首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
高毅超  徐艳杰  金峰  王翔 《地球物理学报》2013,56(12):4189-4196
高阶双渐近时域透射边界能够同时模拟行波和快衰波的传播,并且能够在全频范围内迅速逼近准确解,具有优良的收敛性能和计算效率.本文将动水压力波高阶双渐近透射边界直接嵌入到近场有限元方程中,建立了大坝-库水动力相互作用的直接耦合分析模型.该模型的整体控制方程保留了近场有限元方程系数矩阵对称稀疏的优势,可以方便地利用现有的通用有限元求解器求解.基于有限元开源软件框架体系OpenSees(Open System for Earthquake Engineering Simulation),编程实现了直接耦合分析模型,并将其应用于二维重力坝、三维拱坝与库水动力相互作用分析.数值算例表明,该直接耦合分析模型具有很高的精度和计算效率.  相似文献   

2.
A finite element method for seismic fracture analysis of concrete gravity dams is presented. The proposed smeared crack analysis model is based on the non-linear fracture behaviour of concrete. The following features have been considered in the development of the model: (i) the strain softening of concrete due to microcracking; (ii) the rotation of the fracture band with the progressive evolution of microcrack damage in finite elements; (iii) the conservation of fracture energy; (iv) the strain-rate sensitivity of concrete fracture parameters; (v) the softening initiation criterion under biaxial loading conditions; (vi) the closing-reopening of cracks under cyclic loading conditions. The seismic fracture and energy response of dams and the significance of viscous damping models to take account of non-cracking structural energy dissipation mechanisms are discussed. The influences of global or local degradation of the material fracture resistance on the seismic cracking response of concrete dams were also studied. Two-dimensional seismic response analyses of Koyna Dam were performed to demonstrate the application of the proposed non-linear fracture mechanics model.  相似文献   

3.
The boundary element method has been successfully applied in the past to the analysis of hydrodynamic forces in two- and three-dimensional finite water reservoirs subjected to seismic ground motions. In extending the method to an infinite reservoir, the loss of energy due to pressure waves moving away towards infinity must be taken into account. In addition, for both finite and infinite reservoirs, energy is lost owing to partial absorption of the waves incident on a flexible bottom consisting of alluvial deposits. This paper presents the results of more recent research on the application of the boundary element method to the analysis of 2D reservoir vibration. Two different formulations are used: a constant boundary element formulation and a linear boundary element formulation. Special boundary conditions to treat infinite radiation and foundation damping have been incorporated in both formulations. Numerical results have been obtained for each of the two alternative formulations and compared against each other as well as with classical solutions and results obtained by other researchers.  相似文献   

4.
石晶  李伟 《地震工程学报》2019,41(6):1506-1513
针对在水库堤坝排水边坡混凝土裂纹的抗震性研究中,未考虑岩土体抗剪强度参数的劣化屈服效应以及混凝土裂纹的老化,存在抗震性判断结果准确率较差等问题,提出水库堤坝排水边坡混凝土考虑老化后产生裂纹的抗震性能研究方法。模拟强震下边坡混凝土的开裂破坏过程,根据D-P屈服准则,实现对闸墩混凝土材料的屈服判断。采用薄层整体单元模拟和分离式裂纹单元,实现混凝土裂纹的数值模拟,加载地震波后,获取混凝土裂纹的强震响应规律与破坏特征。实验结果可知,本文方法对坝体位移变化的研究精度高,得到的混凝土裂纹扩展范围更为准。运用本文方法对水库堤坝排水边坡混凝土的抗震性研究准确率以及可信度较高,说明本文方法具有一定的可取性。  相似文献   

5.
For a reservoir with an arbitrary shape of the upstream dam face and of the bottom including an adjacent regular part of constant depth extending to infinity, the hydrodynamic-stiffness matrix in the frequency domain for a displacement formulation is derived using the boundary-element method. The fundamental solution takes the boundary condition at the free surface into account. The analytical solution of the semi-infinite reservoir is used to improve the accuracy. To be able to transform the hydrodynamic-stiffness matrix from the frequency to the time domain, the singular part consisting of its asymptotic value of ω ∞ is split off. It consists of an imaginary linear term in ω which can be interpreted as a damper with a coefficient per unit area equal to the product of the mass density and the wave velocity. This also applies for a reservoir bottom of arbitrary shape. The remaining regular part of the stiffness matrix is transformed numerically. The corresponding interaction force-displacement relationship involves convolution integrals. This boundary-element solution agrees well with analytical results and with those of other numerical procedures based on a time-stepping method. The method is also applied to an actual earthquake acting on a reservoir with an irregular part with an inclined bottom and a regular part extending to infinity. The results of the analysis in the time domain coincide with those determined in the frequency domain.  相似文献   

