首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The seasonal mean extra-tropical atmospheric response to El Niño/Southern Oscillation (ENSO) is assessed in the historical and pre-industrial control CMIP5 simulations. This analysis considers two types of El Niño events, characterized by positive sea surface temperature (SST) anomalies in either the central equatorial Pacific (CP) or eastern equatorial Pacific (EP), as well as EP and CP La Niña events, characterized by negative SST anomalies in the same two regions. Seasonal mean geopotential height anomalies in key regions typify the magnitude and structure of the disruption of the Walker circulation cell in the tropical Pacific, upper tropospheric ENSO teleconnections and the polar stratospheric response. In the CMIP5 ensembles, the magnitude of the Walker cell disruption is correlated with the strength of the mid-latitude responses in the upper troposphere i.e., the North Pacific and South Pacific lows strengthen during El Niño events. The simulated responses to El Niño and La Niña have opposite sign. The seasonal mean extra-tropical, upper tropospheric responses to EP and CP events are indistinguishable. The ENSO responses in the MERRA reanalysis lie within the model scatter of the historical simulations. Similar responses are simulated in the pre-industrial and historical CMIP5 simulations. Overall, there is a weak correlation between the strength of the tropical response to ENSO and the strength of the polar stratospheric response. ENSO-related polar stratospheric variability is best simulated in the “high-top” subset of models with a well-resolved stratosphere.  相似文献   

2.
Being triggered by different physical processes, the eastern Pacific (EP) and central Pacific (CP) El Niño events have several different teleconnection features around the globe. Using the ERA-Interim re-analysis monthly data during the period 1980–2016, the El Niño-Southern Oscillation (ENSO) teleconnections on the global scale and their statistical significance are investigated, with an emphasis on the contrasting features of the EP and CP El Niño events. With some exceptions, the EP El Niño and La Niña have generally similar teleconnection patterns with the reversed sign, while in some parts of the globe different and occasionally contrasting teleconnections of the EP and CP El Niño events are identified. Compared to the CP El Niño, more regions of the world are influenced by the statistically significant positive surface pressure anomalies during the EP El Niño, particularly over the Indian Ocean, tropical Atlantic and Northern Africa. It is found that the mid-tropospheric geopotential height anomalies across the globe are significantly different during the EP and CP El Niño events. Associated with different surface pressure and mid-tropospheric geopotential height anomalies, precipitation anomalies in many regions of the world are found different during the EP and CP El Niño events, particularly over the tropical Pacific, central to eastern equatorial Atlantic and the eastern Sahara. While central and eastern equatorial Atlantic experience statistically significant negative (positive) rainfall anomalies during the EP El Niño (La Niña), the CP El Niño does not have a strong influence on the amount of annual rainfall over the equatorial Atlantic. For the first time, statistically significant anomalously dry conditions are found over some parts of the Middle East and Southwest Asia during La Niña, and over the eastern Sahara during the EP El Niño.  相似文献   

3.
The role of tropical Atlantic sea surface temperature (SST) anomalies during ENSO episodes over northeast Brazil (Nordeste) is investigated using the CPTEC/COLA Atmospheric General Circulation Model (AGCM). Four sets of integrations are performed using SST in El Niño and La Niña (ENSO) episodes, changing the SST of the Atlantic Ocean. A positive dipole (SST higher than normal in the tropical North Atlantic and below normal in the tropical South Atlantic) and a negative dipole (opposite conditions), are set as the boundary conditions of SST in the Atlantic Ocean. The four experiments are performed using El Niño or La Niña SST in all oceans, except in the tropical Atlantic where the two phases of the SST dipole are applied. Five initial conditions were integrated in each case in order to obtain four ensemble results. The positive SST dipole over the tropical Atlantic Ocean and El Niño conditions over the Pacific Ocean resulted in dry conditions over the Nordeste. When the negative dipole and El Niño conditions over the Pacific Ocean were applied, the results showed precipitation above normal over the north of Nordeste. When La Niña conditions over Pacific Ocean were tested together with a negative dipole, positive precipitation anomalies occurred over the whole Nordeste. Using the positive dipole over the tropical Atlantic, the precipitation over Nordeste was below average. During La Niña episodes, the Atlantic Ocean conditions have a larger effect on the precipitation of Nordeste than the Pacific Ocean. In El Niño conditions, only the north region of Nordeste is affected by the Atlantic SST. Other tropical areas of South America show a change only in the intensity of anomalies. Central and southeast regions of South America are affected by the Atlantic conditions only during La Niña conditions, whereas during El Niño these regions are influenced only by conditions in the Pacific Ocean.  相似文献   

