首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1IntroductionThis paper is focused on the Southamerican geo-logical history of the Chaco Paran偄Basin rift system inthe last75-65Ma,including some Quaternary phe-nomena(Fig.1).The study presents a new interpre-tation to its evolution and stratigraphy.The …  相似文献   

2.
The process of Cenozoic sea-land changes in the northern South China Sea(SCS)controlled the sedimentary filling pattern and played an important role in the petroleum geological characteristics of the northern marginal sedimentary basins.Under the control of the opening process of the SCS,the northern SCS Cenozoic transgression generally showed the characteristics of early in the east and late in the west,and early in the south and late in the north.The initial transgression occurred in the Eocene in the Taixinan Basin(TXNB)of the eastern SCS,while the transgression occurred until the Pliocene in the Yinggehai Basin(YGHB)of the western SCS.International Ocean Discovery Program(IODP)expeditions(Expeditions 367/368)revealed that the initial transgression of the SCS basin occurred at approximately 34 Ma,which was the initial opening time of the SCS.The period of drastic changes in the sedimentary environment caused by large-scale transgression corresponded to the opening time of the southwestern subbasin(approximately 23 Ma),which also represented the peak of the spreading of the SCS.The sea-land transition process controls the distribution of alternating continent-marine facies,marine facies source rocks and reservoirs in the basins.The marine facies source rocks of the basins in the northern SCS have a trend of gradually becoming younger from east to west,which is consistent with the regional process of gradual transgression from east to west.Regional sea-level changes were comprehensively influenced by SCS opening and global sea-level changes.These processes led to the early development in the east and south and late development in the west and north for the carbonate platform in the SCS.Carbonate platforms form another type of"selfgenerating and self-accumulating"oil-gas reservoir in the northern SCS.The sea-land transition controlled the depositional filling patterns of different basins and laid the foundation of marine deposits for oil and gas resources.The source-reservoircap assemblage in the northern SCS was controlled horizontally by provenance supply and sedimentary environmental changes caused by sea-land transition and vertically by the tectonic evolution of the SCS and regional sea-level changes.  相似文献   

3.
Permian marine sedimentary rocks that crop out in northern Chile are closely related to the development of a Late Paleozoic magmatic arc. A study of Upper Paleozoic units east of Iquique (20°S) identified three members within the Juan de Morales Formation, each of which were deposited in a different sedimentary environment. A coarse-grained terrigenous basal member represents alluvial sedimentation from a local volcanic source. A mixed carbonate-terrigenous middle member represents coastal and proximal shallow marine sedimentation during a relative sea-level rise related with a global transgression. Preliminary foraminifer biostratigraphy of this middle member identified a late Early Permian (late Artinskian–Kungurian) highly impoverished nodosarid–geinitzinid assemblage lacking fusulines and algae, which is characteristic of temperate cold waters and/or disphotic zone. The upper fine-grained terrigenous member represents shallow marine siliciclastic sedimentation under storm influence. The Juan de Morales Formation consists of continental, coastal and shallow marine sediments deposited at the active western margin of Gondwana at mid to low latitudes. A revised late Early Permian age and similar paleogeography and sedimentary environments are also proposed for the Huentelauquén Formation and related units of northern and central Chile, Arizaro Formation of northwestern Argentina, and equivalent units of southernmost Peru.  相似文献   

4.
受限陆表海的海侵模式   总被引:22,自引:4,他引:22  
突发性海侵是受限陆表海的特征之一,受海平面升降引起的峡口启闭控制,多发生在板块的活动边缘。突发性海侵常有相序缺失,常见海陆相交互层;海相层在大范围内分布稳定,无明显相变,具有良好的等时性,可以作为区域对比的标志层。受限陆表海的突发性海浸,有利于油气的生成和聚集。  相似文献   

5.
里下河地区浅部沉积物多为全新世中、晚期堆积,多数地区缺失全新世早期沉积。沉积物以淤泥质亚粘土、亚粘土、亚砂土,粉砂质淤泥、淤泥质粉砂、淤泥及泥炭为特征。沉积前的古地貌为四周高、中间低的碟形盆地。古气候经历了温湿—暖湿—温湿—温干的变化过程。区内曾有两次海侵,第一次海侵发生在全新世早中期,范围几乎遍及全区;第二次海侵发生在全新世晚期,规模小、范围窄、时间短,为海水沿江河倒灌、回溯形起。该区古环境自全新世以来经历了浅水海湾—古泻湖—湖沼地及平原的演变过程,最终形成现今河湖稠密的低凹平原。  相似文献   

