首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marginal marine deposits of the John Henry Member, Upper Cretaceous Straight Cliffs Formation, were deposited within a moderately high accommodation and high sediment supply setting that facilitated preservation of both transgressive and regressive marginal marine deposits. Complete transgressive–regressive cycles, comprising barrier island lagoonal transgressive deposits interfingered with regressive shoreface facies, are distinguished based on their internal facies architecture and bounding surfaces. Two main types of boundaries occur between the transgressive and regressive portions of each cycle: (i) surfaces that record the maximum regression and onset of transgression (bounding surface A); and (ii) surfaces that place deeper facies on top of shallower facies (bounding surface B). The base of a transgressive facies (bounding surface A) is defined by a process change from wave‐dominated to tide‐dominated facies, or a coaly/shelly interval indicating a shift from a regressive to a transgressive regime. The surface recording such a process change can be erosional or non‐erosive and conformable. A shift to deeper facies occurs at the base of regressive shoreface deposits along both flooding surfaces and wave ravinement surfaces (bounding surface B). These two main bounding surfaces and their subtypes generate three distinct transgressive – regressive cycle architectures: (i) tabular, shoaling‐upward marine parasequences that are bounded by flooding surfaces; (ii) transgressive and regressive unit wedges that thin basinward and landward, respectively; and (iii) tabular, transgressive lagoonal shales with intervening regressive coaly intervals. The preservation of transgressive facies under moderately high accommodation and sediment supply conditions greatly affects stratigraphic architecture of transgressive–regressive cycles. Acknowledging variation in transgressive–regressive cycles, and recognizing transgressive successions that correlate to flooding surfaces basinward, are both critical to achieving an accurate sequence stratigraphic interpretation of high‐frequency cycles.  相似文献   

2.
The discovery of whale fossils from Eocene strata in the Fayum Depression has provoked interest in the life and lifestyle of early whales. Excellent outcrop exposure also affords the dataset to develop sedimentological and stratigraphic models within the Eocene strata. Previous work generally asserts that the thick, sand‐rich deposits of the Fayum Depression represent shoreface and barrier island successions with fine‐grained lagoonal and fluvial associations capping progradational successions. However, a complete absence of wave‐generated sedimentary structures, a preponderance of thoroughly bioturbated strata and increasingly proximal sedimentary successions upwards are contrary to accepted models of the local sedimentological and stratigraphic development. This study considers data collected from two Middle to Upper Eocene successions exposed in outcrop in the Wadi El‐Hitan and Qasr El‐Sagha areas of the Fayum Depression to determine the depositional affinities of Fayum strata. Based on sedimentological and ichnological data, five facies associations (Facies Association 1 to Facies Association 5) are identified. The biological and sedimentological characteristics of the reported facies associations indicate that the whale‐bearing sandstones (Facies Association 1) record distal positions in a large, open, quiescent marine bay that is abruptly succeeded by a bay‐margin environment (Facies Association 2). Upwards, marginal‐marine lagoonal and shallow‐bay parasequences (Facies Association 3) are overlain by thick deltaic distributary channel deposits (Facies Association 4). The capping unit (Facies Association 5) represents a transgressive estuarine depositional environment. The general stratigraphic evolution resulted from a regional, tectonically controlled second‐order cycle, associated with northward regression of the Tethys. Subordinate cycles (i.e. third‐order and fourth‐order cycles) are evidenced by several Glossifungites‐ichnofacies demarcated discontinuities, which were emplaced at the base of flooding surfaces. The proposed depositional models recognize the importance of identifying and linking ichnological data with physical–sedimentological observations. As such – with the exception of wave‐generated ravinement surfaces – earlier assertions of wave‐dominated sedimentation can be discarded. Moreover, this study provides important data for the recognition of (rarely reported) completely bioturbated sand‐dominated offshore to nearshore sediments (Facies Association 1) and affords excellent characterization of bioturbated inclined heterolithic stratification of deltaic deposits. Another outcome of the study is the recognition that the whales of the Fayum Depression are restricted to the highstand systems tracts, and lived under conditions of low depositional energy, low to moderate sedimentation rates, and (not surprisingly) in fully marine waters characterized by a high biomass.  相似文献   