4.
Many features of the El Niño-Southern Oscillation (ENSO) display significant interdecadal changes. These include general characteristics such as amplitude, period, and developing features, and also nonlinearities, especially the El Niño-La Niña asymmetry. A review of previous studies on the interdecadal changes in the ENSO nonlinearities is provided. In particular, the methods for measuring ENSO nonlinearities, their possible driving mechanisms, and their interdecadal changes are discussed. Two methods for measuring ENSO nonlinearities are introduced; the maximum potential intensity, which refers to the upper and lower bounds of the cold tongue temperature, and the skewness, which represents the asymmetry of a probability density function. For example, positive skewness (a strong El Niño vs. a weak La Niña) of the tropical Pacific sea surface temperature (SST) anomalies is dominant over the eastern tropical Pacific, with an increase seen during recent decades (e.g., 1980–2000). This positive skewness can be understood as a result of several nonlinear processes. These include the warming effect on both El Niño and La Niña by nonlinear dynamic heating (NDH), which intensifies El Niño and suppresses La Niña; the asymmetric negative feedback due to tropical oceanic instability waves, which has a relatively stronger influence on the La Niña event; the nonlinear physics of the ocean mixed layer; the Madden-Julian-Oscillation/Westerly-Wind-Burst and ENSO interaction; the biological-physical feedback process; and the nonlinear responses of the tropical atmospheric convection to El Niño and La Niña conditions. The skewness of the tropical eastern Pacific SST anomalies and the intensities of the above-mentioned mechanisms have both experienced clear decadal changes in a dynamically associated manner. In particular, there is a dynamic linkage between the decadal changes in the El Niño-La Niña asymmetry and those in NDH. This linkage is based on the recent decadal changes in mean climate states, which provided a favorable condition for thermocline feedback rather than for zonal advection feedback, and thus promoted the eastward propagation of the ENSO-related atmospheric and oceanic fields. The eastward propagating ENSO mode easily produces a positive NDH, resulting in asymmetric ENSO events in which El Niño conditions are stronger than La Niña conditions.  相似文献   

5.
This analysis compares the climate impacts over North America during winter associated with various El Niño–Southern Oscillation (ENSO) indices, including the Niño 3.4 index, the leading tropical Pacific outgoing longwave radiation and sea surface temperature (OLR-SST) covariability, and the eastern Pacific (EP) and central Pacific (CP) types of ENSO identified from both partial-regression–empirical orthogonal function (EOF) and regression–EOF approaches. The traditional Niño 3.4 SST index is found to be optimal for monitoring the tropical Pacific OLR-SST covariability and for the tropical SST impact on North America. The circulation anomalies associated with the Niño 3.4 index project on both the Pacific/North American (PNA) and Tropical/Northern Hemisphere (TNH) patterns. The ENSO associated with the PNA tends to come from both the EP and CP ENSOs, whereas that associated with the TNH comes more from the EP ENSO. The variability of ENSO significantly affects North American temperature and precipitation, as well as temperature and precipitation extremes. For either the EP or CP types of ENSO, qualitatively similar patterns of climate and climate extreme anomalies are apparent associated with the indices identified by the two EOF approaches, with differences mainly in the anomalous amplitude. The anomalous patterns are generally field significant over North America for the EP ENSO but not field significant for the CP ENSO.

