首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Pressure buildup limits CO2 injectivity and storage capacity and pressure loss limits the brine production capacity and security, particularly for closed and semi-closed formations. In this study, we conduct a multiwell model to examine the potential advantages of combined exhaustive brine production and complete CO2 storage in deep saline formations in the Jiangling Depression, Jianghan Basin of China. Simulation results show that the simultaneous brine extraction and CO2 storage in saline formation not only effectively regulate near-wellbore and regional pressure of storage formation, but also can significantly enhance brine production capacity and CO2 injectivity as well as storage capacity, thereby achieving maximum utilization of underground space. In addition, the combination of brine production and CO2 injection can effectively mitigate the leakage risk between the geological units. With regard to the scheme of brine production and CO2 injection, constant pressure injection is much superior to constant rate injection thanks to the mutual enhancement effect. The simultaneous brine production of nine wells and CO2 injection of four wells under the constant pressure injection scheme act best in all respects of pressure regulation, brine production efficiency, CO2 injectivity and storage capacity as well as leakage risk mitigation. Several ways to further optimize the combined strategy are investigated and the results show that increasing the injection pressure and adopting fully penetrating production wells can further significantly enhance the combined efficiency; however, there is no obvious promoting effect by shortening the well spacing and changing the well placement.  相似文献   

2.
CO2 pilot injection studies, with site-specific geologic assessment and engineering reservoir design, can be instrumental for demonstrating both incremental enhanced oil recovery and permanent geologic storage of greenhouse gases. The purpose of this paper is to present the geologic and reservoir analyses in support of a field pilot test that will evaluate the technical and economic feasibility of commercial-scale CO2-enhanced oil recovery to increase oil recovery and extend the productive life of the Citronelle Oil Field, the largest conventional oil field in Alabama (SE USA). Screening of reservoir depth, oil gravity, reservoir pressure, reservoir temperature, and oil composition indicates that the Cretaceous-age Donovan sand, which has produced more than 169 × 106 bbl in Citronelle Oil Field, is amenable to miscible CO2 flooding. The project team has selected an 81 ha (200 ac) 5-spot test site with one central gas injector, two producers, and two initially temporarily abandoned production wells that are now in production. Injection is planned in two separate phases, each consisting of 6,804 t (7,500 short tons) of food-grade CO2. The Citronelle Unit B-19-10 #2 well (Permit No. 3232) is the CO2 injector for the first injection test. The 14-1 and 16-2 sands of the upper Donovan are the target zones. These sandstone units consist of fine to medium-grained sandstone that is enveloped by variegated mudstone. Both of these sandstone units were selected based on the distribution of perforated zones in the test pattern, production history, and the ability to correlate individual sandstone units in geophysical well logs. The pilot injections will evaluate the applicability of tertiary oil recovery to Citronelle Field and will provide a large volume of information on the pressure response of the reservoirs, the mobility of fluids, time to breakthrough, and CO2 sweep efficiency. The results of the pilot injections will aid in the formulation of commercial-scale reservoir management strategies that can be applied to Citronelle Field and other geologically heterogeneous oil fields and the design of similar pilot injection projects.  相似文献   

3.
Deep saline aquifers in sedimentary basins are considered to have the greatest potential for CO2 geological storage in order to reduce carbon emissions. CO2 injected into a saline sandstone aquifer tends to migrate upwards toward the caprock because the density of the supercritical CO2 phase is lower than that of formation water. The accumulated CO2 in the upper portions of the reservoir gradually dissolves into brine, lowers pH and changes the aqueous complexation, whereby induces mineral alteration. In turn, the mineralogical composition could impose significant effects on the evolution of solution, further on the mineralized CO2. The high density of aqueous phase will then move downward due to gravity, give rise to “convective mixing,” which facilitate the transformation of CO2 from the supercritical phase to the aqueous phase and then to the solid phase. In order to determine the impacts of mineralogical compositions on trapping amounts in different mechanisms for CO2 geological storage, a 2D radial model was developed. The mineralogical composition for the base case was taken from a deep saline formation of the Ordos Basin, China. Three additional models with varying mineralogical compositions were carried out. Results indicate that the mineralogical composition had very obvious effects on different CO2 trapping mechanisms. Specific to our cases, the dissolution of chlorite provided Mg2+ and Fe2+ for the formation of secondary carbonate minerals (ankerite, siderite and magnesite). When chlorite was absent in the saline aquifer, the dominant secondary carbon sequestration mineral was dawsonite, and the amount of CO2 mineral trapping increased with an increase in the concentration of chlorite. After 3000 years, 69.08, 76.93, 83.52 and 87.24 % of the injected CO2 can be trapped in the solid (mineral) phase, 16.05, 11.86, 8.82 and 6.99 % in the aqueous phase, and 14.87, 11.21, 7.66 and 5.77 % in the gas phase for Case 1 through 4, respectively.  相似文献   