6.
Tectonic activity, sea-level changes, and the climate controlled sedimentation in Late Paleozoic basins of western Argentina. The role of each factor is investigated from the geologic record of the Río Blanco and Paganzo basins using three hierarchical orders of stratigraphic bounding surfaces. First-order surfaces correspond to regional unconformities, second-order ones to local unconformities with a lesser regional extent, and third-order surfaces represent locally extended sedimentary truncation. Using this methodology, the Carboniferous–Permian record of the Paganzo and Río Blanco basins may be divided into two megasequences, four sequences, and 12 stratigraphic sections. Megasequences are bounded by regional unconformities that result from tectonic events important enough to cause regional paleogeographic changes. Sequences are limited by minor regional extension surfaces related to local tectonic movements or significant sea-level falls. Finally, stratigraphic sections correspond to extended sedimentary truncations produced by transgressive events or major climatic changes. Sequence I is mainly composed of marine deposits divided into basal infill of the basin (Section 1) and Tournaisian–Visean transgressive deposits (Section 2). Sequence II is bounded by a sharp erosional surface and begins with coarse conglomerates (Section 3), followed by fluvial and shallow marine sedimentary rocks (Section 4) that pass upward into shales and diamictites (Section 5). The base of Sequence III is marked by an extended unconformity covered by Early Pennsylvanian glacial sedimentary rocks (Section 6) that represent the most important glacial event along the western margin of Gondwana. Postglacial deposits (Section 7) occur in the two basins and comprise both glaciolacustrine (eastern region) and transgressive marine (central and western regions) deposits. By the Moscovian–Kasimovian, fluvial sandstones and conglomerates were deposited in most of the Paganzo Basin (Section 8), while localized volcanic activity took place in the Río Blanco Basin. Near the end of the Carboniferous, an important transgression is recorded in the major part of the Río Blanco Basin (Section 9), reaching the westernmost portion area of the Paganzo Basin. Finally, Sequence IV shows important differences between the Paganzo and Río Blanco basins; fluvial red beds (Section 10), eolian sandstones (Section 11), and low-energy fluvial deposits (Section 12) prevailed in the Paganzo Basin whereas volcaniclastic sedimentation and volcanism dominated in the Río Blanco Basin. Thus, tectonic events, sea-level changes and climate exerted a strong and complex control on the evolution of the Río Blanco and Paganzo basins. The interaction of these allocyclic controls produced not only characteristic facies association patterns but also different kinds of stratigraphic bounding surfaces.  相似文献   

7.
Tectonic activity, sea-level changes, and the climate controlled sedimentation in Late Paleozoic basins of western Argentina. The role of each factor is investigated from the geologic record of the Río Blanco and Paganzo basins using three hierarchical orders of stratigraphic bounding surfaces. First-order surfaces correspond to regional unconformities, second-order ones to local unconformities with a lesser regional extent, and third-order surfaces represent locally extended sedimentary truncation. Using this methodology, the Carboniferous–Permian record of the Paganzo and Río Blanco basins may be divided into two megasequences, four sequences, and 12 stratigraphic sections. Megasequences are bounded by regional unconformities that result from tectonic events important enough to cause regional paleogeographic changes. Sequences are limited by minor regional extension surfaces related to local tectonic movements or significant sea-level falls. Finally, stratigraphic sections correspond to extended sedimentary truncations produced by transgressive events or major climatic changes. Sequence I is mainly composed of marine deposits divided into basal infill of the basin (Section 1) and Tournaisian–Visean transgressive deposits (Section 2). Sequence II is bounded by a sharp erosional surface and begins with coarse conglomerates (Section 3), followed by fluvial and shallow marine sedimentary rocks (Section 4) that pass upward into shales and diamictites (Section 5). The base of Sequence III is marked by an extended unconformity covered by Early Pennsylvanian glacial sedimentary rocks (Section 6) that represent the most important glacial event along the western margin of Gondwana. Postglacial deposits (Section 7) occur in the two basins and comprise both glaciolacustrine (eastern region) and transgressive marine (central and western regions) deposits. By the Moscovian–Kasimovian, fluvial sandstones and conglomerates were deposited in most of the Paganzo Basin (Section 8), while localized volcanic activity took place in the Río Blanco Basin. Near the end of the Carboniferous, an important transgression is recorded in the major part of the Río Blanco Basin (Section 9), reaching the westernmost portion area of the Paganzo Basin. Finally, Sequence IV shows important differences between the Paganzo and Río Blanco basins; fluvial red beds (Section 10), eolian sandstones (Section 11), and low-energy fluvial deposits (Section 12) prevailed in the Paganzo Basin whereas volcaniclastic sedimentation and volcanism dominated in the Río Blanco Basin. Thus, tectonic events, sea-level changes and climate exerted a strong and complex control on the evolution of the Río Blanco and Paganzo basins. The interaction of these allocyclic controls produced not only characteristic facies association patterns but also different kinds of stratigraphic bounding surfaces.  相似文献   

