首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
马晓华  蔡袁强  徐长节 《岩土力学》2010,31(7):2164-2172
基于Biot动力方程,研究了饱和均质弹性半空间上弹性条形基础的摇摆振动问题。通过Fourier积分变换求解了饱和土的动力控制方程,然后结合基础底部为混合边界的条件得到了弹性条形基础的摇摆振动对偶积分方程,利用正交多项式将对偶积分方程转化为求解一组线性代数方程组,同时利用复合Simpson法则,得到了动力柔度系数的表达式,通过算例得出了不同参数时地基动力柔度系数随无量纲频率的关系曲线。  相似文献   

2.
运动荷载附近有限层厚软土地基的振动研究   总被引:4,自引:4,他引:0  
基于Biot多孔弹性介质的波动理论,研究了运动荷载附近软土地基的振动问题。假设一条形均布荷载作用在地基表面,则该模型可视为平面应变问题进行分析。通过引入4个势函数和Helmholtz原理,并利用Fourier变换及逆变换技术,获得了运动荷载作用下软土地基的应力、位移和孔隙水压力的解答。利用离散Fourier逆变换得到数值计算结果,分析了荷载速度,频率以及软土的渗透系数及多孔弹性参数对运动荷载作用下地表竖向位移及土体中任一点孔隙水压力分布的影响。  相似文献   

3.
Assuming that the pile variable cross section interacts with the surrounding soil in the same way as the pile toe does with the bearing stratus, the interaction of pile variable cross section with the surrounding soil is represented by a Voigt model, which consists of a spring and a damper connected in parallel, and the spring constant and damper coefficient are derived. Thus, a more rigid pile–soil interaction model is proposed. The surrounding soil layers are modeled as axisymmetric continuum in which its vertical displacements are taken into account and the pile is assumed to be a Rayleigh–Love rod with material damping. Allowing for soil properties and pile defects, the pile–soil system is divided into several layers. By means of Laplace transform, the governing equations of soil layers are solved in frequency domain, and a new relationship linking the impedance functions at the variable‐section interface between the adjacent pile segments is derived using a Heaviside step function, which is called amended impedance function transfer method. On this basis, the impedance function at pile top is derived by amended impedance function transfer method proposed in this paper. Then, the velocity response at pile top can be obtained by means of inverse Fourier transform and convolution theorem. The effects of pile–soil system parameters are studied, and some conclusions are proposed. Then, an engineering example is given to confirm the rationality of the solution proposed in this paper. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
列车运行时由轨道不平顺引起的地基振动研究   总被引:2,自引:1,他引:1  
采用半解析法研究了列车荷载作用下列车-轨道-饱和地基系统的耦合振动问题。研究模型共分为3部分:车体简化为一个多刚体系统,在车轮与钢轨之间引入线性Hertizian弹簧接触模型模拟轮轨动力相互作用、采用离散轨枕支撑的弹性Euler梁来模拟轨道系统、下卧土体采用多孔饱和半空间模型。列车荷载分为轴重和由轨道不平顺引起的轮轨动力相互作用力。采用Fourier变换分别求解各子系统的控制方程,并通过动力子结构法对各子系统进行耦合。土体在时域内的动力响应通过快速Fourier变换求得。在分析了轮轨动力相互作用力的基础上,研究了轮轨动力作用力和列车轴重作用下饱和地基的动力响应,并分析了轨枕间距和土体渗透系数对饱和地基振动响应的影响。研究表明,轮轨动力作用力对地基远场振动有重要贡献,同时枕木间距对轨道与地基振动响应有较大影响。  相似文献   