3.
通过内蒙古固阳渣尔泰山群的岩性、岩相和相序研究,对其进行了层序分析和层序划分,识别出一级、二级、三级层序层面,包括海侵沟蚀面和暴露-淹没复合型层序界面。共划分出1个超层序,3个大层序和8个层序,总结出渣尔泰山群的不同古地理背景如碎屑滨岸、台缘碳酸盐岩与碎屑岩混积、碳酸盐台地、台前斜坡和陆棚盆地层序发育模式以及内部构成特征,并探讨了复合海平面变化以及对层序发育和演化的控制作用。  相似文献   

4.
The Cutro Terrace is a mixed marine to continental terrace, where deposits up to 15 m thick discontinuously crop out in an area extending for ca 360 km2 near Crotone (southern Italy). The terrace represents the oldest and highest terrace of the Crotone area, and it has been ascribed to marine isotope stage 7 (ca 200 kyr bp ). Detailed facies and sequence‐stratigraphic analyses of the terrace deposits allow the recognition of a suite of depositional environments ranging from middle shelf to fluvial, and of two stacked transgressive–regressive cycles (Cutro 1 and Cutro 2) bounded by ravinement surfaces and by surfaces of sub‐aerial exposure. In particular, carbonate sedimentation, consisting of algal build‐ups and biocalcarenites, characterizes the Cutro 1 cycle in the southern sector of the terrace, and passes into shoreface and foreshore sandstones and calcarenites towards the north‐west. The Cutro 2 cycle is mostly siliciclastic and consists of shoreface, lagoon‐estuarine, fluvial channel fill, floodplain and lacustrine deposits. The Cutro 1 cycle is characterized by very thin transgressive marine strata, represented by lags and shell beds upon a ravinement surface, and thicker regressive deposits. Moreover, the cycle appears foreshortened basinwards, which suggests that the accumulation of its distal and upper part occurred during forced regressive conditions. The Cutro 2 cycle displays a marked aggradational component of transgressive to highstand paralic and continental deposits, in places strongly influenced by local physiography, whereas forced regressive sediments are absent and probably accumulated further basinwards. The maximum flooding shoreline of the second cycle is translated ca 15 km basinward with respect to that of the first cycle, and this reflects a long‐term regressive trend mostly driven by regional uplift. The stratigraphic architecture of the Cutro Terrace deposits is the result of the interplay between regional uplift and high amplitude, Late Quaternary glacio‐eustatic changes. In particular, rapid transgressions, linked to glacio‐eustatic rises that outpaced regional uplift, favoured the accumulation of thin transgressive marine strata at the base of the two cycles. In contrast, the combined effect of glacio‐eustatic falls and regional uplift led to high‐magnitude forced regressions. The superposition of the two cycles was favoured by a relatively flat topography, which allowed relatively complete preservation of stratal geometries that record large shoreline displacements during transgression and regression. The absence of a palaeo‐coastal cliff at the inner margin of the terrace supports this interpretation. The Cutro Terrace provides a case study of sequence architecture developed in uplifting settings and controlled by high‐amplitude glacio‐eustatic changes. This case study also demonstrates how the interplay of relative sea‐level change, sediment supply and physiography may determine either the superposition of cycles forming a single terrace or the formation of a staircase of terraces each recording an individual eustatic pulse.  相似文献   

5.
Hardground discontinuities within carbonate platforms form important stratigraphic surfaces which can be used at basin scale to correlate sequence boundaries. Although these surfaces are commonly used in sequence strati‐graphy, the timing and duration of hardground lithification and the crystallization of early cements remain unexplored. Here, early calcite cements were dated by U‐Pb geochronology for five Jurassic hardgrounds, interpreted as third‐order sequence boundaries, situated within a well‐constrained petrographic, sedimentological and stratigraphic framework. The consistency or the slight deviation between the age of the cements and the stratigraphic age of deposition of the formations illustrate that cementation occurred early in the diagenetic history. The ages obtained on dogtooth cements, replacing aragonite in gastropod shells and pendant cements in intergranular spaces, match those of the standard Jurassic biostratigraphic ammonite Zones, making calcite U‐Pb geochronology a promising method for dating third‐order sequence boundaries of depositional sequences and refining the Jurassic time scale in the future.  相似文献   