8.
This paper is focused on a geologic "regional rift basin system pattern" and its stratigraphical-geochemical relationship. This is mainly based on the littoral shallow marine sedimentary succession paleogeography and deposits. These successions characterize the large extensional intracratonic Chaco rift basin system evolved from the Upper Cretaceous ( Late Campanian-Senonian-Maastrichtian-Early Paleocene) to Quaternary time. The siliciclastic littoral shallow marine successions were deposited from Early Senonian-Maastrichtian to Late Miocene during three main successive littoral shallow marine transgressions of continental extension.These transgressions happened over the wide pediplanized terrains of South America. These lands exist west of the more positive areas, between the Brazilian Shield and the foreland massifs that were settled in the more westernwards areas. Later, these regional foreland massifs were coupled and raised to the Andean Orogen Belt during the last 5 million years.The extensive intracratonic pediplanized low topographic relief areas were the reservoirs of siliciclastic littoral shallow marine succession deposits during the three successive widespread vast continental littoral shallow marine transgressions.The first transgression began at the Latest Campanian-Senonian and/or Early Maastrichtian time. After this episode, the sedimentary depositional systems continued during the Cenozoic until the Latest Miocene. These successions constitute a major allostratigraphic unit.The limit with underlying units is the regional unconformity between the regional volcanic event (Jurassic-Cretacic and interleaved eolianite sandstones) at the base and the undifferentiated Quaternary sediments (called as the Pampeano and Post-Pampeano Formations sensu lato). Based on many facies analyses there had been checked out different levels in the eustatic sea level variations within the allostratigraphic unit.Three major stages of extensional climax were recognized and related to the stages of conspicuous eustatical sea-level variations. They happened during the Latest Senonian-Paleocene, Eocene and Miocene.The first transgression occurred during the Upper Cretaceous-Paleocene although the sedimentary deposits related to this event are scarce, which are only a few meters in thickness. However, the Upper Cretaceous-Paleocene succession is very well recognized in the actual pre-Andean zone in the north-west of Argentina and Bolivia (the Sierras Subandinas and the meridional imbricated fault systems just joint to the actual orogen, I.e. , Quebrada de Humahuaca outcrops).During the Eocene and Middle to Latest Miocene occurred the second and third extensive regional littoral shallow marine transgressions. They are present either in well log registers as in most widespread outcrops on the entire Southamerican continent.The regional analysis led to the deduction of long periods of tectonic quiescence, at least three of them. They may be inferred and synchronously related with eustatic highstand sea level variations that occurred during the Late Paleocene-Early Eocene, Latest Eocene-Early to Mid Oligocene and Middle-to-Late Oligocene-Early Miocene.The structural style is related with major extensional N-S strike faultings (regional tilted and faulting blocks). On the other hand, quite a number of strike-slip faults (mainly of regional characteristic) are present crossing the area. They have a clear influence on the accommodation and transfer zones of the rift basin system. The strike is north-west to south-east on the border of the basin, to the west, in the contact with the Pampean Ridges and the narrow-meridionally-extense Sub-Andean folded trend ( mainly Paleozoic units belonging to the so-called Sierras Subandinas geological province). Also, at the western edge of the studied area, there exist many large shear zones and upthrust faults. The strike-slip regional faults dislocated the Pampean and Sub-Andean blocks due to the interaction of crossing regional tilted and fault blocks.For this reason, an en echelon regional block model is characteristic. Incipient contaminated igneous activities were associated with this cortical weak zones. Domes, needles and necks of volcanic and sub-volcanic origin appear as the landscape of the region.A part of the igneous activity was dated on Latest Pliocene although mainly corresponding to Pleistocene and Holocene. This deduction is obvious because their morphological constitution was never eroded. The volcanic aparatous are morphologically unmodified from their extrusion to present days.All the studied successions seem to resemble a long persisting erosive, transportation and deposition episode. This phenomenon is linked to a large regional (continental) unconformity dated at Late Cretaceous. The entire analyzed sedimentary succession deposits and their siliciclastic facies associations correspond clearly to a "heterolithic facies succession" which is very common within persisting tide-dominated depositional systems (passive margins). In fact, this is what happened during Cenozoic times (Torra,1998b, 2001a). The heterolithic Miocene facies deposits constitute one of the best continental exposed examples.Paleogeographical evidence showed that the Paranense and Amazonic Sea transgressions had been a littoral shallow marine connection during long time from Middle to Late Miocene. During the Late Cretaceous and Eocene periods marine connections were also active in the region. This fact is strongly supported by the tectonic and geomorphological framework of the proto-Southamerican continent, fossil remains and similar sedimentary deposits.The geochemical results showed an outstanding similarity among the three sandy-muddy successions herein studied. Both major and trace elements always show the same geochemical patterns. Specially mentioned are the elements gallium, cesium, chromium, barium, vanadium, thorium, zirconium, rubidium and strontium because they present very constant values through all successions.The Paranense and Amazonic epicontinental seas had been connected to the Pacific Ocean during the three marine episodes. The connections were formed by narrow inter-mountain valleys, present in the preAndean foreland massifs. These events occurred prior to the main orogenesis elevation of the Andean orogen belt in the last 5 to 1 Ma ( Pliocene-Latest Pleistocene).This paper shows, for the first time, a synthetic stratigraphical-geochemical "regional model" for the carries many unexamined-unexplored natural resources which need more regional and local studies for their evaluation. This is in spite of the area that has the problem of a significative vegetation coberture and scarce good outcrops. The development of modern techniques of dataacquisition will help to overcome these difficulties.  相似文献   