4.
The utilization of anthropogenic CO2 for enhanced oil recovery (EOR) can significantly extend the production life of an oil field, and help in the reduction of atmospheric emission of anthropogenic CO2 if sequestration is considered. This work summarizes the prospect of EOR and sequestration using CO2 flooding from an Indian mature oil field at Cambay basin through numerical modelling, simulation and pressure study based on limited data provided by the operator. To get an insight into CO2-EOR and safe storage process in this oil field, a conceptual sector model is developed and screening standard is proposed keeping in mind the major pay zone of the producing reservoir. To construct the geomodel, depth maps, well positions and coordinates, well data and well logs, perforation depths and distribution of petrophysical properties as well as fluid properties provided by the operator, has been considered. Based on the results from the present study, we identified that the reservoir has the potential for safe and economic geological sequestration of 15.04×106 metric ton CO2 in conjunction with a substantial increase in oil recovery of 10.4% of original oil in place. CO2-EOR and storage in this mature field has a bright application prospect since the findings of the present work could be a better input to manage the reservoir productivity, and the pressure field for significant enhancement of oil recovery followed by safe storage.  相似文献   

5.
The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr?1 plankton production and 42 × 1012 mol yr?1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr?1 on shelves and 11 × 1012 mol yr?1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr?1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr?1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr?1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.  相似文献   

6.
Enhanced oil recovery based on CO2 injection is expected to increase recovery from Croatian oil fields. Large quantities of CO2 are generated during hydrocarbon processing produced from gas and gas condensate fields situated in the north-western part of Croatia. First CO2 injection project will be implemented on the Ivani? Oil Field. Numerical modelling based on Upper Miocene sandstone core samples testing results have shown the decrease of oil viscosity during CO2 injection. Some of the characteristics of the testing samples are porosity 21.5–23.6 %, permeability 14–80 × 10?15 m2 and initial water saturation 28–38.5 %. Water alternating foam (WAF) and water alternating gas (WAG) simulations have provided satisfactory results. The WAF injection process has provided better results, but due to the process sensitivity and costs WAG is recommended for future application. During the pilot project 16 × 106 m3 CO2 and 5 × 104 m3 of water were injected. Additional amounts of hydrocarbons (4,440 m3 of oil and 2.26 × 106 m3 of gas) were produced which confirmed injection of CO2 as a successful tertiary oil recovery mechanism in Upper Miocene sandstone reservoirs in the Croatian part of the Pannonian Basin System.  相似文献   

7.
CO2 injection in saline aquifers induces temperature changes owing to processes such as Joule–Thomson cooling, endothermic water vaporization, exothermic CO2 dissolution besides the temperature discrepancy between injected and native fluids. CO2 leaking from the injection zone, in addition to initial temperature contrast due to the geothermal gradient, undergoes similar processes, causing temperature changes in the above zone. Numerical simulation tools were used to evaluate temperature changes associated with CO2 leakage from the storage aquifer to an above-zone monitoring interval and to assess the monitorability of CO2 leakage on the basis of temperature data. The impact of both CO2 and brine leakage on temperature response is considered for three cases (1) a leaky well co-located with the injection well, (2) a leaky well distant from the injector, and (3) a leaky fault. A sensitivity analysis was performed to determine key operational and reservoir parameters that control the temperature signal in the above zone. Throughout the analysis injection-zone parameters remain unchanged. Significant pressure drop upon leakage causes expansion of CO2 associated with Joule–Thomson cooling. However, brine may begin leaking before CO2 breakthrough at the leakage pathway, causing heating in the above zone. Thus, unlike the pressure which increases in response to both CO2 and brine leakage, the temperature signal may differentiate between the leaking fluids. In addition, the strength of the temperature signal correlates with leakage velocity unlike pressure signal whose strength depends on leakage rate. Increasing leakage conduit cross-sectional area increases leakage rate and thus increases pressure change in the above zone. However, it decreases leakage velocity, and therefore, reduces temperature cooling and signal. It is also shown that the leakage-induced temperature change covers a small area around the leakage pathway. Thus, temperature data will be most useful if collected along potential leaky wells and/or wells intersecting potential leaky faults.  相似文献   