6.
混凝土桥梁在工作过程中会产生裂缝,为分析移动荷载对开裂混凝土桥梁结构刚度的影响,对开裂梁动力响应进行分析。建立简支T梁桥有限元模型,并将移动荷载施加至有限元模型中。根据简支T梁桥破坏横向分布位置和强度的不同,研究不同工况下各梁荷载横向分布及不同移动速度对裂缝扩展宽度的影响。结果表明,数值模拟结果能较好地验证计算模型的准确性;在较大的移动荷载作用下,混凝土开裂,导致结构刚度减小、位移增大;随着移动荷载和速度的增加,开裂时间增加,结构刚度降低,持续时间增加,位移增大,使结构响应呈现明显非线性。  相似文献   

7.
A finite element procedure to model the non-linear earthquake response of concrete gravity dam systems is presented. A two-dimensional idealization is adopted for the dam and water in order to simplify the analysis and reduce the computational effort. The foundation of the dam is modelled as a rigid rectangular massless plate attached to a three-dimensional viscoelastic half-space. The non-linear behaviour is represented by smearing techniques and includes tensile cracking with subsequent opening, closing and sliding, as well as water cavitation in the reservoir. Special treatments are applied to suppress spurious oscillations in the water response associated with cavitation and to prevent cracks in the dam from spreading into wide zones. Experience from non-linear analyses is cited as it affects the design of the algorithm.  相似文献   

8.
The design of seismic resistant concrete gravity dam necessitates accurate determination of hydrodynamic pressure developed in the adjacent reservoir. The hydrodynamic pressure developed on structure is dependent on the physical characteristics of the boundaries surrounding the reservoir including reservoir bottom. The sedimentary material in the reservoir bottom absorbs energy at the bottom, which will affect the hydrodynamic pressure at the upstream face of the dam. The fundamental parameter characterizing the effect of absorption of hydrodynamic pressure waves at the reservoir bottom due to sediment is the reflection coefficient. The wave reflection coefficient is determined from parameters based on sediment layer thickness, its material properties and excitation frequencies. An analytical or a closed-form solution cannot account for the arbitrary geometry of the dam or reservoir bed profile. This problem can be efficiently tackled with finite element technique. The need for an accurate truncation boundary is felt to reduce the computational domain of the unbounded reservoir system. An efficient truncation boundary condition (TBC) which accounts for the reservoir bottom effect is proposed for the finite element analysis of infinite reservoir. The results show the efficiency of the proposed truncation boundary condition.  相似文献   

9.
The dynamic response of unreinforced concrete structures is studied taking account of initiation, extension, closing and reopening of so-called discrete cracks. The computational procedure is based on the finite-element method and is at present restricted to two-dimensional situations. The discrete cracks are simulated by separation of originally adjacent finite elements. An equivalent tensile-strength criterion is used for the initiation and extension of the cracks which are assumed to propagate perpendicularly to the principal tensile stress. If this direction does not coincide with the interelement boundaries of the finite-element mesh, the latter is automatically altered. Between elements being separated by a crack special ‘crack elements’ are introduced, which take account of the stress transfer by aggregate interlock. The equations of motion are integrated numerically using an explicit formulation. The procedures outlined are demonstrated on a simplified cross-section of a concrete gravity dam subjected to horizontal earthquake excitation.  相似文献   

10.
The nodal domain integration method is used to develop a numerical model of the linear diffusion equation. The nodal domain integration approach is shown to represent an infinity of finite element mass matrix lumping schemes including the Galerkin and subdomain integration versions of the weighted residual method and an integrated finite difference method. Neumann, Dirichlet and mixed boundary conditions are accommodated analogous to the Galerkin finite element method. In order to reduce the overall integrated approximation relative error, a mass matrix lumping formulation is developed which is based on the Crank-Nicolson time advancement approximation. The optimum mass lumping factors are found to be strongly related to the model timestep size.  相似文献   

11.
This paper presents a simple, flexible way of introducing stress-free boundary conditions for including cracks and cavities in 2D elastic media by a finite difference method (FDM). The surfaces of cracks and cavities are discretized in a staircase on a rectangular grid scheme. When zero-stress is applied to free surfaces, the resulting finite difference schemes require a set of adjacent fictitious points. These points are classified based on the geometry of the free surface and their displacement is computed as a prior step to later calculation of motion on the crack surface. The use of this extra line of points does not involve a significant drain on computational resources. However, it does provide explicit finite difference schemes and the construction of displacement on the free surfaces by using the correct physical boundary conditions. An accuracy analysis compares the results to an analytical solution. This quantitative analysis uses envelope and phase misfits. It estimates the minimum number of points per wavelength necessary to achieve suitable results. Finally, the method is employed to compute displacement in various models with cavities in the P-SV formulation. The results show suitable construction of the reflected P and S waves from the free surface as well as diffraction produced by these cavities.  相似文献   

