΣREEs plot. The plot and the regression equation can be used to distinguish sediments from the Yangtze River and the Yellow River intuitively and quantitatively, and to trace the sediment provenance of the eastern seas of China. The difference between the sediments from two rivers in the δEuN-ΣREEs plot is caused by different mineral compositions and regional climate patterns of the source areas. The relationship between δEuN and ΣREEs is changed little during the transport from the source area to the river, and from river to the sea. Thus the original information on mineral compositions and climate of the source area was preserved. Supported by National Natural Science Foundation of China (Grant Nos. 40506016, 40576032, and 90411014)  相似文献   

7.
Palaeomagnetic and mineral magnetism measurements have been carried out on two cores from Lake Vuokonjarvi in Finnish Karelia. The sediment probably covers 5000 years of continuous deposition at a mean sedimentation rate of about 0.8 mm/yr.The magnetic declination exhibits fluctuations of similar amplitude(~20°) and character to those recorded in northern England and northern Ireland. Magnetic inclination variations are of higher amplitude(~15°) than those found in Britain. Matching the palaeomagnetic patterns with the dated British master curves permits an estimate of the rate of deposition of the Finnish sediments, which is suggested to be more reliable than estimates from radiocarbon dating of the Vuokonjarvi sediment.The stable natural remanence is shown to be carried by fine-grained magnetite and titanomagnetite grains and to have grown by post-depositional alignment during a period of the order of 100 years. Laboratory dehydration of the sediment results in loss of around 40% of the stable natural remanence. Such behaviour is also found in lake sediments from central and southern Europe and should be considered in interpreting palaeomagnetic data from dried out lake sections and ocean cores.  相似文献   

8.
High-resolution clay mineral records combined with oxygen isotopic stratigraphy over the past 190 ka during late Quaternary from core MD01-2393 off the Mekong River in the southern South China Sea are reported to reconstruct a history of East Asian monsoon evolution. The dominating clay mineral components indicate a strong glacial-interglacial cyclicity, with high glacial illite, chlorite, and kaolinite contents and high interglacial smectites content. The provenance analysis indicates the direct input of clay minerals via the Mekong River drainage basin. Illite and chlorite derived mainly from the upper reach of the Mekong River, where physical erosion of meta-sedimentary rocks is dominant. Kaolinite derived mainly from active erosion of inhered clays from reworked sediments in the middle reaches. Smectites originated mainly through bisiallitic soils in the middle to lower reaches of the Mekong River. The smectites/(illite+chlorite) and smectites/kaolinite ratios are determined as mineralogical indicato  相似文献   

9.
Holocene flood events in the Yangtze River are associated with variations in East Asian Summer Monsoon (EASM) precipitation, and so Yangtze delta sediments may preserve information about the frequency and magnitude of EASM precipitation. These flood/drought cycles of the EASM directly affect the living standards of East Asian population. However, despite its importance, little chronological control is available for the Yangtze Delta sediments; because biogenic carbonate only occurs sporadically, it has proved the difficulty to discuss sedimentation mechanisms and rates in any detail.In 2013 two sediment cores (YD13-G3 and H1) were taken from the Yangtze subaqueous delta to investigate precipitation history. In this study, we investigate the potential of quartz OSL dating of the fine silt fraction (fine-grained quartz; 4–11 μm) from these cores to estimate the depositional age of the sediments. We test whether: (1) Yangtze subaqueous delta sediments contain quartz with suitable characteristics for dating, and (2) quartz grains are well-bleached during/before the transportation process, by examining a modern analogue of suspended particulate matter, and by cross-checking with the doses derived from infrared stimulated luminescence (IRSL) signals (both IR50 and pIRIR160) from feldspar in polymineral fine grains. We find that both the quartz and feldspar luminescence characteristics are satisfactory (quartz dose recovery ratio 1.067 ± 0.004; n = 250, pIRIR160 dose recovery ratio 1.01 ± 0.02; n = 151). Modern suspended particulate matter has measured quartz equivalent doses between 0.1 and 0.2 Gy, suggesting that this material was sufficiently bleached during/before transportation to allow dating of Holocene sediments (mean dose rates of ∼3 Gy ka−1). OSL ages of 44 samples from the 2 cores show apparently rapid accumulation at ∼6 ka between 9.65 and 5.50 m in core H1 and ∼2 ka throughout core G3 and between 5.0 and 0.0 m in core H1. The pIRIR160 signals suggest less light exposure of the core top sediments and of those from the transition layer between ∼6 ka to ∼2 ka, although there is no evidence for incomplete bleaching of quartz. The question remains as to whether significant deposition took place only at these two times, or whether the record has been disturbed by erosion/reworking.  相似文献   