9.
太平洋板块、印度板块和欧亚板块的演化对中国近海沉积盆地的沉降及充填具有控制作用。根据地幔对流及地壳拉伸特征可将中国近海沉积盆地沉降类型划分为被动、主动和组合热沉降型3种。不同沉降类型分别具有不同的盆地结构,其中被动热沉降型以断陷为主,主动热沉降型以坳陷为主,组合热沉降型则是两种盆地结构的叠加或侧加。中国近海北部板内沉积盆地沉降类型以被动热沉降为主,远离海洋,受海侵影响较小,以陆相沉积体系为主;中部板缘沉积盆地沉降类型为被动侧加主动热沉降,水体整体较浅,坡折及三角洲发育规模小;南部板缘沉积盆地沉降类型也为被动侧加主动热沉降,水体整体较深,坡折及三角洲发育规模大。  相似文献   

10.
塔里木盆地构造—古地理演化   总被引:1,自引:0,他引:1  
摘要构造—古地理演化对盆地分析与油气资源评价具有重要意义,通过古构造恢复结合区域地质背景,综合分析塔里木盆地构造—古地理演化过程。塔里木盆地经历克拉通基底形成阶段、南华—震旦纪强伸展—挤压阶段、寒武—奥陶纪弱伸展—强挤压阶段、志留—白垩纪振荡升降变迁阶段、新生代弱伸展—强挤压阶段等5大构造演化阶段。塔里木盆地南华—震旦纪发育北东向陆内窄深裂谷系统,不同于显生宙;寒武纪—早奥陶世发育“两台一盆”的“东西分块”的大型克拉通内碳酸盐岩台地,中-晚奥陶世碳酸盐岩台地快速演变为“南北分带”;志留—泥盆纪形成克拉通内坳陷海相碎屑岩沉积体系;石炭—二叠纪发育克拉通内碎屑岩夹碳酸盐岩的浅海—海陆过渡相沉积;中生代发育一系列分隔的快速变迁的陆内坳陷碎屑岩沉积;新生代发育前陆盆地陆相磨拉石沉积,形成复杂的叠合盆地。受控原—新特提斯洋与南天山洋的开启—闭合,以及新生代印度板块挤压的远程效应,塔里木盆地构造—古地理具有多期性、多样性、迁移性与强烈的改造性,不同于典型的克拉通盆地。  相似文献   