8.
The present paper provides a case study of the assessment of the potential for CO2 storage in the deep saline aquifers of the Bécancour region in southern Québec. This assessment was based on a hydrogeological and petrophysical characterization using existing and newly acquired core and well log data from hydrocarbon exploration wells. Analyses of data obtained from different sources provide a good understanding of the reservoir hydrogeology and petrophysics. Profiles of formation pressure, temperature, density, viscosity, porosity, permeability, and net pay were established for Lower Paleozoic sedimentary aquifers. Lateral hydraulic continuity is dominant at the regional scale, whereas vertical discontinuities are apparent for most physical and chemical properties. The Covey Hill sandstone appears as the most suitable saline aquifer for CO2 injection/storage. This unit is found at a depth of more than 1 km and has the following properties: fluid pressures exceed 14 MPa, temperature is above 35 °C, salinity is about 108,500 mg/l, matrix permeability is in the order of 3 × 10?16 m2 (0.3 mDarcy) with expected higher values of formation-scale permeability due to the presence of natural fractures, mean porosity is 6 %, net pay reaches 282 m, available pore volume per surface area is 17 m3/m2, rock compressibility is 2 × 10?9 Pa?1 and capillary displacement pressure of brine by CO2 is about 0.4 MPa. While the containment for CO2 storage in the Bécancour saline aquifers can be ensured by appropriate reservoir characteristics, the injectivity of CO2 and the storage capacity could be limiting factors due to the overall low permeability of aquifers. This characterization offers a solid basis for the subsequent development of a numerical hydrogeological model, which will be used for CO2 injection capacity estimation, CO2 injection scenarios and risk assessment.  相似文献   

9.
CO2 geological storage is a transitional technology for the mitigation of climate change. In the vicinity of potential CO2 reservoirs in Hungary, protected freshwater aquifers used for drinking water supplies exist. Effects of disaster events of CO2 escape and brine displacement to one of these aquifers have been studied by kinetic 1D reactive transport modelling in PHREEQC. Besides verifying that ion concentrations in the freshwater may increase up to drinking water limit values in both scenarios (CO2 or brine leakage), total porosity of the rock is estimated. Pore volume is expected to increase at the entry point of CO2 and to decrease at further distances, whereas it shows minor increase along the flow path for the effect of brine inflow. Additionally, electrical conductivity of water is estimated and suggested to be the best parameter to measure for cost-effective monitoring of both worst-case leakage scenarios.  相似文献   

10.
A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 day−1 were injected from a 100-m long, ~2.5-m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0–10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.  相似文献   

11.
CO2-enhanced oil recovery (EOR) is an upcoming technology in India. At present, no Indian field is under CO2-EOR and implementation of this technique to a mature oil field needs a rigorous study. In the present work, we made an attempt to investigate the CO2-EOR potential of a mature oil field, situated in Cambay Basin, India. The field was put on production in 1961, and it has produced approximately 65.36 MMt oil during massive water flooding, leading to residual oil reserves of 6.49 MMt. The operator of the field is interested in incremental oil recovery from this field by injecting CO2. This requires estimation of incremental oil recovery potential of the field by carrying out systematic study. We, therefore, developed a conceptual model inspired by Ankleshwar oil field of Cambay Basin using available information provided by the field operator and carried out systematic studies to establish an optimized strategy for CO2 injection. To achieve this goal, we investigated the effect of various operational parameters on oil recovery efficiency of our conceptual model and selected optimum parameters for reservoir simulations. Simulation results clearly indicate that the field can be a good candidate for CO2-EOR, and an additional oil recovery of 10.4% of hydrocarbon pore volume is feasible. Major outcome of the study is an optimized black-oil simulation model, which is in good agreement with the fine grid compositional model of high accuracy. The proposed black-oil model can easily be implemented and updated compared with compute intensive finer compositional simulation model.  相似文献   

