首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Trachytic rock and its altered rock-fenite-in the Bayan Obo ore district, Inner Mongolia, China, were referred to as slate or feldspar rock before, and identified by the authors for the first time (in 1992). In the paper the mineral assemblages, structures and textures and petrochemical compositions of the rocks, as well as the electron microprobe analysis of feldspars in the rocks are described. The Sm-Nd isochron age of the trachytic rock is 1096±56 Ma, with INd=0.51100+4 (2σ) and εNd(t)= -4.4±0.7. Alterations of the trachytic rock, including microclinization, riebeckitization, aegirinization and biotitization, and accompanied rare element and REE mineralizations are discussed. Based on the occurrence of the trachytic rock and associated fenitization it is deduced that the Bayan Obo Fe-Nb-REE ore deposit is genetically related to magmatic-hydrothermal activity of an alkali carbonatite complex.  相似文献   

2.
Fine-grained segregations up to 5 mm in size composed of graphic intergrowths of zircon, quartz, calcite and containing up to 0.8 wt % SrO have been found in albite–riebeckite and dolomite–biotite metasomatic rocks formed after alaskite granite. They contain magnetite, titanomagnetite (25.4 wt % TiO2), cerite-(Ce,Nd), rutile (up to 1.2 wt % Nb2O5), as well as rare micrograins of monazite-(Ce), bastnaesite-(Ce), and barite (up to 5.7 wt % SrO). The fine-grained structure of mineral aggregates suggests a metacolloidal nature. It is assumed that the zircon–quartz–calcite assemblage was formed due to exchange decomposition reaction between the salt phase of hydrothermal solution with predominant Na2CO3, elevated Zr and, to a lesser extent, Fe, Ti, LREE, Nb contents and dissolved calcium and silica compounds of a Na2SiO3 type.  相似文献   

3.

The chemical composition and origin of major REE minerals of aegirine, aegirine–arfvedsonite, arfvedsonite, and annite–riebeckite–arfvedsonite granites are studied for the Katugin Ta–Nb–Zr–Y deposit with cryolite in the southwestern part of the Aldan Shield. The REE mineralization of granites includes two types: (i) disseminated grains of pyrochlore and, to a lesser extent, other Nb–Ln oxides, Ln phosphates, and Ln–F carbonates in association with zircon, ilmenite, sphalerite, and other minerals and (ii) interstitial intergrowths of Ln fluorides.

  相似文献   

4.
Recent exploration work in South Morocco revealed the occurrence of several carbonatite bodies, including the Paleoproterozoic Gleibat Lafhouda magnesiocarbonatite and its associated iron oxide mineralization, recognized here as iron-oxide-apatite (IOA) deposit type. The Gleibat Lafhouda intrusion is hosted by Archean gneiss and schist and not visibly associated with alkaline rocks. Metasomatized micaceous rocks occur locally at the margins of the carbonatite outcrop and were identified as glimmerite fenite type. Rare earth element (REE) and Nb mineralization is mainly linked to the associated IOA mineralization and is represented by monazite-(Ce) and columbite-(Fe) as major ore minerals. The IOA mineralization mainly consists of magnetite and hematite that usually contain large apatite crystals, quartz and some dolomite. Monazite-(Ce) is closely associated with fluorapatite and occurs as inclusions within the altered parts of apatite and along cracks or as separate phases near apatite. Monazite shows no zonation patterns and very low Th contents (<0.4 wt%), which would be beneficial for commercial extraction of the REE and which indicates monazite formation from apatite as a result of hydrothermal volatile-rich fluids. Similar monazite-apatite mineralization and chemistry also occurs at depth within the carbonatite, although the outcropping carbonatite is barren, suggesting an irregular REE ore distribution within the carbonatite body. The barren carbonatite contains some tiny unidentified secondary Nb-Ta-U phases, synchysite and monazite. Niobium mineralization is commonly represented by anhedral minerals of columbite-(Fe) which occur closely associated with magnetite-hematite and host up to 78 wt% Nb2O5, 7 wt% Ta2O5 and 1.6 wt% Sc2O3. This association may suggest that columbite-(Fe) precipitated by an interaction of Nb-rich fluids with pre-existing Fe-rich minerals or as pseudomorphs after pre-existing Nb minerals like pyrochlore. Our results most strongly suggest that the studied mineralization is economically important and warrants both, further research and exploration with the ultimate goal of mineral extraction.  相似文献   