6.
The upper portion of the Cuyo Group in the Zapala region, south‐eastern Neuquén Basin (Western Argentina), encompasses marine and transitional deposits (Lajas Formation) overlain by alluvial rocks (Challacó Formation). The Challacó Formation is covered by the Mendoza Group above a second‐order sequence boundary. The present study presents the stratigraphic framework and palaeophysiographic evolution of this Bajocian to Eo‐Calovian interval. The studied succession comprises the following genetic facies associations: (i) offshore and lower shoreface–offshore transition; (ii) lower shoreface; (iii) upper shoreface; iv) intertidal–subtidal; (v) supratidal–intertidal; (vi) braided fluvial to delta plain; (vii) meandering river; and (viii) braided river. The stratigraphic framework embraces four third‐order depositional sequences (C1 to C4) whose boundaries are characterized by the abrupt superposition of proximal over distal facies associations. Sequences C1 to C3 comprise mostly littoral deposits and display well‐defined, small‐scale transgressive–regressive cycles associated with fourth‐order depositional sequences. Such high‐frequency cycles are usually bounded by ravinement surfaces associated with transgressive lags. At last, the depositional sequence C4 delineates an important tectonic reorganization probably associated with an uplift of the Huincul Ridge. This is suggested by an inversion of the transport trend, north‐westward during the deposition of C1 to C3 depositional sequences (Lajas Formation) to a south‐west trend during the deposition of the braided fluvial strata related to the C4 depositional sequence (Challacó Formation).  相似文献   

7.
8.
ABSTRACT Stratigraphy presupposes a hierarchy of scales of spatial organization supplemented at the small‐scale end by sedimentological concepts (beds, bed sets and bed cosets) and, at larger spatial scales, by sequence‐stratigraphic concepts (systems tracts, parasequences, sequences). Between these two end‐members are intermediate‐scale bodies described as ‘lithofacies’, or simply ‘facies’. A more restricted concept, granulometric facies, can be described in terms of horizontal grain‐size gradients (‘facies change’) and cyclic vertical grain‐size gradients (‘stratification’). Assemblages of facies so defined (also called depositional systems) are not random, but occur in a limited suite of patterns. Such assemblages may be linked to two classes of bounding surfaces, a source diastem (the immediate source of the sediment) and a surface of closure (if preserved), between which is sandwiched a transgressive or regressive, basinward‐fining facies succession. Systems‐bounding surfaces are notably more continuous than internal (gradational) facies boundaries. By thus restricting the definition of a facies assemblage (depositional system), it is possible to describe the Quaternary of the Virginia coast with as few as 12 systems. Depositional systems in the Quaternary of the Virginia coast are allometric, in that any system can be derived from any other by plastic expansion of one or more facies relative to another, or by simple symmetry operations. Self‐similarity prevails across this intermediate scale of stratigraphic organization. Facies assemblages (depositional systems) consist of event beds, which themselves have erosional basal boundaries and internal successions of microfacies. At larger spatial scales, depositional systems are repeated, either autocyclic repetitions forced by processes within the basin of deposition or allocyclic repetitions, as ‘parasequences’ and high‐frequency sequences. In the Virginia Quaternary, systems architecture is compatible with sequence architecture and nests conformably within its framework, but analysis of systems architecture reveals rules beyond those governing sequence architecture.  相似文献   

9.
Although modern wave‐dominated shorelines exhibit complex geomorphologies, their ancient counterparts are typically described in terms of shoreface‐shelf parasequences with a simple internal architecture. This discrepancy can lead to poor discrimination between, and incorrect identification of, different types of wave‐dominated shoreline in the stratigraphic record. Documented in this paper are the variability in facies characteristics, high‐resolution stratigraphic architecture and interpreted palaeo‐geomorphology within a single parasequence that is interpreted to record the advance of an ancient asymmetrical wave‐dominated delta. The Standardville (Ab1) parasequence of the Aberdeen Member, Blackhawk Formation is exposed in the Book Cliffs of central Utah, USA. This parasequence, and four others in the Aberdeen Member, record the eastward progradation of north/south‐trending, wave‐dominated shorelines. Within the Standardville (Ab1) parasequence, distal wave‐dominated shoreface‐shelf deposits in the eastern part of the study area are overlain across a downlap surface by southward prograding fluvial‐dominated delta‐front deposits, which have previously been assigned to a separate ‘stranded lowstand parasequence’ formed by a significant, allogenic change in relative sea‐level. High‐resolution stratigraphic analysis of these deposits reveals that they are instead more likely to record a single episode of shoreline progradation characterized by alternating periods of normal regressive and forced regressive shoreline trajectory because of minor cyclical fluctuations in relative sea‐level. Interpreted normal regressive shoreline trajectories within the wave‐dominated shoreface‐shelf deposits are marked by aggradational stacking of bedsets bounded by non‐depositional discontinuity surfaces. Interpreted forced regressive shoreline trajectories in the same deposits are characterized by shallow incision of fluvial distributary channels and strongly progradational stacking of bedsets bounded by erosional discontinuity surfaces that record enhanced wave‐base scour. Fluvial‐dominated delta‐front deposits most probably record the regression of a lobate delta parallel to the regional shoreline into an embayment that was sheltered from wave influence. Wave‐dominated shoreface‐shelf and fluvial‐dominated delta‐front deposits occur within the same parasequence, and their interpretation as the respective updrift and downdrift flanks of a single asymmetrical wave‐dominated delta that periodically shifted its position provides the most straightforward explanation of the distribution and relative orientation of these two deposit types.  相似文献   