12.
In this work 3-[2-(2-aminoethylamino)ethylamino]propyl trimethoxysilane (TRI) was employed to functionalize MWCNT containing hydroxyl groups (OH-MWCNT), and the XRD, FTIR, TGA and CHNS elemental analysis techniques were used to characterize the resulted adsorbents. The characterization results for amine-MWCNT showed amine groups effectively attached to the surface of the MWCNT. The equilibrium adsorption capacity of pure CO2 and CH4 and their binary mixture on the pristine MWCNT, OH-MWCNT and amine-MWCNT was measured through a set of equilibrium adsorption experiments at 303.2 and 318.2 K. Capacities of all three types of adsorbents for CO2 adsorption were higher than those for methane adsorption. Also, amine-MWCNT demonstrated better performance on CO2 adsorption than the other two adsorbents, especially at low partial pressures. The capacity of amine-MWCNT for pure CO2 adsorption was 2.5 and 4 times as much as those for pristine MWCNT and OH-MWCNT, respectively, at the temperature of 303.2 K and the pressure of 0.2 bar. The binary adsorption experiment revealed that CO2/CH4 selectivity for pristine MWCNT and amine-MWCNT in all molar fractions of CO2 is about 1.77 and 7, respectively.  相似文献   

13.
The Cambrian–Ordovician Knox Group, a thick sequence of dolostone and minor dolomitic sandstone, is a prospective CO2 sequestration target in the southern Illinois Basin, USA. Thorough evaluation of the Knox Group is critical because the main sequestration target elsewhere in the Illinois Basin, the Cambrian Mount Simon Sandstone, is thin or absent throughout most of Kentucky. A 2477-m-deep carbon storage test well in Hancock County, Kentucky, was drilled, and 626 metric tons of CO2 was injected into the Knox saline reservoirs. To understand the long-term fate of CO2 injected into the Knox reservoirs, geochemical reactions between CO2, brine and rock-forming minerals were modeled using TOUGHREACT. The modeling benefited from a robust data set collected from the test well, including core porosity and permeability, petrographic and X-ray powder diffraction mineralogy, brine chemistry, temperature and pressure measurements. Kinetic batch models and 2-D radial reactive transport models were used to evaluate the migration of the injected CO2, changes in brine chemistry, and mineral dissolution and precipitation. Results from the kinetic models suggest that sections of the Knox dominated by dolomite have very limited mineral-trapping capacity for CO2, whereas thin sections of dolomitic sandstone with aluminosilicate minerals such as K-feldspar facilitate mineral trapping. The 2-D model for the CO2 injection test suggests that, because of the presence of thick permeable intervals in the Knox and the small volume of injected CO2 in the test, the radius of influence is less than 11 m from the well. The hypothetical long-term injection model indicates, on the other hand, that commercial-scale injection would influence a much larger area and part of the injected CO2 remains in the supercritical/gas phase for a long time. Because of the buoyancy effect, most supercritical/gas-phase CO2 migrates upward and stays in the top of the reservoirs dominated by dolomite with small mineral-trapping capacity.  相似文献   

14.
Dissolution?Cprecipitation phenomena induced by CO2 injection to Altmark Permian sandstone were observed through laboratory experiments carried out under simulated reservoir conditions (125?°C and 50 bars of pressure). The rock sample was collected from the Altmark gas reservoir, which is being considered for enhanced gas recovery. Two sets of experiments were performed with pulverized rock samples in a closed batch reactor with either pure water (run 1) or 3?M aqueous NaCl solution (run 2) and reacted with injected CO2 for 3, 5, and 9?days. The liquid samples were analyzed by inductively coupled plasma optical emission spectroscopy and total reflection X-ray fluorescence, where the latter proved to be a feasible alternative to conventional analytical techniques, especially since only small sample volumes (about 10???l) are needed. Chemical analysis for both fluids (water and NaCl brine) indicated a significant dissolution of calcite and anhydrite in the solution, which might be a crucial process during CO2 injection. The brine solution enhanced the dissolution of calcite and anhydrite compared to pure water at the beginning of the reaction. Moreover, the progressive higher Si4+/Al3+ molar ratios (in average by a factor of 3) in the brine experiments indicated quartz dissolution. Thermodynamic calculations of mineral saturation indices highlighted the dissolution of the Ca-bearing minerals, which was in agreement with experimental results. Modeling enabled an evaluation of the dissolution processes of minerals in a low-salinity region, yet hindrances to model more saline conditions emphasize the need for further laboratory studies in order to parameterize models for deep aquifer conditions.  相似文献   