The circulation anomalies associated with ENSO are reinforced and maintained by synoptic vorticity fluxes in the upper troposphere. The anomalous surface temperature is mainly determined by the anomalies in surface radiative heating in the face of upward surface longwave radiative damping. The precipitation anomalies are supported by the vertically integrated moisture transport. The differences in atmospheric circulation, surface temperature, and precipitation among the various ENSO indices, including the intensity and spatial structure of the fields, can be attributed to the corresponding differences in synoptic eddy vorticity forcing, surface radiative heating, and vertically integrated moisture transport.  相似文献   


6.
白文蓉  智海  林鹏飞 《大气科学》2017,41(3):629-647
利用CMIP5提供的25个工业革命前控制试验(piControl)模拟数据评估了热带太平洋两类El Ni?o(即东部EP和中部CP型El Ni?o)的海表盐度(SSS)空间结构差异及其与海表温度(SST)和降水的关系。结果表明:(1)大部分模式能够模拟出EP和CP型空间结构,两类El Ni?o中的SST、降水和SSS的空间技巧评分依次减小,其中,EP型SST和降水水平分布的模拟能力强于CP型,SSS则为CP型强于EP型,CP型模拟的SST、SSS和降水异常中心位置较EP型偏西且强度偏弱;(2)CP型SST、降水和SSS三者空间分布的线性一致性比EP型好,即在CP型中,SST影响降水,进而影响SSS,同时SSS对SST调制的反馈机制较显著,而对于EP型,由于海洋水平平流和非局地效应等因素,使得SST与SSS空间对应较差;(3)依据多模式模拟的SSS空间技巧评分高低将CMIP5模式分为两类,技巧评分低(高)的模式模拟的SST、SSS和降水异常值的中心位置偏西(偏东),引起中心位置偏移的原因与模式模拟赤道太平洋冷舌的位置有关,即赤道太平洋冷舌西伸显著,导致发生El Ni?o时SST异常变暖西伸显著,进而使得降水异常和SSS异常位置偏西。同时,技巧评分低的模式还易出现向东南延伸的负SSS异常,原因是双赤道辐合带的东南分支过于明显,即降水偏多,导致SSS偏淡。SSS变化会影响ENSO的发生发展。因此,探讨两类El Ni?o盐度分布的差异及相关物理场的关系,为提高模式的气候模拟和预测提供有益的借鉴。  相似文献   

7.
Abstract

Teleconnections between sea surface temperature (SST) anomalies over the Pacific and the dominant patterns of wintertime Northern Hemisphere 500‐hPa height are examined by applying statistical techniques such as rotated principal component analysis and composite analysis. It is shown that the Pacific/North American (PNA) patterns in December through March are correlated most significantly with the ENSO‐related SST anomalies in the previous October, while the western Pacific (WP) patterns in December through February are most closely linked to the ENSO‐related SST anomalies in the same season. In addition, the PNA response to the ENSO signal during La Niña events is more significant than that during El Niño events, while the WP response is stronger during El Niño events than during La Niña events. A composite analysis shows that in the El Niño winters the North Pacific centre of the PNA pattern is located about 10 degrees east of its normal position, leading to a less significant correlation between the ENSO signal and the PNA pattern in these winters.

The ENSO‐related SST anomalies include a large centre of action over the tropical Pacific and an oppositely signed anomaly centre over the North Pacific. The North Pacific centre appears to the west of the dateline in September and October. This ENSO‐related seed of SST anomalies slowly moves eastward in the following months, gradually cutting off its connection with SST anomalies over the tropical Pacific and being coupled with the PNA pattern. It is pointed out that, although the wintertime SST anomaly over the North Pacific may appear as a mode linearly independent of the ENSO signal in the same season, it is partially related to the ENSO signal in the preceding autumn.

Possible dynamical explanations of the above results are discussed. It is suggested that the WP pattern can be linked to the tropical Pacific heat source via advection of vorticity by the upper‐tropospheric divergent/convergent flow, and the intensification of vorticity gradients associated with a stronger east Asian jet is likely to be responsible for a more significant WP pattern response to the ENSO signal in the El Niño winters. On the other hand, the ENSO‐related PNA pattern could be considered a manifestation of the eastward extension (El Niño) or westward withdrawal (La Niña) of the east Asian jet stream due to the local Hadley cell over the Pacific. In addition, the ENSO‐related seed of extratropical SST anomaly over the western Pacific in autumn may also play an important role in the development of the PNA pattern in the following winter.  相似文献   