10.
Based on a δ18O chronology,rare earth elements(REE) and other typical elements in sediments from core MD06-3047 in the western Philippine Sea were analyzed to constrain the provenances of the sediments and investigate quantitative changes in the Asian eolian input to the study area over the last 700 ka.Among the competing processes that might affect REE compositions,sediment provenance is the most important one.Provenance analysis suggests that the study sediments have two provenance end-members;local volcanic sources are dominant,and eolian dust from the Asian continent has a smaller contribution.During glacial periods,eolian input to the western Philippine Sea was enhanced.In contrast,material supply from local volcanics increased during interglacial periods.Changes in eolian input to the study area were probably related to the strength of the East Asian winter monsoon(EAWM) as well as aridity in the Asian continent on an orbital time scale,and were partly influenced by local control factors on shorter time scales.Therefore,we propose that the present study expands the application of the REE-based method for quantitatively estimating the eolian component from the mid-latitude northern Pacific to the low-latitude western Pacific.Additionally,the study preliminarily confirms the influence of EAWM-transported eolian material on sedimentation in the western Philippine Sea since 700 ka.  相似文献   

11.
The entrainment of bottom deposits (silt and clay) into newly formed ice was investigated in the Amderma/Vaygach flaw lead in the southwestern Kara Sea, Siberian Arctic. Fine-grained bottom deposits and sea ice sediments (SIS) were analyzed by granulometry, scanning electron microscopy and X-ray diffractometry. On average, SIS contain by a factor of four times more silt than the shelf deposits (66.7% vs. 16.3%), and the SIS clay percentage is more than three-fold of the bottom value (31.2% vs. 9.1%). Sand-sized particles are significantly less abundant in SIS compared to bottom sediment (2.1% vs. 74.6%). The preferred entrainment of silt into ice is underpinned by the enhanced silt-to-clay-ratio in SIS compared to bottom deposits. Though silt is preferably entrained into SIS, no evidence was found for preferential ice-entrainment of any silt sub-fraction (coarse, medium or fine). However, sub-angular- and angular-discoidal silt particles are favorably entrained into local sea ice. Clay mineral assemblages in SIS and shelf surface sediments match very well revealing that no individual clay mineral is preferably enriched in SIS or reduced at the bottom. The general textural, compositional and statistical match of fine-grained shelf surface deposits and SIS proves that bottom sediment is the principle source for ice-entrained material in the study area. We propose e.g. wave action and thermohaline convection to take sediment particles upward from the bottom nepheloid layer into the well-mixed 10–40 m deep water column of the Amderma/Vaygach flaw lead, and the turbulent process of suspension freezing to bring sediment particles and frazil crystals into contact, finally leading to the formation of sediment-laden ice. The role of SIS entrainment and export for local/regional shelf erosion and coastal retreat is of minor importance in the SW Kara Sea compared to other circum-Arctic shelf seas. However, the characteristic clay mineral assemblage of local SIS and bottom deposits can help identify the origin of SIS both on regional and Arctic-wide scales.  相似文献   

12.
A sequential chemical extraction procedure was developed and tested to investigate the utility of meteoric 10Be as a tracer for authigenic mineral formation beneath the East Antarctic Ice Sheet. Subglacial meltwater is widely available under the Antarctic Ice Sheet and dissolved gases within it have the potential to drive chemical weathering processes in the subglacial environment. Meteoric 10Be is a cosmogenic nuclide with a half-life of 1.39·106 years that is incorporated into glacier ice, therefore its abundance in the subglacial environment in Antarctica is meltwater dependent. It is known to adsorb to fine-grained particles in aqueous solution, precipitate with amorphous oxides/hydroxides, and/or be incorporated into authigenic clay minerals during chemical weathering. The presence of 10Be in chemical weathering products derived from beneath the ice therefore indicates chemical weathering processes in the subglacial environment. Freshly emerging subglacial sediments from the Mt. Achernar blue ice moraine were subject to chemical extractions where these weathering phases were isolated and 10Be concentrations therein quantified. Optimization of the phase isolation was developed by examining the effects of each extraction on the sample mineralogy and chemical composition. Experiments on 10Be desorption revealed that pH 3.2–3.5 was optimal for the extraction of adsorbed 10Be. Vigorous disaggregation of the samples before grain size separations and acid extractions is crucial due to the incorporation of the nuclide in clay minerals and its preferential absorption to clay-sized particles. 10Be concentrations of 2–22·107 atoms·g−1 measured in oxides and clay minerals in freshly emerging sediments strongly indicate subglacial chemical weathering in the catchment of the Mt. Achernar moraine. Based on total 10Be sample concentrations, local basal melt rates, and 10Be ice concentrations, sediment-meltwater contact in the subglacial environment is on the order of thousands of years per gram of underlying fine sediment. Strong correlation (R = 0.97) between 10Be and smectite abundance in the sediments supports authigenic clay formation in the subglacial environment. This suggests meteoric 10Be is a useful tool to characterize subglacial geochemical weathering processes under the Antarctic Ice Sheet.  相似文献   