11.
The Cauvery basin of the Indian Peninsular shield, formed during the fragmentation of the Gondwana Supercontinent, continued to evolve until the end of Neogene through rift, pull-apart, shelf sag and tilt processes. The basin witnessed many cycles of transgression, regression, erosion and deposition. A more or less complete succession of upper Cretaceous–Paleocene sediments is exposed in the Ariyalur–Pondicherry depression of the basin. Anisotropy of magnetic susceptibility (AMS) technique is applied in an attempt to examine the depositional and eustatic conditions prevailed during the formation of these sedimentary sequences. AMS results point to the sedimentation history dominated by marked sea level changes with several phases of transgression and regression. The sedimentation occurred mainly in a shallow epicontinental sea which has been punctuated with terrigenous supply more often. Greater utility of magnetic fabrics is suggested as a tool to trace fluvial responses to tectonic and climatic changes.  相似文献   

12.
This study aims to characterize the scolecodonts, trilobite pygidium fragments and fish remains of an outcropped region in the southern Amazonas Basin, comprising the uppermost section of the Monte Alegre Formation and the basal section of the Itaituba Formation. These, correspond to part of the marine portion of the Tapajós Group, related to an intracratonic carbonate platform. The Monte Alegre Formation includes a deposition of fluvial-deltaic and aeolian sandstones, siltstones and shales of interdunes and lakes, intercalated with transgressive carbonates of a shallow restrict nearshore marine environment. The Itaituba Formation comprises a thickest deposit of marine carbonates, representing the establishment of widespread marine conditions, and is the richest interval containing organisms of shallow marine environment in the Pennsylvanian of the Amazonas Basin. The associated fauna includes brachiopods, bivalves, gastropods, crinoids, echinoids, bryozoans, corals, foraminifers, sponges, ostracods, trilobites, scolecodonts, fish remains and conodonts, mainly in the packstones, and subordinately in the wackestones and mudstones. Conodonts Neognathodus atokaensis, Diplognathodus orphanus, Idiognathodus incurvus, and foraminifers Millerella extensa, Millerella pressa, Millerella marblensis, Eostaffella ampla, Eostaffella pinguis and Eostaffella advena characterizes a predominant Atokan age to the analyzed profile. The fossil association herein presented is taxonomically diversified and biologically interesting, comprising an important and well preserved, for the first time occurrence of two molds and two fragments of Proetida trilobites. Well preserved Eunicida and Phyllodocida scolecodonts and paleonisciform fish remains. These fossils help in the paleoenvironmental establishment of the studied interval in the Amazonas Basin and as a potential biostratigraphic and paleoecological tool to correlate regionally and globally the Pennsylvanian.  相似文献   