8.
秋季是西北太平洋热带气旋平均强度最强的季节,热带气旋累积能量(accumulated cyclone energy, ACE)是热带气旋平均强度的表征指标,基于1979—2015年日本气象厅最佳路径热带气旋数据集,以及美国冰雪中心海冰数据和哈得来环流中心海温数据,利用回归分析和多元逐步回归等方法,对秋季西北太平洋ACE指数进行了分析和预报。研究表明:秋季西北太平洋ACE指数具有显著的年际变化特征,与厄尔尼诺-南方涛动(ENSO)有关,最大和最小值分别出现在1991年的厄尔尼诺年和1999年的拉尼娜年,在厄尔尼诺发展年的秋季ACE一般较强,而在拉尼娜衰减年的秋季热带气旋强度则较弱;ACE指数变化受来自北极海冰变化强迫中纬度异常波列的影响及其受到厄尔尼诺海温模态的调制;由于海冰在波弗特海的异常增多,强迫对流层高层夏季出现类似北半球环球遥相关型异常波列,波列正压下传,使得夏秋季西北太平洋副热带高压东退北移;副热带高压活动的变化和太平洋海温的异常分布影响了局地的环流,热带气旋生成源地弱的垂直风切变区域偏东和涡度显著增大有利于热带气旋在暖海洋上发展强盛。最后进行建模预报,预报效果为0.69。若单独使用海温或海冰作为唯一要素来预报,预报效果将大大降低。  相似文献   

9.
The sea surface temperature anomaly pattern differs between the central Pacific (CP) and eastern Pacific (EP) El Niños during boreal summer. It is expected that the respective atmospheric response will be different. In order to identify differences in the responses to these two phenomena, we examine the Community Atmosphere Model Version 4 simulations forced with observed monthly sea surface temperature during 1979–2010 and compare with the corresponding observations. For CP El Niño, a triple precipitation anomaly pattern appears over East Asia. During EP El Niño, the triple pattern is not as significant as and shifts eastward and southward compared to CP El Niño. We also examine the influence of CP La Niña and EP La Niña on East Asia. In general, the impact of CP (EP) La Niña on tropics and East Asia seems to be opposite to that of CP (EP) El Niño. However, the impacts between the two types of La Niña are less independent compared to the two types of warm events. Both types of El Niño (La Niña) correspond to a stronger (weaker) western North Pacific summer monsoon. The sensitivity experiments support this result. But the CP El Niño (La Niña) may have more significant influence on East Asia summer climate than EP El Niño (La Niña), as the associated low-level anomalous wind pattern is more distinct and closer to the Asian continent compared to EP El Niño (La Niña).  相似文献   

10.
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.  相似文献   

11.
The present study reveals cross-season connections of rainfall variability in the South China Sea (SCS) region between winter and summer. Rainfall anomalies over northern South China Sea in boreal summer tend to be preceded by the same sign rainfall anomalies over southern South China Sea in boreal winter (denoted as in-phase relation) and succeeded by opposite sign rainfall anomalies over southern South China Sea in the following winter (denoted as out-of-phase relation). Analysis shows that the in-phase relation from winter to summer occurs more often in El Niño/La Niña decaying years and the out-of-phase relation from summer to winter appears more frequently in El Niño/La Niña developing years. In the summer during the El Niño/La Niña decaying years, cold/warm and warm/cold sea surface temperature (SST) anomalies develop in tropical central North Pacific and the North Indian Ocean, respectively, forming an east–west contrast pattern. The in-phase relation is associated with the influence of anomalous heating/cooling over the equatorial central Pacific during the mature phase of El Niño/La Niña events that suppresses/enhances precipitation over southern South China Sea and the impact of the above east–west SST anomaly pattern that reduces/increases precipitation over northern South China Sea during the following summer. The impact of the east–west contrast SST anomaly pattern is confirmed by numerical experiments with specified SST anomalies. In the El Niño/La Niña developing years, regional air-sea interactions induce cold/warm SST anomalies in the equatorial western North Pacific. The out-of-phase relation is associated with a Rossby wave type response to anomalous heating/cooling over the equatorial central Pacific during summer and the combined effect of warm/cold SST anomalies in the equatorial central Pacific and cold/warm SST anomalies in the western North Pacific during the mature phase of El Niño/La Niña events.  相似文献   