5.
Igneous rocks of Nusab El Balgum are formed as an elongated complex mass covering an area of about 4 km?×?12.5 km (50 km2), in the NNE-SSW direction of the Tarfawi-Qena-South Sinai trend, which is a branch of the Trans-African shear zone at the intersection with the Kalabsha fault, which is a branch from Guinean-Nubian lineaments. The continuous reactivation of these two major weakness zones from the late Triassic to recent times has created many generations of the magma batches. The exposed granitic rocks of these batches at Nusab El Balgum were represented by the fresh peralkaline granite (youngest) and hydrothermally altered granites (oldest). The fresh peralkaline granite takes the form of a small stock composed essentially of perthites, quartz, sodic pyroxenes, amphiboles (secondary), and rare albite according to the proportion of presence, respectively. The accessory minerals are zircon, bastnaesite-(Ce), columbite-(Fe), magnetite, barite, and sphalerite. The geochemical study indicated that this granite is peralkaline, ferroan, A-type (specifically belongs to the A1-subgroup), anorogeny, emplaced in a within-plate, and crystallized at relatively shallow depth from the alkali basaltic magma similar to the OIBs. Furthermore, it is enriched in the HFSE (e.g., Th, U, Nb, REE, and Zr). The hydrothermally altered granites are formed as an incomplete ring shape and a small stock. They were formed during the late Cretaceous age and were altered due to the hydrothermal solutions from the continuous reactivation affected weakness zones and the new magmatic batches. The hydrothermally altered granites are extremely rich in HFSE found in the accessory minerals such as zircon (different in shape, size, and contains inclusions of bastnaesite and columbite), columbite-(Fe&Mn), rare gittinsite, pyrochlore minerals (ceriopyrochlore and plumbopyrochlore) carlosbarbosaite, changbaiite, bastnaesite-(Ce), monazite-(Ce), stetindite, cerianite-(Ce), thorite, and uranothorite. These rocks were subjected to many highly superimposed hydrothermal alteration types, including propylitic, sericitic, potassic, silicification, argillic, and Fe-Mn oxy-hydroxides. The hydrothermal solutions with low temperatures and containing F1? and CO32?, PO43? and H2O caused redistribution; transportation and redeposition of the HFSE in these rocks, in addition to the clay minerals and K-metasomatism, were formed. The relations between the silicification index (SI?=?SiO2/(SiO2 + Al2O3) and Zr, Nb, Th, U, LREE, and HREE are positive but they become negative with the K-metasomatism.  相似文献   

6.
A dike–vein complex of potassic type of alkalinity recently discovered in the Baikal ledge, western Baikal area, southern Siberian craton, includes calcite and dolomite–ankerite carbonatites, silicate-bearing carbonatite, phlogopite metapicrite, and phoscorite. The most reliable 40Ar–39Ar dating of the rocks on magnesioriebeckite from alkaline metasomatite at contact with carbonatite yields a statistically significant plateau age of 1017.4 ± 3.2 Ma. The carbonatite is characterized by elevated SiO2 concentrations and is rich in K2O (K2O/Na2O ratio is 21 on average for the calcite carbonatite and 2.5 for the dolomite–ankerite carbonatite), TiO2, P2O5 (up to 9 wt %), REE (up to 3300 ppm), Nb (up to 400 ppm), Zr (up to 800 ppm), Fe, Cr, V, Ni, and Co at relatively low Sr concentrations. Both the metapicrite and the carbonatite are hundreds of times or even more enriched in Ta, Nb, K, and LREE relative to the mantle and are tens of times richer in Rb, Ba, Zr, Hf, and Ti. The high (Gd/Yb)CN ratios of the metapicrite (4.5–11) and carbonatite (4.5–17) testify that their source contained residual garnet, and the high K2O/Na2O ratios of the metapicrite (9–15) and carbonatite suggest that the source also contained phlogopite. The Nd isotopic ratios of the carbonatite suggest that the mantle source of the carbonatite was mildly depleted and similar to an average OIB source. The carbonatites of various mineral composition are believed to be formed via the crystallization differentiation of ferrocarbonatite melt, which segregated from ultramafic alkaline melt.  相似文献   