10.
Based on a detailed sedimentological analysis of Lower Triassic continental deposits in the western Germanic sag Basin (i.e. the eastern part of the present‐day Paris Basin: the ‘Conglomérat basal’, ‘Grès vosgien’ and ‘Conglomérat principal’ Formations), three main depositional environments were identified: (i) braided rivers in an arid alluvial plain with some preserved aeolian dunes and very few floodplain deposits; (ii) marginal erg (i.e. braided rivers, aeolian dunes and aeolian sand‐sheets); and (iii) playa lake (an ephemeral lake environment with fluvial and aeolian sediments). Most of the time, aeolian deposits in arid environments that are dominated by fluvial systems are poorly preserved and particular attention should be paid to any sedimentological marker of aridity, such as wind‐worn pebbles (ventifacts), sand‐drift surfaces and aeolian sand‐sheets. In such arid continental environments, stratigraphic surfaces of allocyclic origin correspond to bounding surfaces of regional extension. Elementary stratigraphic cycles, i.e. the genetic units, have been identified for the three main continental environments: the fluvial type, fluvial–aeolian type and fluvial/playa lake type. At the time scale of tens to hundreds of thousands of years, these high‐frequency cycles of climatic origin are controlled either by the groundwater level in the basin or by the fluvial siliciclastic sediment input supplied from the highland. Lower Triassic deposits from the Germanic Basin are preserved mostly in endoreic basins. The central part of the basin is arid but the rivers are supplied with water by precipitation falling on the remnants of the Hercynian (Variscan)–Appalachian Mountains. Consequently, a detailed study of alluvial plain facies provides indications of local climatic conditions in the place of deposition, whereas fluvial systems only reflect climatic conditions of the upstream erosional catchments.  相似文献   

11.
Lithofacies analysis is fundamental to unravelling the succession of depositional environments associated with sea‐level fluctuations. These successions and their timing are often poorly understood. This report defines lithofacies encountered within the north‐eastern North Carolina and south‐eastern Virginia Quaternary section, interprets their depositional environments, presents a model for coastal depositional sequence development in a passive margin setting and uses this understanding to develop the stratigraphy and Quaternary evolutionary history of the region. Data were obtained from numerous drill cores and outcrops. Chronology was based on age estimates acquired using optically stimulated luminescence, amino acid racemization, Uranium series and radiocarbon dating techniques. Geomorphic patterns were identified and interpreted using light detection and ranging imagery. Since lithofacies occurrence, distribution and stratigraphic patterns are different on interfluves than in palaeo‐valleys, this study focused on interfluves to obtain a record of highstand sea‐level cycles with minimal alteration by fluvial processes during subsequent lowstands. Nine primary lithofacies and four diagenetic facies were identified in outcrops and cores. The uppermost depositional sequence on interfluves exhibits an upward succession from shelly marine lithofacies to tidal estuarine lithofacies and is bounded below by a marine ravinement surface and above by the modern land surface. Older depositional sequences in the subsurface are typically bounded above and below by marine ravinement surfaces. Portions of seven depositional sequences were recognized and interpreted to represent deposition from late middle Pleistocene to present. Erosional processes associated with each successive depositional sequence removed portions of older depositional sequences. The stratigraphic record of the most recent sea‐level highstands (Marine Isotope Stage 5a and Marine Isotope Stage 3) is best preserved. Glacio‐isostatic adjustment has influenced depositional patterns so that deposits associated with late Quaternary sea‐level highstands (Marine Isotope Stages 5c, 5a and 3), which did not reach as high as present sea‐level according to equatorial eustatic records, are uplifted and emergent within the study area.  相似文献   