13.
Shallow water platform limestones of the Chadian–Asbian Milverton Group are restricted to the north-eastern part of the Lower Carboniferous (Dinantian) Dublin Basin. Here, they are confined to two granite-cored fault blocks, the Kentstown and Balbriggan Blocks, known to have been active during the late Dinantian. Three areas of platform sedimentation are delimited (the Kentstown, Drogheda and Milverton areas), although in reality they probably formed part of a single carbonate platform. Resedimented submarine breccias and calciturbidites (Fingal Group) composed of shallow water allochems and intraclasts sourced from the platform accumulated, along with terrigenous muds, in the surrounding basinal areas. Sedimentological evidence suggests that the Kentstown and Balbriggan Blocks possessed tilt-block geometries and developed during an episode of basin-wide extensional faulting in late Chadian time. Rotation of the blocks during extension resulted in the erosion of previously deposited sequences in footwall areas and concomitant drowning of distal hangingwall sequences. Antithetic faults on the northern part of the Balbriggan Block aided the preferential subsidence of the Drogheda area and accounts for the anomously thick sequence of late Chadian platform sediments present there. Continued subsidence and/or sea-level rise in the late Chadian–early Arundian resulted in transgression of the Kentstown and Balbriggan Blocks; carbonate ramps developed on the hangingwall dip slopes and transgressed southward with time. Subsequent progradation and aggradation of shallow water sediments throughout the Arundian to Asbian led to the development of carbonate shelves. Several coarse conglomeratic intervals within the contemporaneous basinal sequences of the Fingal Group attest to periodic increases of sediment influx associated with the development of the shelves. Sedimentological processes controlled the development of the carbonate platforms on the hangingwall dip slopes of the Kentstown and Balbriggan Blocks, though periodic increases of sediment flux into the basinal areas may have been triggered by eustatic falls in sea level. In contrast, differential subsidence along the bounding faults of these blocks exerted a strong control on the margins of the late Dinantian shelves, maintaining relatively steep slopes and inhibiting the progradation of the shelves into the adjacent basins. Tectonically induced collapse and retreat of the platform margins occurred in the late Asbian–early Brigantian. Platform sediments are overlain by coarse-grained proximal basinal facies which fine upwards before passing into a thick shale sequence, indicating that by the late Brigantian carbonate production had almost stopped as the platforms were drowned.  相似文献   

14.
Bass Basin (66,000 km2) is unusual as a carbonate-dominated basin because calcitic carbonate muds are accumulating in relatively shallow (70–85 m) water depths in the central part of the basin (20,000 km2). The carbonate muds are produced by the primary accumulation and disintegration of nannoplankton, as well as through the biodegradation of skeletal carbonate grains accumulating on the sea floor. The muds are transported to the south of the basin to the end of tidal current transport paths, where they accumulate in the lowest-energy environment available in enclosed Bass Basin, although they are still subject to periodic reworking by storm energy. The basin margins consist of coarser, partially palimpsest, carbonate sands, whereas the central muds overlie a Late Pleistocene disequilibrium surface. In cores these muds are up to 1 m thick and thin away from the centre towards the margins. Bioturbation is important in modifying the textural character of the muds by increasing the grain size as faecal pellets, and therefore creating a sea floor not in equilibrium with modern hydrodynamic conditions. Radiocarbon dates for an early post-glacial marine transgression embayment facies in the basin gave ages of 10,290 ± 250 to 11,660 ± 300 years B.P. An age of 8700 ± 710 years B.P. was obtained for the base of the modern strait facies. These ages and facies thicknesses were used to establish Holocene sedimentation rates of < 12 cm/1000 y for the basin centre, falling to < 6 cm/1000 y towards the margins.  相似文献   

15.
During the Cambrian, two types of continental margins occurred around Gondwana. The eastern margin (Antarctica, Australia and southern South America) was characterized by a narrow continental shelf with a steep slope separating the shallow water environment from a deep-oceanic one accompanied by mafidultramafic volcanics. The western margin was characterized by a wider continental shelf, probably passing gradually to an unknown outer basin. This comprised three main domains: the Asiatic shelf, composed of distinct cratonic blocks, presumably separated from each other by deeper-water/ volcanic intracontinental basins; the European shelf, characterized by the development of shallow intracontinental siliciclastic basins; and the Americanc-African shelf, morphologically and depositionally uniform. The distinction of these two Gondwana continental margins expresses their different geodynamic behaviour during Cambrian extensional tectonics. In fact, the sedimentary/palaeogeographic evolution, suggests the establishment of an active Pacific-like margin in the eastern domain, and the tentative establishment of a divergent Atlantic-like margin, in the westem one.  相似文献   