7.
The Mombi bauxite deposit is located in 165 km northwest of Dehdasht city, southwestern Iran. The deposit is situated in the Zagros Simply Fold Belt and developed as discontinuous stratified layers in Upper Cretaceous carbonates (Sarvak Formation). Outcrops of the bauxitic horizons occur in NW-SE trending Bangestan anticline and are situated between the marine neritic limestones of the Ilam and Sarvak Formations. From the bottom to top, the deposit is generally consisting of brown, gray, pink, pisolitic, red, and yellow bauxite horizons. Boehmite, diaspore, kaolinite, and hematite are the major mineral components, while gibbsite, goethite, anatase, rutile, pyrite, chlorite, quartz, as well as feldspar occur to a lesser extent. The Eh–pH conditions during bauxitization in the Mombi bauxite deposit show oxidizing to reducing conditions during the Upper Cretaceous. This feature seems to be general and had a significant effect on the mineral composition of Cretaceous bauxite deposits in the Zagros fold belt. Geochemical data show that Al2O3, SiO2, Fe2O3 and TiO2 are the main components in the bauxite ores at Mombi and immobile elements like Al, Ti, Nb, Zr, Hf, Cr, Ta, Y, and Th were enriched while Rb, Ba, K, Sr, and P were depleted during the bauxitization process. Chondrite-normalized REE pattern in the bauxite ores indicate REE enrichment (ΣREE = 162.8–755.28 ppm, ave. ∼399.36 ppm) relative to argillic limestone (ΣREE = 76.26–84.03 ppm, ave. ∼80.145 ppm) and Sarvak Formation (ΣREE = 40.15 ppm). The REE patterns also reflect enrichment in LREE relative to HREE. Both positive and negative Ce anomalies (0.48–2.0) are observed in the Mombi bauxite horizons. These anomalies are related to the change of oxidation state of Ce (from Ce3+ to Ce4+), ionic potential, and complexation of Ce4+ with carbonate compounds in the studied horizons. It seems that the variations in the chemistry of ore-forming solutions (e.g., Eh and pH), function of carbonate host rock as a geochemical barrier, and leaching degree of lanthanide-bearing minerals are the most important controlling factors in the distribution and concentration of REEs. Several lines of evidences such as Zr/Hf and Nb/Ta ratios as well as similarity in REE patterns indicate that the underlying marly limestone (Sarvak Formation) could be considered as the source of bauxite horizons. Based on mineralogical and geochemical data, it could be inferred that the Mombi deposit has been formed in a karstic environment during karstification and weathering of the Sarvak limy Formation.  相似文献   

8.
The Matomb region constitutes an important deposit of detrital rutile. The rutile grains are essentially coarse (> 3 mm), tabular and elongated, due to the short sorting of highly weathered detritus. This study reports the major, trace, and rare-earth element distribution in the bulk and rutile concentrated fractions. The bulk sediments contain minor TiO2 concentrations (1–2 wt%), high SiO2 contents (∼77–95 wt%) and variable contents in Al2O3, Fe2O3, Zr, Y, Ba, Nb, Cr, V, and Zn. The total REE content is low to moderate (86–372 ppm) marked by high LREE-enrichment (LREE/HREE ∼5–25.72) and negative Eu anomalies (Eu/Eu* ∼0.51–0.69). The chemical index of alteration (CIA) shows that the source rocks are highly weathered, characteristic of humid tropical zone with the development of ferrallitic soils. In the concentrated fractions, TiO2 abundances exceed 94 wt%. Trace elements with high contents include V, Nb, Cr, Sn, and W. These data associated with several binary diagrams show that rutile is the main carrier of Ti, V, Nb, Cr, Sn, and W in the alluvia. The REE content is very low (1–9 ppm) in spite of the LREE-abundance (LREE/HREE ∼4–40). The rutile concentrated fractions exhibit anomalies in Ce (Ce/Ce* ∼0.58 to 0.83; ∼1.41–2.50) and Eu (Eu/Eu* ∼0.42; 1.20–1.64). The high (La/Sm)N, (La/Yb)N and (Gd/Yb)N ratios indicate high REE fractionation.  相似文献   

9.
Quartz-albite-microcline metasomatic rocks (qualmites) localized in the Main Sayan Fault Zone at the boundary of Irkutsk oblast and Buryatia (Eastern Sayan, middle reaches of the Kitoi River) were formed after dynamometamorphic biotite and biotite-amphibole granite gneisses. The zone of alkaline metasomatism up to 250–300 m thick extends for about 12 km along the Main Sayan Fault. Riebeckite-aegirine and hornblende-clinopyroxene qualmites were formed during the early alkaline stage of metasomatism. Biotite-magnetite qualmites, which are occasionally superimposed on riebeckite-aegirine rocks, are products of the following stage of increasing acidity. The 40Ar/39Ar age of amphibole from metasomatic rocks is 321 ± 5 Ma. The metasomatic rocks are enriched by 2–4 times in Zr, Nb, Y, REE, Be, Th, and U relative to unaltered granite gneisses and contain rare-metal mineralization (fergusonite-(Y), betafite, Nb- and Y- bearing titanites, gadolinite-(Y), zircon, thorite, allanite-(Ce), chevkinite-(Ce), etc.). The composition of accessory minerals was studied on a LEO-1430VP SEM. Their composition and mineral assemblages show that meta-somatic alteration and Ti-Nb-Zr-REE mineralization were formed synchronously. The stage of acid solution neutralization was characterized by crystallization of epidote and andradite and by replacement of chevkinite with allanite and titanite in metasomatic rocks. Hydro- and fluorcarbonates of LREE, phosphates (monazite-(Ce)), and fluorides (F-bearing thorianite?) were formed during the final low-temperature stage.  相似文献   