12.
The Wavenumber approach was initially introduced as an ideal substitute for the rigorous type of analysis which had been the basis of extensive studies in seismic analysis of concrete gravity dams. The former technique is formulated in the context of pure finite element programming, while the latter relies heavily on a two-dimensional semi-infinite fluid element (i.e., hyper-element). Recently, a variation of Wavenumber method was proposed which was referred to as Wavenumber-TD approach. The approximation to the original technique improves its realm of application and allows it to be carried out in time domain as well as frequency domain. In that study, the formulation was examined for harmonic type of excitation which proved to be promising. Herein, this will be evaluated for its real intended application, which is transient analysis of dam-reservoir systems. For this aim, the prepared special purpose finite element program is modified and the analysis of Pine Flat dam is considered as a typical example. Several models are considered with different values of normalized reservoir length. In each case, the reservoir truncation surface is treated by Wavenumber-TD and the extensively utilized Sommerfeld conditions. The dynamic loading considered is the S69E component of Taft earthquake record. Furthermore, two types of reservoir bottom condition of full reflective as well as absorptive, are adopted. Overall, this will allow for a thorough examination and evaluation of Wavenumber-TD approach in regard to its effectiveness.  相似文献   

13.
This paper proposes a new algorithm for modeling the nonlinear seismic behavior of fractured concrete gravity dams considering dam–reservoir interaction effects. In this algorithm, the cracked concrete gravity dam is modeled by distinct element (DE) method, which has been widely used for the analysis of blocky media. Dynamic response of the reservoir is obtained using boundary element (BE) method. Formulation and various computational aspects of the proposed staggered hybrid approach are thoroughly discussed. To the authors' knowledge, this is the first study of a hybrid DE–BE approach for seismic analysis of cracked gravity dam–reservoir systems. The validity of the algorithm is discussed by developing a two-dimensional computer code and comparing results obtained from the proposed hybrid DE–BE approach with those reported in the literature. For this purpose, a few problems of seismic excitations in frequency- and time-domains, are presented using the proposed approach. Present results agree well with the results from other numerical methods. Furthermore, the cracked Koyna Dam is analyzed, including dam–reservoir interaction effects with focus on the nonlinear behavior due to its top profile crack. Results of the present study are compared to available results in the literature in which the dam–reservoir interaction were simplified by added masses. It is shown that the nonlinear analysis that includes dam–reservoir interaction gives downstream sliding and rocking response patterns that are somehow different from that of the case when the dam–reservoir interaction is approximated employing added masses.  相似文献   

14.
In this study, failure probability of the concrete slab on concrete-faced rockfill (CFR) dams with welded and friction contact is investigated under earthquake effects by reliability analysis. For this purpose, Torul CFR dam is selected as an example and numerical solutions are performed by considering combination of reliability analysis–finite element method. 1992 Erzincan earthquake acceleration record is used in the finite element analysis considering deconvolved-base rock input model. In this model, the ground motion to be applied to the foundation base rock is obtained by deconvolution of the free-field surface record. In the materially nonlinear analysis, Drucker–Prager model is used for concrete slab and multi-linear kinematic hardening model is utilized for rockfill. Geometrically nonlinearity is also taken into account. Viscous boundary conditions are defined in the finite element model for both foundation soil and reservoir water. The hydrodynamic pressure of the reservoir water is considered using 2D fluid finite elements based on the Lagrangian approach. Both welded contact and friction contact based on the Coulomb’s friction law are defined in the structural connections. Improved Rackwitz–Fiessler method is used with response surface method in the reliability analysis. The tensile and compression strengths of the concrete slab are utilized in the implicit limit state functions considering various thicknesses. The probability of failure of the most critical points in the concrete slab is obtained. According to this study, the probabilities of failure obtained from the CFR dam including friction contact are lower. When the welded contact is considered in joints, the probability of failure of the concrete slab is 1 due to tensile stress limit state and compression stress limit state only if concrete slab is linear. The most critical probability of failure of the concrete slab appears in the case that the concrete slab is linear and rockfill is materially nonlinear. The probability of failure of the concrete slab decreases if the nonlinearity of the concrete is considered. Also, hydrodynamic pressure decreases the reliability of the concrete slab.  相似文献   