12.
Existing facies models of tide‐dominated deltas largely omit fine‐grained, mud‐rich successions. Sedimentary facies and sequence stratigraphic analysis of the exceptionally well‐preserved Late Eocene Dir Abu Lifa Member (Western Desert, Egypt) aims to bridge this gap. The succession was deposited in a structurally controlled, shallow, macrotidal embayment and deposition was supplemented by fluvial processes but lacked wave influence. The succession contains two stacked, progradational parasequence sets bounded by regionally extensive flooding surfaces. Within this succession two main genetic elements are identified: non‐channelized tidal bars and tidal channels. Non‐channelized tidal bars comprise coarsening‐upward sandbodies, including large, downcurrent‐dipping accretion surfaces, sometimes capped by palaeosols indicating emergence. Tidal channels are preserved as single‐storey and multilateral bodies filled by: (i) laterally migrating, elongate tidal bars (inclined heterolithic strata, 5 to 25 m thick); (ii) forward‐facing lobate bars (sigmoidal heterolithic strata, up to 10 m thick); (iii) side bars displaying oblique to vertical accretion (4 to 7 m thick); or (iv) vertically‐accreting mud (1 to 4 m thick). Palaeocurrent data show that channels were swept by bidirectional tidal currents and typically were mutually evasive. Along‐strike variability defines a similar large‐scale architecture in both parasequence sets: a deeply scoured channel belt characterized by widespread inclined heterolithic strata is eroded from the parasequence‐set top, and flanked by stacked, non‐channelized tidal bars and smaller channelized bodies. The tide‐dominated delta is characterized by: (i) the regressive stratigraphic context; (ii) net‐progradational stratigraphic architecture within the succession; (iii) the absence of upward deepening trends and tidal ravinement surfaces; and (iv) architectural relations that demonstrate contemporaneous tidal distributary channel infill and tidal bar accretion at the delta front. The detailed facies analysis of this fine‐grained, tide‐dominated deltaic succession expands the range of depositional models available for the evaluation of ancient tidal successions, which are currently biased towards transgressive, valley‐confined estuarine and coarser grained deltaic depositional systems.  相似文献   

13.
The lateral continuity and facies heterogeneities of metre‐scale cycles in a greenhouse Lower Jurassic (Sinemurian) carbonate ramp from the northern Iberian Basin (Spain) was evaluated from extensive field analysis carried out on a well‐exposed 12 km long outcrop. Eleven high‐frequency continuous cycles and their bounding surfaces are traceable laterally through the entire outcrop. However, three of these cycles are found to split laterally into discontinuous cycles of more limited distribution (up to 3 to 5 km of lateral extent). The continuous and discontinuous cycles have a similar field expression in one‐dimensional logs. As a consequence, the number of cycles that can be differentiated is variable along the logged sections (i.e. from 11 to 16). Cycles have variable facies heterogeneities and sedimentary trends depending on the environment of formation: shallowing‐upward and symmetrical cycles occur in protected lagoon–tidal flat areas and in the open‐marine, high‐energy domain. These cycles show significant facies heterogeneities, which were controlled mainly by lateral migration of a mosaic of facies over an irregular topography. Deepening‐upward and aggradational cycles are generated in low‐energy, sub wave‐base, open‐marine areas. Facies are laterally homogeneous, reflecting low potential for carbonate accumulation and inability to fill the created accommodation space in this low‐relief and relatively deep area. Cycle boundaries are generated by stages of rapid accommodation gain, involving the flooding of the carbonate ramp; they are more likely to originate from regional tectonic pulses (related to the extensional tectonics operating in the northern Iberian Basin) rather than greenhouse low‐amplitude eustacy. Discontinuous cycles tend to occur in thickened areas and are interpreted as originating from the infill of wedge‐shaped accommodation space resulting from differential subsidence (i.e. local tectonic pulses). In conclusion, where thickness variations occur in extensional settings lateral continuity of cycles should not be expected. In less well‐exposed, or in one‐dimensional sections and in wells, it would not be possible to distinguish continuous from discontinuous cycles, or to understand such two‐dimensional heterogeneities. Identification of unique cycle‐forming mechanisms or attempting cyclostratigraphic long‐distance correlation of cycles is unrealistic without a detailed analysis of the architecture of cycles in laterally continuous outcrops.  相似文献   