10.
<正>The Hadamiao granodiorite,located on the northern margin of the North China platform and acting as the country rock of gold deposits in the Hadamiao region,was formed in the same age and similar tectonic settings with the Hadamiao gold deposit and the large-scale Bilihe gold deposit in the same area.By using the LA-ICP-MS method,the U-Pb age obtained is 267±1.3 Ma,which represents the crystallized age of the granodiorite,and that of the xenolithic zircon is 442.8±5 Ma. Base on the main elements,it exhibits the features of calc-alkaline to high-potassium calc-alkaline series,low silicon,and quasi-aluminous I-type granites,and with high magnesium(Mg~#=0.45-0.57) and high sodium contents(Na_2O/K_2O=0.98-2.29).The SREE values(81.6-110.15 ppm) are relatively low,the fractionations between LREE and HREE are obvious,showing a right-inclined dispersion in the REE distribution diagram.Compared with the primitive mantle,the rock is relatively rich in LREE(La and Ce),LILE(K,Sr,and Th),and intensively depleted in HFSE(Ti,P,Nb and Ta).The ratios of Sr/Y and(La/Yb)_N and the contents of Rb,Nb and Y are relatively low,the Sr values are high (436.35-567.26 ppm),and the Yb contents of most samples are low(1.25-1.8),which indicate the features of typical continental margin arc and adakitic rocks.According to the values ofε_(Nd)(t)(-2.4 to +0.2) and I_(Sr)(0.7028-0.7083),and variations of the La/Sm ratios,the Hadamiao granodiorite was formed from mixing of the thickened molten lower crust and the mantle wedge substances.The rock was related to the southward subduction and accretion of the Paleo-Asia Ocean in the Late Paleozoic, being Late Paleozoic magma of the continental margin arc formed on the basement of the Early Paleozoic accretion complexes,and showing a trend of turning into adakitic rocks,which indicates their great metallogenic(Au) potential.  相似文献   

11.
Major, trace and rare earth elements (REE) concentrations in limestone beds of the Asu River Group within the Middle Benue Trough were measured to understand the depositional conditions, characteristics and source of REE. The limestone has high content of CaO (Average of 46.55%), followed by SiO2 (Average of 7.90 %), Fe2O3(t), MgO and Al2O3. The limestones are depleted in most of the trace elements (Co, V, Rb, Ba, Zr, Y, Nb, Hf and Th) when compared with the Post-Archean Australian Shale (PAAS). The observed large variations in ΣREE contents among various limestones of the present study (12.22 to 142.53ppm) are mainly due to the amount of terrigenous matter present in them. The characteristics of non-seawater-like REE patterns, elevated REE concentrations, high LaN/YbN ratios and low Y/Ho ratios, suggest that the observed variations in ΣREE contents are mainly controlled by the amount of detrital sediments in the limestones of the Asu River Group in the middle Benue trough. The observed variations in Ce contents and Ce anomalies in the studied samples resulted from detrital input. The limestones show positive Mn* values (0.30 to 0.78) and low contents of U (~0.60–3.20 ppm) suggesting that they were deposited under oxygen-rich environment.  相似文献   