5.
Based on Biot's dynamic coupled equations, the vertical vibration of an elastic strip footing on the surface of saturated soil is studied. Utilizing the Fourier transform, the governing dynamic differential equations for saturated poroelastic medium are solved. Considering the mixed boundary value conditions at the bottom of the foundation, a pair of dual integral equations about the vertical vibration of an elastic strip footing is derived, which can be converted to a set of linear equations by means of infinite series of orthogonal functions. The relation between the dynamic compliance coefficients and the dimensionless frequency tends to be gentle with decreasing footing rigidity, while the dimensionless frequency has only small effect on the dynamic compliance coefficients. When the dynamic permeability is large, its effect on the dynamic compliance coefficients should be taken into consideration. Furthermore, the dynamic compliance coefficients are found to be not sensitive to Poisson's ratio of the soil for footing on saturated soil. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The problem of the dynamic responses of a semi‐infinite unsaturated poroelastic medium subjected to a moving rectangular load is investigated analytical/numerically. The dynamic governing equations are obtained with consideration of the compressibility of solid grain and pore fluid, inertial coupling, and viscous drag as well as capillary pressure in the unsaturated soil, and they can be easily degraded to the complete Biot's theory. Using the Fourier transform, the general solution for the equations is derived in the transformed domain, and then a corresponding boundary value problem is formulated. By introducing fast Fourier transform algorithm, the unsaturated soil vertical displacements, effective stresses, and pore pressures induced by moving load are computed, and some of the calculated results are compared with those for the degenerated solution of saturated soils and confirmed. The influences of the saturation, the load speed, and excitation frequency on the response of the unsaturated half‐space soil are investigated. The numerical results reveal that the effects of these parameters on the dynamic response of the unsaturated soil are significant.  相似文献   

7.
The dynamic response of a rigid strip footing lying on saturated soil is greatly affected by the pore pressure induced by a rocking moment. To consider the complex behavior of the soil under the rocking load, an analytical solution for a rigid strip foundation on saturated soil under a rocking moment is developed under the framework of Biot’s coupling theory. The boundary-value problem for the governing coupling equations for saturated soil is solved using a Fourier transform to yield a pair of dual integral equations. These dual integral equations are transformed into a set of linear equations using an infinite series of orthogonal Jacobi polynomials to yield the compliance functions. In addition, a parametric study has been carried out to examine the influence of: (1) the dimensionless frequency, (2) the dynamic permeability and (3) the Poisson’s ratio on saturated soil under a rocking rigid strip footing.  相似文献   

8.
刘干斌  汪鹏程  姚海林  陈运平 《岩土力学》2006,27(10):1658-1662
通过引入势函数,并利用Helmholtz原理和Fourier变换技术,研究了运动荷载作用下有限层厚软土地基的振动,考虑了矩形分布荷载作用下振动的三维特性,使得分析更符合工程实际,给出了运动荷载作用下饱和黏弹性地基三维振动的应力、位移和孔隙水压力响应的积分形式解答。利用Fourier数值逆变换进行算例分析,讨论了荷载速度对位移及孔隙水压力分布的影响。结果表明,位移幅值随荷载速度的增加而增大,荷载不同位置处孔隙水压力的分布有很大差异。  相似文献   

9.
袁万  蔡袁强  史吏  曹志刚 《岩土力学》2013,34(7):2111-2118
基于Biot饱和多孔介质U-W格式动力控制方程,采用Galerkin法和Fourier变换,推导了饱和土体2.5维有限元方程及黏弹性人工边界,建立了饱和土地基中空沟分析模型,并在波数域中进行求解,通过快速Fourier变换(FFT)进行波数展开,获得三维空间域中结果。算例分析了移动荷载作用下均质饱和土地基、分层饱和土地基、上覆单相弹性层饱和土地基3种饱和土地基模型中空沟的隔振效果。结果表明:饱和土地基中空沟的隔振效果不仅与空沟自身深度有关,还与地基中成层土体的分界面以及土体参数有关,波在不同土体分界面上的透射和反射会影响空沟的隔振效果;饱和土地基中上覆单相弹性层厚度对空沟的隔振效果影响显著,随着上覆单相弹性层厚度的增加,饱和土地基中空沟的隔振效果变好。  相似文献   