14.
The Balfour Formation represents a fully fluvial succession of late Late Permian–earliest Triassic age which accumulated in the foredeep of the Karoo Basin during the overfilled phase of the foreland system. The lack of a coeval marine environment within the limits of the preserved Karoo Basin provides an opportunity to study the stratigraphic cyclicity developed during a time when accommodation was solely controlled by tectonics. The Balfour stratigraphy is composed of a succession of six third-order fluvial depositional sequences separated by subaerial unconformities. They formed in isolation from eustatic influences, with a timing controlled by orogenic cycles of loading and unloading. Sediment accumulation took place during stages of flexural subsidence, whereas the bounding surfaces are related to stages of isostatic uplift. The vertical profile of all sequences displays an overall fining-upward trend related to the gradual decrease in topographic slope during orogenic loading. At the same time, an upward change in fluvial styles can be observed within each sequence, from initial higher to final lower energy systems. The actual fluvial styles in each location depend on paleoslope gradients and the position of the stratigraphic section relative to the orogenic front. Proximal sequences show transitions from braided to meandering systems, whereas more distal sequences show changes from sand-bed to fine-grained meandering systems. The average duration of the Balfour stratigraphic cycles was 0.66 My, i.e. six cycles during 4 My. No climatic fluctuations are recorded during this time, with the long-term climatic background represented by temperate to humid conditions.  相似文献   

15.
The early Pleistocene clastic succession of the Peri‐Adriatic basin, eastern central Italy, records the filling of a series of piggyback sub‐basins that formed in response to the development of the eastward‐verging Apennine fold‐thrust belt. During the Gelasian (2·588 to 1·806 Ma), large volumes of Apennine‐derived sediments were routed to these basins through a number of slope turbidite systems. Using a comprehensive outcrop‐based dataset, the current study documents the depositional processes, stratigraphic organization, foraminiferal age and palaeodepth, and stratigraphic evolution of one of these systems exposed in the surroundings of the Castignano village. Analysis of foraminiferal assemblages consistently indicates Gelasian deposition in upper bathyal water depths. Sediments exposed in the study area can be broken into seven main lithofacies, reflecting specific gravity‐induced depositional elements and slope background deposition: (i) clast‐supported conglomerates (conglomerate channel‐fill); (ii) amalgamated sandstones (late stage sandstone channel‐fill); (iii) medium to thick‐bedded tabular sandstones (frontal splay sandstones); (iv) thin to thick‐bedded channelized sandstones (sandy channel‐fill); (v) medium to very thin‐bedded sandstones and mudstones (levée‐overbank deposits); (vi) pebbly mudstones and chaotic beds (mudstone‐rich mass‐transport deposits); and (vii) massive mudstones (hemipelagic deposits). Individual lithofacies combine vertically and laterally to form decametre‐scale, disconformably bounded, fining‐upward lithofacies successions that, in turn, stack to form slope valley fills bounded by deeply incised erosion surfaces. A hierarchical approach to the physical stratigraphy of the slope system indicates that it has evolved through multiple cycles of waxing then waning flow energy at multiple scales and that its packaging can be described in terms of a six‐fold hierarchy of architectural elements and bounding surfaces. In this scheme, the whole system (sixth‐order element) is comprised of three distinct fifth‐order stratigraphic cycles (valley fills), which define sixth‐order initiation, growth and retreat phases of slope deposition, respectively; they are separated by discrete periods of entrenchment that generated erosional valleys interpreted to record fifth‐order initiation phases. Backfilling of individual valleys progressed through deposition of two vertically stacked lithofacies successions (fourth‐order elements), which record fifth‐order growth and retreat phases. Fourth‐order initiation phases are represented by erosional surfaces bounding lithofacies successions. The component lithofacies (third‐order element) record fourth‐order growth and retreat phases. Map trends of erosional valleys and palaeocurrent indicators converge to indicate that the sea floor bathymetric expression of a developing thrust‐related anticline markedly influenced the downslope transport direction of gravity currents and was sufficient to cause a major diversion of the turbidite system around the growing structure. This field‐based study permits the development of a sedimentological model that predicts the evolutionary style of mixed coarse‐grained and fine‐grained turbidite slope systems, the internal distribution of reservoir and non‐reservoir lithofacies within them, and has the potential to serve as an analogue for seismic or outcrop‐based studies of slope valley fills developed in actively deforming structural settings and under severe icehouse regimes.  相似文献   