12.
Five Devonian plutons (West Charleston, Echo Pond, Nulhegan, Derby, and Willoughby) that constitute the Northeast Kingdom batholith in Vermont show wide ranges in elemental abundances and ratios consistent with major crustal contributions during their evolution. The batholith consists of metaluminous quartz gabbro, diorite and quartz monzodiorite, peraluminous granodiorite and granite, and strongly peraluminous leucogranite. Contents of major elements vary systematically with increasingSiO<2 (48 to 77 wt.%). The batholith has calc-alkaline features, for example a Peacock index of 57, and values for K<2O/Na2O (<1), K/Rb (60–350), Zr/Hf (30–50), Nb/Ta (2–22), Hf/Ta (up to 10), and Rb/Zr (<2) in the range of plutonic rocks found in continental magmatic ares. Wide diversity and high values of minor- and trace-element ratios, including Th/Ta (0.5–22), Th/Yb (0–27), Ba/La (0–80), etc., are attributed to intracrustal contributions. Chondrite-normalized REE patterns of metaluminous and relatively mafic intrusives have slightly negative slopes (La/Ybcn<10) and negative Eu anomalies are small orabsent. The metaluminous to peraluminous inter-mediate plutons are relatively enriched in the light REE (La/Ybcn>40) and have small negative Eu anomalies. The strongly peraluminous Willoughby leucogranite has unique trace-element abundances and ratios relative to the rest of the batholith, including low contents of Hf, Zr, Sr, and Ba, low values of K/Rb (80–164), Th/Ta (<9), Rb/Cs (7–40), K/Cs (0.1–0.5), Ce/Pb (0.5–4), high values of Rb/Sr (1–18) low to moderate REE contents and light-REE enriched patterns (with small negative Eu anomalies). Flat REE patterns (with large negative Eu anomalies) are found in a small, hydrothermally-altered area characterized by high abundances of Sn (up to 26 ppm), Rb (up to 670 ppm), Li (up to 310 ppm), Ta (up to 13.1 ppm), and U (up to 10 ppm). There is no single mixing trend, fractional crystallization assemblage, or assimilationscheme that accounts for all trace elementvariations from quartz gabbro to granite in the Northeast Kingdom batholith. The plutons originated by mixing mantle-derived components and crustal melts generated at different levels in the heterogeneous lithosphere in a continental collisional environment. Hybrid rocks in the batholith evolved by fractional crystallization and assimilation of country rocks (<50% by mass), and some of the leucogranitic rocks were subsequently disturbed by a mild hydrothermal event that resulted in the deposition of small amounts of sulfide minerals.  相似文献   

13.
Summary Lovozero, the largest of the world’s layered peralkaline intrusions, includes gigantic deposits of Nb + REE-loparite ore. Loparite, (Na,Ce,Ca)2(Ti,Nb)2O6, became a cumulus phase after crystallisation of about 35% of the ‘Differentiated Complex’, and its compositional evolution has been investigated through a 2.35 km section of the intrusion. The composition of the cumulus loparite changes systematically upwards through the intrusion with an increase in Na, Sr, Nb and Th and decrease in REE and Ti. This main trend of loparite evolution records differentiation of the peralkaline magma through crystallisation of 1600 m of the intrusion. The formation of the loparite ores was the result of several factors including the chemical evolution of the highly alkaline magma and mechanical accumulation of loparite at the base of a convecting unit. At later stages of evolution, when concentrations of alkalis and volatiles reached very high levels, loparite reacted with the residual melt to form a variety of minerals including barytolamprophyllite, lomonosovite, steenstrupine-(Ce), vuonnemite, nordite, nenadkevichite, REE, Sr-rich apatite, vitusite-(Ce), mosandrite, monazite-(Ce), cerite and Ba, Si-rich belovite. The absence of loparite ore in the “Eudialyte complex” is likely to be a result of the wide crystallisation field of lamprophyllite, which here became a cumulus phase. Received November 6, 2000; revised version accepted January 18, 2001  相似文献   