12.
This review provides a summary on the recent major advances in research of ENSO changes and the associated impacts on Asian-Pacific climate. Achievements in the following topics are summarized: 1) the asymmetry between El Niño and La Niña; 2) the different features of central Pacific (CP) El Niño and eastern Pacific (EP) El Niño; 3) the change of ENSO in a warming world, including analysis of pre-industrial control simulation, historical simulation and climate projections of coupled climate system model; 4) Impact of EP ENSO on warm-pool air-sea interaction and East Asianwestern North Pacific summer monsoon; 5) Impacts of CP ENSO on Asian-Pacific climate, with focus on East Asian seasonal precipitation and tropical cyclones in the western Pacific. Research results published in the recent 5 years are the major sources for this review. Based on the review of the current progresses, some challenging issues needed to be investigated in the future are highlighted.  相似文献   

13.
Three primary global modes of sea surface temperature (SST) variability during the period of 1871–2010 are identified through cyclostationary empirical orthogonal function analysis. The first mode exhibits a clear trend and represents global SST warming with an ‘El Niño-like’ SST pattern in the tropical Pacific. The second mode is characterized by considerable low-frequency variability in both the tropical Pacific and the North Pacific regions, indicating that there is a close connection between the two regions on interannual and decadal time scales. The third mode shows a seesaw pattern between El Niño and La Niña within a two-year period; this mode is derived by the oscillatory tendency of the tropical Pacific ocean–atmosphere coupled system. A SST reconstruction based on these three modes captures a significant portion of the SST variability in the raw data, which is primarily associated with El Niño-Southern Oscillation (ENSO) events in the tropical Pacific. Additionally, this study attempts to interpret the major ENSO events that have occurred since the 1970s in terms of the interplay originating from these three modes of variability. In particular, two key points are derived from this analysis: (1) the most extreme El Niño events occurred in 1982/1983 and 1997/1998 are attributed to the positive contributions of all three modes; and (2) the central Pacific (CP) El Niño events in the 1990s and 2000s have different physical mechanisms, that is, the CP El Niño events in the early 1990s originated mainly from the low-frequency mode, while those in the early 2000s derived mainly from the global warming mode.  相似文献   

14.
ENSO-phase dependent TD and MRG wave activity in the western North Pacific   总被引:1,自引:0,他引:1  
The three-dimensional structure and evolution characteristics of tropical depression (TD) and mixed Rossby-gravity wave (MRG) type disturbances in the tropical western North Pacific during El Niño and La Niña summers are investigated based on observational and reanalysis data. A clear MRG-to-TD transition was observed during El Niño summers while such a transition is unclear during La Niña summers. The vertical structure of the TD-MRG waves appears equivalent barotropic during El Niño but becomes tilted eastward with height during La Niña. The diagnosis of barotropic energy conversion shows that both the rotational and divergent components of the background flow change associated with E1 Niño-Southern Oscillation (ENSO) are responsible for energy conversion from the mean flow to the TD-MRG perturbations. A further examination of the pure MRG mode shows that its intensity does not vary between El Niño and La Niña while its phase speed does. A faster (slower) westward propagation speed during La Niña (El Niña) is attributed to enhanced (reduced) mean easterlies in the western equatorial Pacific. The heating associated with the MRG wave appears more anti-symmetric during La Niña than during El Niño. In contrast to the MRG waves, the amplitude of the TD waves depends greatly on the ENSO phase. The enhanced (suppressed) TD disturbances during El Niño (La Niña) is attributed to greater (less) barotropic energy conversion associated with the background flow change. The vertical structure of the TD waves appears quasi-barotropic in the geopotential height field but baroclinic in the divergence field.  相似文献   