16.
Tide‐dominated deltas have an inherently complex distribution of heterogeneities on several different scales and are less well‐understood than their wave‐dominated and river‐dominated counterparts. Depositional models of these environments are based on a small set of ancient examples and are, therefore, immature. The Early Jurassic Gule Horn Formation is particularly well‐exposed in extensive sea cliffs from which a 32 km long, 250 m high virtual outcrop model has been acquired using helicopter‐mounted light detection and ranging (LiDAR). This dataset, combined with a set of sedimentological logs, facilitates interpretation and measurement of depositional elements and tracing of stratigraphic surfaces over seismic‐scale distances. The aim of this article is to use this dataset to increase the understanding of depositional elements and lithologies in proximal, unconfined, tide‐dominated deltas from the delta plain to prodelta. Deposition occurred in a structurally controlled embayment, and immature sediments indicate proximity to the sediment source. The succession is tide dominated but contains evidence for strong fluvial influence and minor wave influence. Wave influence is more pronounced in transgressive intervals. Nine architectural elements have been identified, and their internal architecture and stratigraphical distribution has been investigated. The distal parts comprise prodelta, delta front and unconfined tidal bar deposits. The medial part is characterized by relatively narrow, amalgamated channel fills with fluid mud‐rich bases and sandier deposits upward, interpreted as distributary channels filled by tidal bars deposited near the turbidity maximum. The proximal parts of the studied system are dominated by sandy distributary channel and heterolithic tidal‐flat deposits. The sandbodies of the proximal tidal channels are several kilometres wide and wider than exposures in all cases. Parasequence boundaries are easily defined in the prodelta to delta‐front environments, but are difficult to trace into the more proximal deposits. This article illustrates the proximal to distal organization of facies in unconfined tide‐dominated deltas and shows how such environments react to relative sea‐level rise.  相似文献   

17.
This study presents a detailed reconstruction of the sedimentary effects of Holocene sea‐level rise on a modern coastal barrier system. Increasing concern over the evolution of coastal barrier systems due to future accelerated rates of sea‐level rise calls for a better understanding of coastal barrier response to sea‐level changes. The complex evolution and sequence stratigraphic framework of the investigated coastal barrier system is reconstructed using facies analysis, high‐resolution optically stimulated luminescence and radiocarbon dating. During the formation of the coastal barrier system starting 8 to 7 ka rapid relative sea‐level rise outpaced sediment accumulation. Not before rates of relative sea‐level rise had decreased to ca 2 mm yr?1 did sediment accumulation outpace sea‐level rise. From ca 5·5 ka, rates of regionally averaged sediment accumulation increased to 4·3 mm yr?1 and the back‐barrier basin was filled in. This increase in sediment accumulation resulted from retreat of the barrier island and probably also due to formation of a tidal inlet close to the study area. Continued transgression and shoreface retreat created a distinct hiatus and wave ravinement surface in the seaward part of the coastal barrier system before the barrier shoreline stabilized between 5·0 ka and 4·5 ka. Back‐barrier shoreline erosion due to sediment starvation in the back‐barrier basin was pronounced from 4·5 to 2·5 ka but, in the last 2·5 kyr, barrier sedimentation has kept up with and outpaced sea‐level. In the last 0·4 kyr the coastal barrier system has been prograding episodically. Sediment accumulation shows considerable variation, with periods of rapid sediment deposition and periods of non‐deposition or erosion resulting in a highly punctuated sediment record. The study demonstrates how core‐based facies interpretations supported by a high‐resolution chronology and a well‐documented sea‐level history allow identification of depositional environments, erosion surfaces and hiatuses within a very homogeneous stratigraphy, and allow a detailed temporal reconstruction of a coastal barrier system in relation to sea‐level rise and sediment supply.  相似文献   

18.
Pliocene age deposits of the palaeo‐Orinoco Delta are evaluated in the Mayaro Formation, which crops out along the western margin of the Columbus Basin in south‐east Trinidad. This sandstone‐dominated interval records the diachronous, basinwards migration of the shelf edge of the palaeo‐Orinoco Delta, as it prograded eastwards during the Pliocene–Pleistocene (ca 3·5 Ma). The basin setting was characterized by exceptionally high rates of growth‐fault controlled sediment supply and accommodation space creation resulting in a gross basin‐fill of around 12 km, with some of the highest subsidence rates in the world (ca 5 to 10 m ka?1). This analysis demonstrates that the Mayaro Formation was deposited within large and mainly wave‐influenced shelf‐edge deltas. These are manifested as multiple stacks of coarsening upward parasequences at scales ranging from tens to hundreds of metres in thickness, which are dominated by storm‐influenced and wave‐influenced proximal delta‐front sandstones with extensive, amalgamated swaley and hummocky cross‐stratification. These proximal delta‐front successions pass gradationally downwards into 10s to 100 m thick distal delta front to mud‐dominated upper slope deposits characterized by a wide variety of sedimentary processes, including distal river flood and storm‐related currents, slumps and other gravity flows. Isolated and subordinate sandstone bodies occur as gully fills, while extensive soft sediment deformation attests to the high sedimentation rates along a slope within a tectonically active basin. The vertical stratigraphic organization of the facies associations, together with the often cryptic nature of parasequence stacking patterns and sequence stratigraphic surfaces, are the combined product of the rapid rates of accommodation space creation, high rates of sediment supply and glacio‐eustasy in the 40 to 100 Ka Milankovitch frequency range. The stratigraphic framework described herein contrasts strikingly with that described from passive continental margins, but compares favourably to other tectonically active, deltaic settings (for example, the Baram Delta Province of north‐west Borneo).  相似文献   