14.
The two drill holes, which penetrated sub‐horizontal rare earth element (REE) ore units at the Nechalacho REE in the Proterozoic Thor Lake syenite, Canada, were studied in order to clarify the enrichment mechanism of the high‐field‐strength elements (HFSE: Zr, Nb and REE). The REE ore units occur in the albitized and potassic altered miaskitic syenite. Zircon is the most common REE mineral in the REE ore units, and is divided into five types as follows: Type‐1 zircon occurs as discrete grains in phlogopite, and has a chemical character similar to igneous zircon. Type‐2 zircon consists of a porous HREE‐rich core and LREE–Nb–F‐rich rim. Enrichment of F in the rim of type‐2 zircon suggests that F was related to the enrichment of HFSE. The core of type‐2 zircon is regarded to be magmatic and the rim to be hydrothermal in origin. Type‐3 zircon is characterized by euhedral to anhedral crystals, which occur in a complex intergrowth with REE fluorocarbonates. Type‐3 zircon has high REE, Nb and F contents. Type‐4 zircon consists of porous‐core and ‐rim, but their chemical compositions are similar to each other. This zircon is a subhedral crystal rimmed by fergusonite. Type‐5 zircon is characterized by smaller, porous and subhedral to anhedral crystals. The interstices between small zircon grains are filled by fergusonite. Type‐4 and type‐5 zircon grains have low REE, Nb and F contents. Type‐1 zircon is only included in one unit, which is less hydrothermally altered and mineralized. Type‐2 and type‐3 zircon grains mainly occur in the shallow units, while those of type‐4 and type‐5 are found in the deep units. The deep units have high HFSE contents and strongly altered mineral textures (type‐4 and type‐5) compared to the shallow units. Occurrences of these five types of zircon are different according to the depth and degree of the hydrothermal alteration by solutions rich in F and CO3, which permit a model for the evolution of the zircon crystallization in the Nechalacho REE deposit as follows: (i) type‐1 (discrete magmatic zircon) is formed in miaskitic syenite. (ii) LREE–Nb–F‐rich hydrothermal zircon formed around HREE‐rich magmatic zircon (type‐2). (iii) type‐3 zircon crystallized through the F and CO3‐rich hydrothermal alteration of type‐2 zircon which formed the complex intergrowth with REE fluorocarbonates; (iv) the CO3‐rich hydrothermal fluid corroded type‐3, forming REE–Nb‐poor zircon (type‐4). Niobium and REE were no longer stable in the zircon structure and crystallized as fergusonite around the REE–Nb‐leached zircon (type‐4); (v) type‐5 zircon is formed by the more CO3‐rich hydrothermal alteration of type‐4 zircon, suggested by the fact that type‐4 and type‐5 zircon grains are often included in ankerite. Type‐3 to type‐5 zircon grains at the Nechalacho REE deposit were continuously formed by leaching and/or dissolution of type‐2 zircon in the presence of F‐ and/or CO3‐rich hydrothermal fluid. These mineral associations indicate that three representative hydrothermal stages were present and related to HFSE enrichment in the Nechalacho REE deposit: (i) F‐rich hydrothermal stage caused the crystallization of REE–Nb‐rich zircon (type‐2 rim and type‐3), with abundant formation of phlogopite and fluorite; (ii) F‐ and CO3‐rich hydrothermal stage led to the replacement of a part of REE–Nb–F‐rich zircon by REE fluorocarbonate; and (iii) CO3‐rich hydrothermal stage resulted in crystallization of the REE–Nb–F‐poor zircon and fergusonite, with ankerite. REE and Nb in hydrothermal fluid at the Nechalacho REE deposit were finally concentrated into fergusonite by way of REE–Nb–F‐rich zircon in the hydrothermally altered units.  相似文献   

15.
The Zunyi manganese deposits, which formed during the Middle to Late Permian period and are located in northern Guizhou and adjacent areas, are the core area of a series of large-medium scale manganese enrichment minerogenesis in the southern margin and interior of the Yangtze platform, Southern China. This study reports the universal enrichment of rare earth elements(REEs) in Zunyi manganese deposits and examines the enrichment characteristics, metallogenic environment and genesis of REEs. The manganese ore bodies present stratiform or stratoid in shape, hosted in the silicon–mud–limestones of the Late Permian Maokou Formation. The manganese ores generally present lamellar, massive, banded and brecciated structures, and mainly consist of rhodochrosite, ropperite, tetalite, capillitite, as well as contains paragenetic gangue minerals including pyrite, chalcopyrite, rutile, barite, tuffaceous clay rock, etc. The manganese ores have higher ΣREE contents range from 158 to 1138.9 ppm(average 509.54 ppm). In addition, the ΣREE contents of tuffaceous clay rock in ore beds vary from 1032.2 to 1824.5 ppm(average 1396.42 ppm). The REEs from manganese deposits are characterized by La, Ce, Nd and Y enriched, and existing in the form of independent minerals(e.g., monazite and xenotime), indicating Zunyi manganese deposits enriched in light rare earth elements(LREE). The Ce_(anom) ratios(average-0.13) and lithofacies and paleogeography characteristics indicate that Zunyi manganese deposits were formed in a weak oxidation-reduction environment. The(La/Yb)_(ch), Y/Ho,(La/Nd)_N,(Dy/Yb)_N, Ce/Ce* and Eu/Eu* values of samples from the Zunyi manganese deposits are 5.53–56.92, 18–39, 1.42–3.15, 0.55–2.20, 0.21–1.76 and 0.48–0.86, respectively, indicating a hydrothermal origin for the manganese mineralization and REEs enrichment. The δ~(13) C_(V-PDB)(-0.54 to-18.1‰) and δ~(18) O_(SMOW)(21.6 to 26.0‰) characteristics of manganese ores reveal a mixed source of magmatic and organic matter. Moreover, the manganese ore, tuffaceous clay rock and Emeishan basalt have extremely similar REE fractionation characteristic, suggesting REEs enrichment and manganese mineralization have been mainly origin from hydrothermal fluids.  相似文献   