15.
A high-resolution (T213) coupled ocean–atmosphere general circulation model (CGCM) has been used to examine the relationship between El Niño/Southern Oscillation (ENSO) and tropical cyclone (TC) activity over the western North Pacific (WNP). The model simulates ENSO-like events similar to those observed, though the amplitude of the simulated Niño34 sea surface temperature (SST) anomaly is twice as large as observed. In El Niño (La Niña) years, the annual number of model TCs in the southeast quadrant of the WNP increases (decreases), while it decreases (increases) in the northwest quadrant. In spite of the significant difference in the mean genesis location of model TCs between El Niño and La Niña years, however, there is no significant simultaneous correlation between the annual number of model TCs over the entire WNP and model Niño34 SST anomalies. The annual number of model TCs, however, tends to decrease in the years following El Niño, relating to the development of anticyclonic circulation around the Philippine Sea in response to the SST anomalies in the central and eastern equatorial Pacific. Furthermore, it seems that the number of model TCs tends to increase in the years before El Niño. It is also shown that the number of TCs moving into the East Asia is fewer in October of El Niño years than La Niña years, related to the anomalous southward shift of mid-latitude westerlies, though no impact of ENSO on TC tracks is found in other months. It is found that model TCs have longer lifetimes due to the southeastward shift of mean TC genesis location in El Niño years than in La Niña years. As the result of longer fetch of TCs over warm SST, model TCs appear to be more intense in El Niño years. These relationships between ENSO and TC activity in the WNP are in good agreement with observational evidence, suggesting that a finer-resolution CGCM may become a powerful tool for understanding interannual variability of TC activity.  相似文献   

16.
In this study the observed non-linearity in the spatial pattern and time evolution of El Niño Southern Oscillation (ENSO) events is analyzed. It is shown that ENSO skewness is not only a characteristic of the amplitude of events (El Niños being stronger than La Niñas) but also of the spatial pattern and time evolution. It is demonstrated that these non-linearities can be related to the non-linear response of the zonal winds to sea surface temperature (SST) anomalies. It is shown in observations as well as in coupled model simulations that significant differences in the spatial pattern between positive (El Niño) versus negative (La Niña) and strong versus weak events exist, which is mostly describing the difference between central and east Pacific events. Central Pacific events tend to be weak El Niño or strong La Niña events. In turn east Pacific events tend to be strong El Niño or weak La Niña events. A rotation of the two leading empirical orthogonal function modes illustrates that for both El Niño and La Niña extreme events are more likely than expected from a normal distribution. The Bjerknes feedbacks and time evolution of strong ENSO events in observations as well as in coupled model simulations also show strong asymmetries, with strong El Niños being forced more strongly by zonal wind than by thermocline depth anomalies and are followed by La Niña events. In turn strong La Niña events are preceded by El Niño events and are more strongly forced by thermocline depth anomalies than by wind anomalies. Further, the zonal wind response to sea surface temperature anomalies during strong El Niño events is stronger and shifted to the east relative to strong La Niña events, supporting the eastward shifted El Niño pattern and the asymmetric time evolution. Based on the simplified hybrid coupled RECHOZ model of ENSO it can be shown that the non-linear zonal wind response to SST anomalies causes the asymmetric forcings of ENSO events. This also implies that strong El Niños are mostly wind driven and less predictable and strong La Niñas are mostly thermocline depth driven and better predictable, which is demonstrated by a set of 100 perfect model forecast ensembles.  相似文献   

17.
The relationships between the tropical Indian Ocean basin(IOB)/dipole(IOD) mode of SST anomalies(SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958–2008.Both partial correlation analysis and composite analysis show that both the positive(negative) phase of the IOB and IOD(independent of each other) in the tropical Indian Ocean are possible contributors to the El Nio(La Nia) decay and phase transition to La Nia(El Nio) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific.  相似文献   