16.
During the Late Jurassic, accelerated ocean-floor spreading and associated sea-level rise were responsible for a worldwide transgression, which reached its maximum in the Late Kimmeridgian. In many Western European basins, this major sea-level rise led to the formation of marly and condensed sections. In the Swiss Jura, however, a shallow carbonate platform kept growing and only subtle changes in the stratigraphic record suggest an increasingly open-marine influence. Field observations and thin-section analyses reveal that the central Swiss Jura was at that time occupied by tidal flats and by more or less open marine lagoons where shoals and bioherms developed. The evolution through time of sedimentary facies and bed thicknesses permits the definition of small-, medium-, and large-scale depositional sequences. The diagnostic features of these sequences are independent of scale and seem largely controlled by the Kimmeridgian second-order transgression. A high-resolution sequence-stratigraphic correlation with biostratigraphically well-dated hemipelagic and pelagic sections in the Vocontian Basin in France reveals that: (i) The most important increase in accommodation recorded in the Kimmeridgian of the central Swiss Jura occurs in the Eudoxus ammonite zone (Late Kimmeridgian) and corresponds to the second-order maximum flooding recognized in many sedimentary basins. (ii) The small- and medium-scale sequences have time durations corresponding to the first and second orbital eccentricity cycle (i.e. 100 and 400 ka, respectively), suggesting that sedimentation on the platform and in the basin was at least partly controlled by cyclic environmental changes induced by insolation variations in the Milankovitch frequency band. The comparison of the high-resolution temporal framework defined in the Swiss Jura and Vocontian Basin with the sequence-stratigraphic interpretation realized in other Western European basins shows that the large-scale sequence boundaries defined in the Kimmeridgian of the Swiss Jura appear in comparable biostratigraphic positions in most Western European basins. Discrepancies that occur are probably because of local or regional tectonics.  相似文献   

17.
塔里木盆地西部是我国发育中新生代海相地层的少数地区之一。以沉积微相分析为手段,通过对塔里木盆地西北缘乌恰地区库孜贡苏剖面晚白垩世-古近纪岩性、生物组合、颗粒成分、基质类型及其沉积结构和构造特征等仔细研究,重点针对碳酸盐岩划分出(含)骨屑隐晶灰岩、隐晶灰岩、微(隐)晶白云岩、鸟眼隐晶灰岩、微晶鲕粒白云岩、生物碎屑灰岩、微晶球粒白云岩、生物灰岩、亮晶鲕粒灰岩等9个岩相类型。根据碳酸盐岩微相类型组合和剖面结构沉积特征,划分出潮上带、潮间带、潮下带、台地边缘浅滩和生物礁5个沉积相,并恢复了该区晚白垩世-古近纪的沉积环境演化过程,为查清白垩纪-古近纪特提斯洋演化以及重建该地区古环境和油气勘探研究提供重要的基础材料。  相似文献   

18.
This paper is a summary of the present knowledge of the Tertiary stratigraphy of Western Australia. Also included is new information on the Cainozoic of the Carnarvon Basin, a result of petroleum exploration in the area.

Tertiary rocks formed during more than one cycle of deposition in three basins (Eucla, Perth, and Carnarvon), and also as thin units deposited in a single transgression along the south coast. The Tertiary stratigraphy of the Bonaparte Gulf Basin is not well known.

Drilling in the Eucla Basin has encountered up to 400 m of Tertiary in the south central part, with uniform thinning towards the margins. The section begins with a middle‐upper Eocene carbonate unit which represents the dominant event in the Tertiary sedimentation in this basin. More carbonates were deposited in the late Oligocene‐early Miocene and middle Miocene.

Along the south coast, the so‐called Bremer Basin, the Plantagenet Group (up to 100 m) of siltstone, sandstone, spongolite, and minor limestone, was deposited during the late Eocene.

The Perth Basin contains up to 700 m of Tertiary sediment, formed during at least two phases of sedimentation. The upper Paleocene‐lower Eocene Kings Park Formation consists of marine shale, sandstone, and minor limestone, with a thickness of up to 450 m. The Stark Bay Formation (200 m) includes limestone, dolomite, and chert formed during the early and middle Miocene. Events after deposition of the Stark Bay Formation are not well known.

The northern Carnarvon Basin and Northwest Shelf contain by far the most voluminous Tertiary sediment known from Western Australia: 3500 m is known from BOCAL's Scott Reef No. 1. A more usual maximum thickness is 2500 m. Most sediments were laid down in four episodes, separated by unconformities: late Paleocene‐early Eocene; middle‐late Eocene; late Oligocene‐middle Miocene; and late Miocene to Recent.

The Paleocene‐early Eocene cycle consists of about 100–200 m (up to 450 m in the north) of carbonate, shale, and marl of the Cardabia Group containing rich faunas of planktonic foraminifera.