16.
REE mobility during hydrothermal ore-forming processes has been extensively investigated in recent years and the potential of REE to provide information about ore forming processes has commonly been recognized.The Dongping gold deposit,which is located in northwestern Hebei Province,China,occurring in the inner contact zone of the Shuiquangou syenite complex,is spatially,and probably genetically,related to the syenite,the deposit was formed under the moderate to high temperature(220℃ to 320℃),weakly acidic to weakly alkaline,rather high fo2(lgfo2=-30~-34)environment.The REE study of the host rocks,altered wall rocks,ores and gangue minerals from the deposit suggests that the REEs have been mobilized and differentiated during K-feldspathization and silicification.The extremely altered syenite enveloping auriferous quartz vein shows positive Ce anomaly and larger LREE/HREE ratio than that of the unaltered syenite.The REE concentrations and patterns of the ores are determined by the ore types and mineral assemblages,LREE/HREE ratios in the gangue quartz and hydrothermal Kfeldspars are relatively low.The most significant observation is that the gangue quartz shows significant positive Eu anomaly,whereas the hydrothermal K-feldspars show less significant or no positive Eu anomaly at all relative to the primary feldspar in the unaltered syenite. It is evident that the REEs are mobile during K-feldspathization and silicification in the ore forming process.Weak to moderate K-feldspathization caused REE mobility without apparent differentiation with the exception of extreme K-feldspathization and silicification which resulted in significant depletion of HREE and Eu and relative enrichment of Ce.The REE,Y,U,Th and Au contents of the syenite decrease as the degrees of K-feldspathization and silicification of the rocks increase towards the auriferous quartz veins.As the ores were deposited under a rather oxidized environment,Ce^4 predominated over Ce^3 .The precipitation of the former in the form of CeO2 or absorpted onto the secondary mineral assemblage resulted in the inconsistent removal of the REE and the relative Ce enrichment in the strongly altered rocks.in contrast,Eu was present mainly in a low valence state (Eu^2 ).The geochemical differences from the other REE^3 and much less sites in the secondary minerals to accommodate the Eu released form the original minerals resulted in the enrichment of Eu in the fluids.The mobility and differentiation of REE and the coherent mobilities of Y,U,Th and Au also support the argument that the syenite is one of the source rocks for gold mineralization.The REE contents and patterns of the altered rocks enveloping the auriferous quartz vein could be used as a guide for locating ore veins in mineral exploration.  相似文献   

17.
Geochemical studies were conducted on the hydrothermally altered granitic rocks in the Ranong and Takua Pa tin‐fields in southern Thailand in order to investigate the mode of occurrence of REE (rare earth elements), with emphasis placed on a potential REE resource associated with granitic rocks in the Southeast Asian Tin Belt. The total REE (ΣREE) content of altered granitic rocks ranges from 130 to 350 ppm at Haad Son Paen (which is presently mined for kaolin clay) in the Ranong tin‐field, and that of altered granitic rocks and kaolinite veinlets reaches up to 424 ppm and 872 ppm, respectively, at Nok Hook in the Takua Pa tin‐field. Rare earth elements in the altered granitic rocks and kaolinite veinlets show a relatively flat chondrite‐normalized pattern, thus enriched in heavy REE compared with the original granitic rocks and their weathered crusts. At Nok Hook (Takua Pa), the ΣREE content of kaolinite separated from an altered granitic rock by elutriation is 1313 ppm, a ΣREE amount about four times higher than that of whole‐rock composition of the altered granitic rock. Chondrite‐normalized REE patterns of the elutriated kaolinite and of the altered granite are relatively flat. Sequential extraction experiments suggest that 41 and 85 percent of REE are present as ion exchangeable‐form in the altered granitic rock, and in the kaolinite veinlets, respectively. In addition, more than 90% of REE in the kaolinite veinlets are present as the acid‐soluble state. On the other hand, the ΣREE content of kaolinite veinlets and of the kaolinite concentrated by elutriation from an altered granitic rock at Haad Som Paen (Ranong) is 70 ppm and 75 ppm, respectively, thus enrichment of REE in kaolinite was not confirmed. In addition, by the sequential extraction experiments, 23% and 4% of REE were extracted from the altered granitic rock and the kaolinite veinlets at Haad Som Paen. In the altered granitic rocks at Haad Som Paen, REE are present as refractory phases, and REE in the acid‐soluble states had been leached by hydrothermal fluid.  相似文献   