18.
The differences in tropical Pacific sea surface temperature (SST) expressions of El Niño-Southern Oscillation (ENSO) events of the same phase have been linked with different global atmospheric circulation patterns. This study examines the dynamical forcing of precipitation during October–December (OND) and March–May (MAM) over East Africa and during December–March (DJFM) over Central-Southwest Asia for 1950–2010 associated with four tropical Pacific SST patterns characteristic of La Niña events, the cold phase of ENSO. The self-organizing map method along with a statistical distinguishability test was used to isolate La Niña events, and seasonal precipitation forcing was investigated in terms of the tropical overturning circulation and thermodynamic and moisture budgets. Recent La Niña events with strong opposing SST anomalies between the central and western Pacific Ocean (phases 3 and 4), force the strongest global circulation modifications and drought over the Northwest Indian Ocean Rim. Over East Africa during MAM and OND, subsidence is forced by an enhanced tropical overturning circulation and precipitation reductions are exacerbated by increases in moisture flux divergence. Over Central-Southwest Asia during DJFM, the thermodynamic forcing of subsidence is primarily responsible for precipitation reductions, with moisture flux divergence acting as a secondary mechanism to reduce precipitation. Eastern Pacific La Niña events in the absence of west Pacific SST anomalies (phases 1 and 2), are associated with weaker global teleconnections, particularly over the Indian Ocean Rim. The weak regional teleconnections result in statistically insignificant precipitation modifications over East Africa and Central-Southwest Asia.  相似文献   

19.
袁心仪  张文君  耿新 《气象学报》2017,75(5):784-796
利用哈得来中心海表温度(HadISST)和美国马里兰大学海洋同化(Simple Ocean Data Assimilation,SODA 2.2.4)数据集,分析了1979-2015年赤道太平洋地区海表温度异常的偏度特征;并通过诊断混合层热量收支平衡方程着重探讨了非线性项在不同类型ENSO发展衰亡过程中起的不同作用。研究结果表明,中部型厄尔尼诺和拉尼娜事件的偏度很弱,且符号相反、强度相当,而东部型厄尔尼诺的偏度为很强的正值,即ENSO的强度非对称性主要来自东部型厄尔尼诺的贡献,中部型厄尔尼诺和拉尼娜的海表温度异常呈现准对称特征。在ENSO事件的发展阶段,非线性项对东部型厄尔尼诺和拉尼娜均有很强的正贡献,而对中部型厄尔尼诺的正贡献相对较弱,这会促进东部型厄尔尼诺强度的增强而抑制拉尼娜振幅的发展,从而有利于ENSO强度非对称性的产生;在ENSO事件的衰亡阶段,非线性项对拉尼娜维持正贡献但强度大为减弱,对东部型厄尔尼诺和中部型厄尔尼诺的衰减则分别起促进和抑制作用,这可能是东部型厄尔尼诺衰减速度较快而中部型厄尔尼诺衰减速度较慢的重要原因之一。   相似文献   

20.
两类ENSO对中国北方冬季平均气温和极端低温的不同影响   总被引:2,自引:0,他引:2  
汪子琪  张文君  耿新 《气象学报》2017,75(4):564-580
利用1961-2012年观测、再分析资料以及全球大气环流模式数值试验,探讨了中国北方冬季平均气温对于不同类型(即东部型和中部型)ENSO事件的气候响应,并分析了不同类型ENSO对极端低温事件的可能影响,重点关注了北大西洋涛动(NAO)在其中的桥梁作用。结果表明,ENSO信号能通过调制北大西洋地区的大气环流改变欧亚中高纬度地区的纬向温度平流输送和西伯利亚高压的强度,进而影响中国北方冬季气温,由于不同类型ENSO事件海温分布的差异,这种影响具有明显的非线性特征。在两类厄尔尼诺和东部型拉尼娜事件冬季,北大西洋涛动均呈现负位相,不利于北大西洋的暖湿空气向欧亚大陆输送,西伯利亚高压偏强,因而中国北方地区较气候态偏冷。中部型厄尔尼诺和东部型拉尼娜事件冬季气温负异常的显著区域分别位于东北大范围地区、内蒙古河套附近;东部型厄尔尼诺事件冬季显著的冷异常信号仅局限于黑龙江北部与大兴安岭地区;而中部型拉尼娜事件冬季虽伴随北大西洋涛动正位相,但其空间结构向西偏移,对下游中国北方地区气温的直接影响并不显著,可能受局地信号干扰较大。数值试验再现了北大西洋涛动以及中国北方冬季气温对不同类型ENSO的响应,进一步佐证了上述结论。此外,两类厄尔尼诺事件冬季中国东北地区日平均气温容易偏低,极端低温事件的发生频次增多;而两类拉尼娜事件对极端低温的影响较弱。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号