The middle‐late Eocene sediments include diverse rock types. Marine and nonmarine sandstone formed in the Merlinleigh Trough. At the same time, the Giralia Calcarenite (fauna dominated by the large foraminifer Discocyclina) and unnamed, deeper water shale, marl, and carbonate (with rich planktonic foraminiferal faunas) formed in the ocean outside the embayment. Thickness is usually of the order of 100–200 m.

The main cycle of sedimentation is the late Oligocene‐middle Miocene, during which time the Cape Range Group of carbonates formed. This contains dominantly large foraminiferal faunas, of a wide variety of shallow‐water microfacies, but recent oil exploration farther offshore has recovered outer continental shelf facies with abundant planktonic foraminifera. A minor disconformity representing N7 and perhaps parts of N6 and N8 is now thought to be widespread within the Cape Range Group. The last part of this cycle resulted in sedimentation mainly of coarse calcareous marine sandstone (unnamed), and, in the Cape Range area, of the sandstone and calcareous conglomerate of the Pilgramunna Formation. Maximum thickness encountered in WAPET wells is 900 m.

After an unconformity representing almost all the late Miocene, sedimentation began again, forming an upper Miocene‐Recent carbonate unit which includes some excellent planktonic faunas. Thickness is up to 1100 m.

Thin marine sediments of the White Mountain Formation outcrop in the Bonaparte Gulf Basin. They contain some foraminifera and a Miocene age has been suggested.  相似文献   

19.
This study examines the sedimentary response to a tectonically driven relative sea‐level fall that occurred in the Neuquén Basin, west‐central Argentina, during the late Early Valanginian (Early Cretaceous). At this time the basin lay behind the emergent Andean magmatic arc to the west. Following the relative sea‐level fall, sedimentation was limited to the central part of the Neuquén Basin, with the deposition of a predominantly clastic, continental to shallow marine wedge on top of basinal black shales. This lowstand wedge is called the Mulichinco Formation and consists of a third‐order sequence that lasted about 2 Myr and contains high frequency lowstand, transgressive, and highstand deposits. Significant variations in facies, depositional architecture, and internal organization of the sequence occur along depositional strike. These variations are attributed mainly to tectonic and topographic controls upon sediment flux, basin gradient, fault tilting, and shifting of the depocentre through time. These controls were ultimately related to asymmetrically distributed tectonic activity that was greater towards the magmatic arc in the west. The superposition of fluvial deposits directly upon offshore facies provides unequivocal evidence for a sequence boundary at the base of the Mulichinco Formation. However, the Mulichinco sequence boundary is marked by shallow, low erosional relief and widespread fluvial deposition. The surface lacks prominent valleys traditionally associated with sequence boundaries. This non‐erosive sequence boundary geometry is attributed to the ramp‐type geometry of the basin and/or rapid uplift that limited stratigraphic adjustment to base‐level fall. Significant along‐strike facies changes and a low‐relief sequence boundary are attributes that may be common in tectonically active, semi‐enclosed basins (e.g. shallow back‐arc basins, foreland basins).  相似文献   

20.
A number of sedimentary sequences have been identified in the Barents shelf from investigations of the upper part (100–150 m) of the geologic section, including sea drilling and continuous seismoacoustic profiling. The uppermost sequence is represented mostly by clayey and silty-clayey material, which is consolidated only incipiently and therefore recognized easily in the seismic records. The sole of this equence marks an unconformity caused by a long period of a subaerial regime, fluvial drainage, and a break in sedimentation. The timing of the last transgression is based on radiocarbon dating of foraminifers, mollusk shells, and other organic remains from poorly consolidated sediments. This transgression was of a tectonic rather than a glacioeustatic nature. The sagging proceeded with spatially varying amplitude and rate, and both parameters generally increased from the present-day shallow-water areas toward the deep sea, where the rate of subsidence was 1.4–3.0 cm/yr, i.e., 1–2 orders of magnitude greater than the rate of sedimentation. These phenomena explain why the subaerial landforms that preceded the last marine transgression are well preserved in deepwater shelf areas. It is suggested that the sagging, which caused this transgression, was merely a particular stage of oscillations of the western Arctic margin of Eurasia that lasted from the late Miocene to Quaternary and were genetically or paragenetically related to the evolution of the Arctic oceanic basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号