18.
The Boziguoer A-type granitoids in Baicheng County,Xinjiang,belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks.The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite,an aegirine or arfvedsonite alkali feldspar granite,and a biotite alkali feldspar syenite.The major rock-forming minerals are albite,K-feldspar,quartz,arfvedsonite,aegirine,and siderophyllite.The accessory minerals are mainly zircon,pyrochlore,thorite,fluorite,monazite,bastnaesite,xenotime,and astrophyllite.The chemical composition of the alkaline granitoids show that SiO2 varies from 64.55% to 72.29% with a mean value of 67.32%,Na2O+K2O is high (9.85%-11.87%) with a mean of 11.14%,K2O is 2.39%-5.47% (mean =4.73%),the K2O/Na2O ratios are 0.31-0.96,Al2O3 ranges from 12.58% to 15.44%,and total FeOT is between 2.35% and 5.65%.CaO,MgO,MnO,and TiO2 are low.The REE content is high and the total SREE is (263-1219) ppm (mean =776 ppm),showing LREE enrichment and HREE depletion with strong negative Eu anomalies.In addition,the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type.The Zr content is (113-1246) ppm (mean =594 ppm),Zr+Nb+Ce+Y is between (478-2203) ppm with a mean of 1362 ppm.Furthermore,the alkaline granitoids have high HFSE (Ga,Nb,Ta,Zr,and Hf) content and low LILE (Ba,K,and Sr) content.The Nb/Ta ratio varies from 7.23 to 32.59 (mean =16.59) and the Zr/Hf ratio is 16.69-58.04 (mean =36.80).The zircons are depleted in LREE and enriched in HREE.The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly.The Boziguoer A-type granitoids share similar features with A1-type granites.The average temperature of the granitic magma was estimated at 832-839℃.The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature,anhydrous,and low oxygen fugacity conditions.  相似文献   

19.
Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in th  相似文献   

20.
The results of study of chemical composition, mineral-forming medium, P-T conditions of crystallization, and the age characteristics of subvolcanic felsic rocks that are spatially associated with rare-metal granite massifs in the ore units of Transbaikalia (Sherlovaya Gora, Khangilay, Bukuka, Belukha, and Shumilovka) give grounds for defining cogenetic volcanoplutonic associations. These associations within the studied region consist of rare-metal granites, ongonites, rhyolites, ongorhyolites, and trachyrhyodacites, which have much in common, but also many differences. The common chemical features of these rocks are their peraluminium signature, low mafic index and basicity, as well as enrichment (as compared to crust) in trace lithophile elements (Li, Rb, Nb, Ta, Sn, W, and F), the low contents of Zr, REE, and Sr, and the similar distribution of trace and refractory elements. At the same time, these rocks differ in the proportions of sodium and potassium, levels of concentrations of lithophile trace and refractory elements, REE distribution patterns, P-T regimes of crystallization, and the volatile composition. The composition of melts from all types of the studied rocks and trace element distribution between melts and rocks were studied on the basis of ion-microprobe analysis of rehomogenized glasses of melt inclusions in quartz. The highest concentrations of lithophile trace elements in the melt, including Cs (up to 300 ppm), Rb (up to 1002 ppm), U (up to 42 ppm), and Th, were found in the trachyrhyodacites of the Bukuka-Belukha ore unit; in terms of Li content this melt is comparable with the Ary-Bulak ongonites (690 and 715 ppm Li, respectively), and differ by an order of magnitude in the contents of refractory and rare-earth elements (total REE 94.4 and 5.44 ppm, respectively), which is indicative of a lower differentiation degree of this melt as compared to ongonites. Potassic rhyolites are peculiar in the low content of lithophile trace elements, but residual melt reveals notable enrichment in Li (up to 130 ppm) and Nb (up to 120 ppm). The accumulation of U in the residual melt of the trachyrhyodacitic and rhyolitic magmas of Eastern Transbaikalia may indicate their high potential for postmagmatic uranium ore formation. Isotope-geochronological studies (Rb-Sr isotope system) of the Sherlovaya Gora ore unit showed that the entire complex of volcanoplutonic association (granites, ongonites, rhyolites, and ongorhyolites) formed almost simultaneously within an interval of 4 Ma: from 145.7 ± 1.3 Ma at IRSr = 0.70507 ± 20 and MSWD = 0.48 to 141.5 ± 1.0 Ma at IRSr = 0.70359 ± 63 Ma and MSWD = 0.24. A spatial association of the subvolcanic rock complex with rare-metal granite massifs, their formation within a common age interval, geochemical features, and P-T conditions of crystallization suggest that they are genetically related but were derived from variably evolved sources, which originated from a single protolith under the action of mantle plume that existed beneath Central Asia at that time (Yarmolyuk and Kovalenko, 2003).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号