15.
在隧道的施工和运营中,隧道衬砌不可避免会产生裂纹。裂纹和地震荷载的相互作用将加剧隧道的破坏,因此研究带裂纹隧道衬砌地震荷载作用下的破坏具有重要的意义。为了证明本文二维有限元数值模拟计算结果的正确性,首先用相互作用积分的方法计算动载作用下的静态裂纹,并与解析解进行比对,发现二者的吻合性很好。计算结果表明相互作用积分法可以用来精确地计算动载作用下带裂纹结构的动应力强度因子。用这种经过验证的方法来计算带裂纹重载铁路隧道衬砌的动应力强度因子和动承载力安全系数,可以看出在地震荷载作用下,I型裂纹的动应力强度因子在隧道结构的安全中起控制作用。当裂纹的长度大于某特定值时,隧道处于很危险的状态。  相似文献   

16.
This paper explores dynamic soil–bridge interaction in high speed railway lines. The analysis was conducted using a general and fully three-dimensional multi-body finite element–boundary element model formulated in the time domain to predict vibrations caused by trains passing over the bridge. The vehicle was modelled as a multi-body system, the track and the bridge were modelled using finite elements and the soil was considered as a half-space by the boundary element method. The dynamic response of bridges to vehicle passage is usually studied using moving force and moving mass models. However, the multi-body system allows to consider the quasi-static and dynamic excitation mechanisms. Soil–structure interaction was taken into account by coupling finite elements and boundary elements. The paper presents the results obtained for a simply supported short span bridge in a resonant regime under different soil stiffness conditions.  相似文献   

17.
In a finite element formulation for dynamic soil-structure interaction, an absorbing boundary condition is needed to model wave propagation towards infinity. When the soil is saturated, its dynamic behaviour can be modelled by means of Biot's poroelastic theory. In Part I (Degrande, G. & De Roeck, G., Soil Dynamics & Earthquake Eng., 1993, 12(7), 411-21), a local absorbing boundary condition for wave propagation in saturated poroelastic media has been developed. In the present paper, this boundary condition is implemented in an irreducible finite element formulation for a compressible pore fluid. Spurious reflections for oblique incident waves on the absorbing boundary contribute to the solution errors. Therefore, a spectral element method, based on classical analytical solution techniques, is used to assess the accuracy of the finite element formulation.  相似文献   

18.
A new analytical development of the seismic hydrodynamic pressure inside pre-existing cracks on the upstream face of concrete dams is presented. The finite control volume approach is utilized to derive an expression for the seismic hydrodynamic pressure using the continuity principle and the linear momentum theorem for the fluid inside the crack. The derived pressure expression is a function of the relative crack-opening acceleration and velocity. The acceleration and velocity terms are then recast in the form of added mass and damping matrices which can then be included at the nodes inside the discrete crack of a finite element model. This procedure linearizes the solution of the problem. A dam, 55 m high and having an initial crack opening of 2 mm at the base or near the crest and subjected to two different accelerograms, is analysed. For high-frequency ground motion, the seismic hydrodynamic pressure inside the crack, at the base of the dam, appears to be 50 per cent higher than the corresponding hydrostatic pressure.  相似文献   

19.
In this study, the nonlinear seismic analysis of a typical three-dimensional concrete faced rockfill dam is reported. Three components of the Loma Prieta (Gilroy 1 station) earthquake acceleration time history are used as input excitation. The dam under study is considered as if it were located in a prismatic canyon with a trapezoidal cross-section. A nonlinear model for the rockfill material is used, and contact elements with Coulomb friction law are utilized at the slab–rockfill interface. Vertical joints in the face slab are also considered in the finite element model. A substructure method, in which the unbounded soil is modelled by the scaled boundary finite element method (SBFEM), is used to obtain the scattered motion and interaction forces along the canyon. The dam is subjected to spatially variable P, SV, and SH waves, and the effect of dam–foundation interaction and the reservoir water effects are considered. The results are compared with the non-scattered input motion analysis. Results of the analyses indicate that due to applying the scattered motion to the canyon the response of the dam and concrete face slab significantly increases. The reservoir water pressure affects the tensile stresses induced in the face slab by reducing the uplift movement of the concrete panels.Large horizontal axial forces are induced in the face slab due to out-of-phase and out-of-plane motions of the abutments. Although the normal movements of vertical joints are reduced due to the reservoir water confinement, the opening movements are still significant, and the local failure of construction joints is inevitable.  相似文献   

20.
受压剪应力作用闭合裂纹的光弹性研究   总被引:5,自引:0,他引:5       下载免费PDF全文
王建华  冯德益 《地震学报》1990,12(2):204-211
文中给出了受压剪应力作用闭合裂纹端部应力场的断裂力学解.提出了一种预制闭合裂纹的新方法.对闭合裂纹做了新的光弹性研究.分析了应力强度因子(SIF)及闭合裂纹表面摩擦力的变化.探讨了压剪闭合共线双裂纹之间奇异应力场的相互作用.用有限元法对压剪闭合裂纹SIF所做的计算说明,本文实验结果合理.最后,讨论了本文结果在震源研究中的某些应用.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号