13.
Clay fractions in the non-calcareous surface sediments from the eastern Pacific were analyzed for clay minerals, REE and 143Nd/144Nd. Montmorillonite/illite ratio (M/I ratio), total REE contents ((REE), LREE/HREE ratio and cerium anomaly (бCe) may effectively indicate the genesis of clay minerals. Clay fractions with M/I ratio >1, бCe (0.85, (REE (400 μg/g, LREE/HREE ratio (4, and REE patterns similar to those of pelagic sediments are terrigenous and autogenetic mixed clay fractions and contain more autogenetic montmorillonite. Clay fractions with M/I ratio <1, бCe=0.86 to 1.5, ΣREE=200 to 350 μg/g, LREE/HREE ratio (6 and REE distribution patterns similar to that of China loess are identified as terrigenous clay fraction. The 143Nd/144Nd ratios or (э)Nd values of clay fractions inherit the features of terrigenous sources of clay minerals. Clay fractions are divided into 4 types according to (э)Nd values. Terrigenous clay minerals of type I with the (э)Nd values of -8 to -6 originate mainly from North American fluvial deposits. Those of type II with the (э)Nd values of -9 to -7 are mainly from the East Asia and North American fluvial deposits. Those of type III with (э)Nd values of -6 to -3 could come from the central and eastern Pacific volcanic islands. Those of type IV with (э)Nd values of -13 to -12 may be from East Asia eolian. The terrigenous and autogenetic mixed clay fractions show patchy distributions, indicating that there are volcanic or hot-spot activities in the eastern Pacific plate, while the terrigenous clay fractions cover a large part of the study area, proving that the terrigenous clay minerals are dominant in the eastern Pacific.  相似文献   

14.
In the light of the regional physiography and its effect on clay mineral composition of cohesive sediment (d < 0.005 mm) the source area of cohesive sediment in the Yangtze Estuary can be identified as three supplying regions: the main stem of the Yangtze River, the deltaic region of the abandoned Yellow River including the northwest Huanghai Sea and the Hangzhou Bay. Based on the evaluation of clay mineral composition in the supplying regions and the converging region, a computational model is established. More than 89.6% of cohesive sediment comes from the Yangtze River, a considerable amount is replenished from the deltaic region of the abandoned Yellow River while some part of the cohesive sediment load is transported from the Yangtze Estuary to the Hangzhou Bay. Computation results reveal that the annual deposit of cohesive sediment in the Yangtze Estuary amounts to 45.54 x 106 t. The annual cohesive sediment load replenished from the deltaic region of the abandoned Yellow River is 27.30 x 106t, while the annual cohesive sediment load transported to the Hangzhou Bay is 22.47 x 106 t. The amount of deposit in the Yangtze Estuary has been checked against the value obtained by comparing bathemetry of the Yangtze Estuary in 1915 and 1963.  相似文献   

15.
Four end members were inverted from surface sediment grain size data from the South Yellow Sea by using the end member (EM) model. The sediment provenance and hydrodynamic meanings of each EM were discussed based on the frequency and spatial distributions of the EMs. EM1 and EM2 reflect the dynamic transport and sorting processes of the terrigenous sediment, and EM3 and EM4 reflect the modification of relic sand. The ocean front mainly affected transport of relatively coarse terrigenous sediment in the South Yellow Sea, and the fine terrigenous sediments were generally unaffected by the ocean front. Fine sediment could pass through the ocean front and deposit in the central South Yellow Sea under weak tidal condition to form most part of the Central Yellow Sea Mud (CYSM). The CYSM extended toward northwest and southwest. The sediment in the north part of the CYSM mainly consisted of sediment from the Yellow River (Huanghe) in the northwest, and the sediment in the southwest part of CYSM mainly consisted of Subei coastal sediments from both the Yangtze River (Changjiang) and the Yellow River. Compared to the traditional method of sediment grain size analysis, the EM model can determine the EMs and provide better explanations of the sediment provenance and dynamic regional sedimentary environment in the study area.  相似文献   

16.
Ferromanganoan sediments containing little or no CaCO3 have been found to occur extensively throughout the region between the East Pacific Rise and the Galapagos Rise. Concentrations of Fe and Mn of up to 18 and 6.5%, respectively, accompany low concentrations of Al and Ti. The concentrations of Cu, Ni, and Zn are also high relative to more typical pelagic sediments.While chemically similar to the non-carbonate fraction of metalliferous sediments previously described from the East Pacific Rise, the mineralogy is markedly different. A non-detrital smectite makes up the bulk of sediment (70 to 90%) and is the most important iron bearing phase. Fe and Mn oxides, occurring primarily as micro-nodules, comprise 10 to 20% of the sediment. Detrital material is relatively rare, amounting to less than 10% in all samples.  相似文献   