10.
By means of a semi-analytical FE approach an embedded circular footing under monotonic horizontal and moment loading is studied. In a non-homogeneous soil whose shear modulus is characterized by a power law variation with depth, horizontal, rocking and coupled modes of displacement, expressed in terms of influence factors are thoroughly examined. The exponent α that controls the shape of the stiffness variation with depth is termed shear modulus factor. Surface influence coefficients are considered for the situations where the interface between the soil and the footing is either perfectly rough or perfectly smooth. First, results of semi-analytical FE analysis in the case of rough footing are established and compared with those of another numerical method. Results of comparison show good agreement. Then, for different values of α the surface influence coefficients are presented for an embedded footing in perfect smooth contact with soil. The metacentre is referred to as the depth at which there is no coupling between the sliding and the rocking modes of footing deformations. Expressions for location and horizontal influence coefficient corresponding to this particular depth are developed and their variations with α examined. The paper finishes by showing the effect of interface conditions on the soil normal stresses developed beneath the embedded circular footing for the case of loading applied at the footing top.  相似文献   

11.
This paper describes the influence of seasonal variations of the ground water table on free field traffic-induced vibrations. The passage of a truck on two types of road unevenness is considered: a joint in a road pavement consisting of concrete plates and a speed bump with a sinusoidal profile. Free field vibrations are computed with a two-step solution procedure, where the computation of the vehicle axle loads is decoupled from the solution of the road–soil interaction problem. The impedance of the soil is calculated using a boundary element method, based on the Green's functions for a dry layer on top of a saturated half-space. It is demonstrated that, in the low-frequency range of interest, wave propagation in the saturated half-space can be modelled with an equivalent single phase medium as an alternative to Biot's poroelastic theory for saturated porous media. The relation between the free field velocity and the depth of the ground water table is dominated by three phenomena: (1) the compressibility of the soil decreases due to the presence of the pore water, (2) the ground water table introduces a layering of the soil which may cause resonance of the dry layer and (3) refracted P-waves in the dry layer interfere with surface waves. If the depth of the ground water table is large with respect to the wavelength of the vibrations in the soil, the response tends to the response of a dry half-space. The average free field velocity is equal to the velocity in the absence of ground water. If the depth of the ground water table is small with respect to the wavelength of the vibrations in the soil, the response tends to the response of a saturated half-space and resonance of the dry layer does not occur. The average free field velocity is smaller than the velocity in the absence of ground water. The interference of refracted P-waves and surface waves causes an additional oscillation of the response as a function of the excitation frequency and the distance between the road and the receiver. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The axisymmetric elastic response of circular footings and anchor plates in a linearly non-homogeneous elastic soil is analysed. It is assumed that footings/anchors are flexible and subjected to axisymmetric vertical loads. The response of the footing/anchor is modelled by using the classical Poisson–Kirchhoff thin plate theory. A variational technique is used to analyse the interaction problem. A representation for the contact stress is established by using a fundamental solution corresponding to a unit vertical pressure acting over an annular region in the interior of the non-homogeneous soil. The fundamental solution can be derived by using rigorous analytical procedures. The influence of the footing flexibility and the degree of soil non-homogeneity on the displacements, bending moments and contact stresses of a surface footing is examined over a wide range of governing parameters. In the case of anchor plates the influence of depth of embedment, degree of soil non-homogeneity and anchor flexibility on the anchor displacement is investigated.  相似文献   

13.
崔强  周亚辉  童瑞铭  吉晔 《岩土力学》2016,37(Z2):476-482
工程中多采用基础上拔静载试验中基础顶部荷载-位移曲线获取基础的承载力,忽略了基础周围土体的变形破坏过程,而实际工程中均是基础周围地基土体发生破坏。为研究扩底基础与其周围土体在抗拔承载特性方面的差异,以黄土地基中的9个扩底基础为研究对象,通过现场全尺寸基础的上拔静载试验,分别获得基础顶部与地表的上拔荷载-位移曲线,并进一步对基顶与地表处的荷载-位移曲线变化特征、抗拔承载力取值进行对比分析。结果表明,两处的荷载-位移曲线变化特征相似,相同上拔荷载作用下地表处的位移量均小于基础处位移量,差异以初始弹性阶段变形最为突出;两者在弹性极限荷载QL1取值方面,相差较大,但随着地基基础由弹性向塑性发展,差异逐渐减小,两者塑性极限荷载QL2取值基本相同。结合上拔扩底基础的破坏模式,分析出上述差异主要由于基础与周围土体之间变形不协调所致,加载初期基础顶部的上拔位移包括基础拔出量和上部土体压缩量,当上部土体压密后压缩变形消失,地基基础成为一个整体,上拔基础与周围土体的变形趋于协调。  相似文献   