19.
Regionally extensive parasequences in the upper McMurray Formation, Grouse Paleovalley, north‐east Alberta, Canada, preserve a shift in depositional processes in a paralic environment from tide domination, with notable fluvial influence, through to wave domination. Three stacked parasequences form the upper McMurray Formation and are separated by allogenic flooding surfaces. Sediments within the three parasequences are grouped into three facies associations: wave‐dominated/storm‐dominated deltas, storm‐affected shorefaces to sheltered bay‐margin and fluvio‐tidal brackish‐water channels. The two oldest parasequences comprise dominantly tide‐dominated, wave‐influenced/fluvial‐influenced, shoreface to bay‐margin deposits bisected by penecontemporaneous brackish‐water channels. Brackish‐water channels trend approximately north‐west/south‐east, which is perpendicular to the interpreted shoreline trend; this implies that the basinward and progradational direction was towards the north‐west during deposition of the upper McMurray Formation in Grouse Paleovalley. The youngest parasequence is interpreted as amalgamated wave‐dominated/storm‐dominated delta lobes. The transition from tide‐dominated deposition in the oldest two parasequences to wave‐dominated deposition in the youngest is attributed mainly to drowning of carbonate highlands to the north and north‐west of the study area, and potentially to relative changes in accommodation space and deposition rate. The sedimentological, ichnological and regional distribution of the three facies associations within each parasequence are compared to modern and Holocene analogues that have experienced similar shifts in process dominance. Through this comparison it is possible to consider how shifts in depositional processes are expressed in the rock record. In particular, this study provides one of few ancient examples of preservation of depositional process shifts and showcases how topography impacts the character and architecture of marginal‐marine systems.  相似文献   

20.
Although sequence stratigraphic concepts have been applied extensively to coarse-grained siliciclastic deposits in nearshore environments, high-resolution sequence stratigraphic analysis has not been widely applied to mudstone-dominated sedimentary successions deposited in more distal hemipelagic to pelagic settings. To examine how sequence stratigraphic frameworks can be derived from the facies variability of mudstone-dominated successions, the Tununk Shale Member of the Mancos Shale Formation in south-central Utah (USA) was examined in detail through a combination of sedimentological, stratigraphic and petrographic methods. The Tununk Shale accumulated on a storm-dominated shelf during the second-order Greenhorn sea-level cycle. During this eustatic event, the depositional environment of the Tununk Shale shifted laterally from distal middle shelf to outer shelf, then from an outer shelf to an inner shelf environment. At least 49 parasequences can be identified within the Tununk Shale. Each parasequence shows a coarsening-upward trend via upward increases in silt and sand content, thickness and lateral continuity of laminae/beds, and abundance of storm-generated sedimentary structures. Variations in bioturbation styles within parasequences are complex, although abrupt changes in bioturbation intensity or diversity commonly occur across parasequence boundaries (i.e. flooding surfaces). Due to changes in depositional environments, dominant sediment supply and bioturbation characteristics, parasequence styles in the Tununk Shale show considerable variability. Based on parasequence stacking patterns, eleven system tracts, four depositional sequences and key sequence stratigraphic surfaces can be identified. The high-resolution sequence stratigraphic framework of the Tununk Shale reveals a hierarchy of stratal cyclicity. Application of sequence stratigraphic concepts to this thick mudstone-dominated succession provides important insights into the underlying causes of heterogeneity in these rocks over multiple thickness scales (millimetre-scale to metre-scale). The detailed sedimentological characterization of parasequences, system tracts and depositional sequences in the Tununk Shale provides conceptual approaches that can aid the development of high-resolution sequence stratigraphic frameworks in other ancient shelf mudstone successions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号