17.
章纯 《地震》2007,27(3):26-33
利用有限元方法, 研究了台湾地震发生所产生的应力变化对华东南地区应力场调整的影响, 给出了这些地区地震发生后所产生的扰动应力场分布特征, 解释了台湾地震活动与大陆地震活动同步的问题。 研究结果认为, 台湾东部地震带地震发生所产生的应力扰动主要影响福建至广东和广西沿海地区的应力场; 如果地震发生在台湾东南角, 其扰动应力会影响到华东沿海地区; 台湾北部地震带地震发生所产生的扰动应力场除影响福建至广东沿海外, 还会影响到华东沿海地区。  相似文献   

18.
沉积物金属元素变化的粒度效应—以太湖沉积岩芯为例   总被引:12,自引:3,他引:9  
刘恩峰  沈吉  朱育新 《湖泊科学》2006,18(4):363-368
水体沉积物中金属元素含量变化除了与人为污染有关之外,在很大程度上受沉积物粒度、矿物组成等沉积物性质的影响.在进行沉积物金属元素研究中,要充分考虑沉积物金属元素含量变化的粒度效应.本文通过对太湖MS岩芯中17种金属元素、沉积物粒度、矿物组成等指标的分析,研究了金属元素变化特征以及与沉积物粒度组成的关系.MS岩芯金属元素变化可分为两类,第一类主要为Al、Fe、K等,该类元素在沉积岩芯中下部含量较高,岩芯上部含量较低;第二类为Na元素,在沉积岩芯中下部含量较低,岩芯上部含量升高.MS岩芯中金属元素与粘土含量之间具有显著相关关系,经沉积物粒度(粘土含量)校正后,沉积岩芯中金属元素含量趋于稳定.因此,沉积物粒度组成(粘土含量)是影响金属元素含量的主要因素,在研究太湖沉积物金属元素变化规律及进行金属污染评价时,应对金属元素含量进行粒度校正.  相似文献   

19.
The sedimentology of the floor of the Amvrakikos Gulf, a river influenced, semi-enclosed relatively shallow-silled embayment, lying along the northeastern Hellenic coast of the Ionian Sea (eastern Mediterranean Sea), is investigated with respect to its origin (terrigenous and/or biogenic), the prevailing oceanographic conditions and human interference. Nearshore (water depths approximately <10 m) sediments, especially along the northern margin of the Gulf, consist mostly of biogenic sands, as the result of water exchange between the freshwater lagoonal waters and the surface waters of the Gulf. An exception to this is the mouth area of the Arachthos River, which is dominated by the terrigenous riverine sediment influx. The offshore (water depths >10 m) bottom surficial sediments are fine-grained (silty and clayey) of terrigenous origin (>70%); this is attributed to the inter-seasonal, strong two-layer stratification of the water column in the Gulf which restricts benthic productivity by inhibiting the downward flux of surface eutrophic waters and the development of nearbed disoxic conditions in water depths >40 m. River damming has reduced also the riverine terrigenous sediment supply; this is more profound in the case of the Arachthos River where not only the deltaic evolution has been affected, but also the textural character of the seabed sediments of the mouth area has been altered; this is expected to influence the benthic communities of prodeltaic surficial sediment.  相似文献   

20.
In this study we assessed changes in the contribution of terrigenous organic matter (OM) to the Gulf of Mexico over the course of the last deglaciation (the last 25 kyr). To this end, we combined optical kerogen analyses with bulk sedimentary, biomarker, and compound-specific carbon isotope analyses. Samples were obtained from core MD02-2550 from Orca Basin (2249 m water depth at 26°56.77N, 91°20.74W) with temporal resolution ranging from multi-decadal to millennial-scale, depending on the proxy. All proxies confirmed larger terrigenous input during glacial times compared to the Holocene. In addition, the kerogen analyses suggest that much of the glacial OM is reworked (at least 50% of spores and pollen grains and 40% of dinoflagellate cysts). The Holocene sediments, in contrast, contain mainly marine OM, which is exceptionally well preserved. During the deglaciation, terrigenous input was generally high due to large meltwater fluxes, whereby discrepancies between different proxies call for additional influences, such as the change in distance to the river mouth, local productivity changes, and hydrodynamic particle sorting. It is possible that kerogen particles and the terrigenous biomarkers studied here represent distinct pools of land-derived OM with inputs varying independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号