14.
The dynamic response of a viscoelastic bearing pile embedded in multilayered soil is theoretically investigated considering the transverse inertia effect of the pile. The soil layers surrounding the pile are modeled as a set of viscoelastic continuous media in three-dimensional axisymmetric space, and a simplified model, i.e., the distributed Voigt model, is proposed to simulate the dynamic interactions of the adjacent soil layers. Meanwhile, the pile is assumed to be a Rayleigh–Love rod with material damping and can be divided into several pile segments allowing for soil layers and pile defects. Both the vertical and radial displacement continuity conditions at the soil–pile interface are taken into account. The potential function decomposition method and the variable separation method are introduced to solve the governing equations of soil vibration in which the vertical and radial displacement components are coupled. On this basis, the impedance function at the top of the pile segment is derived by invoking the force and displacement continuity conditions at the soil–pile interface as well as the bottom of pile segment. The impedance function at the pile head is then obtained by means of the impedance function transfer method. By means of the inverse Fourier transform and convolution theorem, the velocity response in the time domain can also be obtained. The reasonableness of the assumptions of the soil-layer interactions have been verified by comparing the present solutions with two published solutions and a set of well-documented measured pile test data. A parametric analysis is then conducted using the present solutions to investigate the influence of the transverse inertia effect on the dynamic response of an intact pile and a defective pile for different design parameters of the soil–pile system.  相似文献   

15.
Bearing Capacity of Strip Footings Near Slopes   总被引:2,自引:1,他引:1  
In the last decades a great attention was given by many authors to the evaluation of the static and seismic bearing capacity of footings near slopes. In this paper a model has been developed based on the limit equilibrium method, considering a circular surface propagates towards the slope until the sloping ground is reached. The bearing capacity is investigated considering either the distance of the footing from the edge of the slope and/or the effect of the footing embedment. A validation of the proposed model was made by a comparison with solutions taken from literature regarding the evaluation of the bearing capacity for a footing adjacent to a slope and for an inclined load. The loading conditions consist in vertical and horizontal stress on the footing and on the soil below the footing. Both the inertial and kinematic effects of the seismic loading have been analyzed, and a simple equation has been derived for the evaluation of the seismic bearing capacity. The static and seismic bearing capacity has been investigated as a function of the soil friction angle, of the seismic coefficient, of the sloping ground. Finally, the influence of the distance of the footing from the edge of the slope was taken into consideration in the evaluation of the bearing capacity, and a threshold distance at which the reduction of the bearing capacity due to the sloping ground vanishes has been defined.  相似文献   

16.
This investigation is concerned with the mathematical analysis of a viscoelastic prestressed pipe pile embedded in multilayered soil under vertical dynamic excitation. The pile surrounding soil is governed by the plane strain model, and the soil plug is assumed to be an additional mass connected to the pipe pile shaft by applying the distributed Voigt model. Meanwhile, the prestressed pipe pile is assumed to be a vertical, viscoelastic, and hollow cylinder governed by the one‐dimensional wave equation. Then, analytical solutions of the dynamic response of the pipe pile in the frequency domain are derived by means of the Laplace transform and impedance function transfer method. Subsequently, the corresponding quasi‐analytical solution in the time domain for the case of the prestressed pipe pile undergoing a vertical semi‐sinusoidal exciting force applied at the pile top is obtained by employing the inverse Fourier transform. Utilizing these solutions, selected results for the velocity admittance curve and the reflected wave curve are presented for different heights of the soil plug to examine the influence of weld properties on the vertical dynamic response of prestressed pipe pile. The reasonableness of the theoretical model is verified by comparing the calculated results based on the presented solutions with measured results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Luan  Lubao  Zheng  Changjie  Kouretzis  George  Ding  Xuanming  Poulos  Harry 《Acta Geotechnica》2020,15(12):3545-3558

Τhis paper presents an analytical method for calculating the steady-state impedance factors of pile groups of arbitrary configuration subjected to harmonic vertical loads. The derived solution allows considering the effect of the actual pile geometry on the contribution of pile-soil-pile interaction to the response of the group, via the introduction of a new dynamic interaction factor, defined on the basis of soil resistance instead of pile displacements. The solution is first validated against a published solution for single piles that accounts for the effect of pile geometry on the generated ground vibrations. Accordingly, we show that the derived soil attenuation factor agrees well with existing solutions for pile groups in the high frequency range, but considerable differences are observed in both the stiffness and damping components of the computed impedance when the relative spacing between piles decreases. Numerical results obtained for typical problem parameters suggest that ignoring pile geometry effects while estimating the contribution of pile-soil-pile interaction in the response may lead to inaccurate results, even for relative large pile group spacings.

  相似文献   

18.
The torsional dynamic response of a pile embedded in layered soil is investigated while considering the influence of the pile end soil. The finite soil layers under the end of the pile are modeled as a fictitious soil pile that has the same cross-sectional area as the pile and is in perfect contact with the pile end. To allow for variations of the modulus or cross-sectional area of the pile and soil, the soil surrounding and below the pile is vertically decomposed into finite layers. Using the Laplace transform and impedance function transfer method, the analytical solution for the dynamic response of the pile head in the frequency domain is then obtained, and the relevant semi-analytical solution in the time domain is derived using the inverse Fourier transform and convolution theorem. The rationality and accuracy of the solution is verified by comparing the torsional dynamic behavior of the pile calculated with the fictitious soil pile with those based on a rigid support model and a viscoelastic support model. Finally, a parametric study is conducted to investigate the influence of the properties and thickness of the pile end soil on the torsional dynamic response of the pile.  相似文献   

19.
郑刚  于晓旋  杜娟  尹鑫  周海祚  杨新煜 《岩土力学》2018,39(10):3812-3820
建筑物或构筑物基础临近边坡置放的情况在实际工程中十分普遍,但目前对于临近边坡基础的地基承载力及破坏模式尚缺乏深入研究。采用不连续布局优化(DLO)极限分析法建立数值模型,分析边坡几何尺寸、土体参数和基础位置对临坡条形基础的极限承载力和边坡破坏模式的影响,并对国内外现行规范推荐的计算方法进行评价。结果表明:极限承载力随边坡高度和边坡倾斜角的增大而减小,当坡高超过临界高度后,极限承载力将不受其影响;极限承载力随土体黏聚力和内摩擦角的增大而提高,滑动面随黏聚力的增大而变浅,随内摩擦角的增大而变深;极限承载力随基础与坡肩相对距离的增大而提高,当基础置放位置超过某临界距离后极限承载力不受边坡影响。在土体强度高、坡角较大时,《建筑地基基础设计规范》规定的临坡基础最小置放距离偏于危险,设计时仍需考虑边坡对承载力的减损作用;在土体强度较低、坡角较小时,规范规定值偏于保守。美国AASHTO规范对边坡地基极限承载力的取值在砂土边坡时较为可靠,但其仅适用于坡面破坏模式的情况;饱和黏土边坡的承载力曲线有悖于理论解,对临界距离的规定同样存在低估。  相似文献   

20.
王小岗 《岩土力学》2011,32(1):253-260
研究了横观各向同性饱和土地基在地表动力荷载作用下的三维瞬态响应。基于饱和多孔介质的三维Biot波动理论,利用Laplace变换,建立圆柱坐标系下横观各向同性饱和土的波动方程;解耦波动方程后,根据算子理论,并借助Fourier展开和Hankel变换技术,得到瞬态荷载作用下,饱和土介质的土骨架位移和应力、孔隙水相对位移和孔隙水压力的一般解;利用一般解,给出横观各向同性饱和地基在地表集中荷载激励下的瞬态Lamb问题的解答。数值算例结果表明,采用各向同性饱和介质的动力学模型,不能准确描述具有明显各向异性特性的饱和土地基的瞬态动力特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号