15.
The delivery of dissolved carbon from rivers to coastal oceans is an important component of the global carbon budget. From November 2013 to December 2014, we investigated freshwater-saltwater mixing effects on dissolved carbon concentrations and CO2 outgassing at six locations along an 88-km-long estuarine river entering the Northern Gulf of Mexico with salinity increasing from 0.02 at site 1 to 29.50 at site 6 near the river’s mouth. We found that throughout the sampling period, all six sites exhibited CO2 supersaturation with respect to the atmospheric CO2 pressure during most of the sampling trips. The average CO2 outgassing fluxes at site 1 through site 6 were 162, 177, 165, 218, 126, and 15 mol m?2 year?1, respectively, with a mean of 140 mol m?2 year?1 for the entire river reach. In the short freshwater river reach before a saltwater barrier, 0.079 × 108 kg carbon was emitted to the atmosphere during the study year. In the freshwater-saltwater mixing zone with wide channels and river lakes, however, a much larger amount of carbon (3.04 × 108 kg) was emitted to the atmosphere during the same period. For the entire study period, the river’s freshwater discharged 0.25 × 109 mol dissolved inorganic carbon (DIC) and 1.77 × 109 mol dissolved organic carbon (DOC) into the mixing zone. DIC concentration increased six times from freshwater (0.24 mM) to saltwater (1.64 mM), while DOC showed an opposing trend, but to a lesser degree (from 1.13 to 0.56 mM). These findings suggest strong effects of freshwater-saltwater mixing on dissolved carbon dynamics, which should be taken into account in carbon processing and budgeting in the world’s estuarine systems.  相似文献   

16.
The CO2 migrated from deeper to shallower layers may change its phase state from supercritical state to gaseous state (called phase transition). This phase transition makes both viscosity and density of CO2 experience a sharp variation, which may induce the CO2 further penetration into shallow layers. This is a critical and dangerous situation for the security of CO2 geological storage. However, the assessment of caprock sealing efficiency with a fully coupled multi-physical model is still missing on this phase transition effect. This study extends our previous fully coupled multi-physical model to include this phase transition effect. The dramatic changes of CO2 viscosity and density are incorporated into the model. The impacts of temperature and pressure on caprock sealing efficiency (expressed by CO2 penetration depth) are then numerically investigated for a caprock layer at the depth of 800 m. The changes of CO2 physical properties with gas partial pressure and formation temperature in the phase transition zone are explored. It is observed that phase transition revises the linear relationship of CO2 penetration depth and time square root as well as penetration depth. The real physical properties of CO2 in the phase transition zone are critical to the safety of CO2 sequestration. Pressure and temperature have different impact mechanisms on the security of CO2 geological storage.  相似文献   

17.
During 2003–2006, a pilot project of alternating water and CO2 injection was performed on a limited part of the Upper Miocene sandstone oil reservoir of the Ivani? Field. During the test period oil and gas recovery was significantly increased. Additionally 4,440 m3 of oil and 2.26 × 106 m3 of gas were produced. It has initiated further modelling of sandstone reservoirs in the Ivani? Field in order to calculate volumes available for CO2 injection for the purpose of increasing hydrocarbon production from depleted sandstone reservoirs in the entire Croatian part of the Pannonian Basin System. In the first phase, modelling was based on results of laboratory testing on the core samples. It considered applying analogies with world-known projects of CO2 subsurface storage and its usage to enhance hydrocarbon production. In the second phase, reservoir variables were analysed by variograms and subsequently mapped in order to reach lithological heterogeneities and to determine reliable average values of reservoir volumes. Data on porosity, depth and reservoir thickness for the “Gamma 3” and the “Gamma 4” reservoirs, are mapped by the ordinary kriging technique. Calculated volume of CO2 expressed at standard condition which can be injected in the main reservoirs of the Ivani? Field at near miscible conditions is above 15.5 billion m3.  相似文献   

18.
This study focused on the target injection layers of deep saline aquifers in the Shiqianfeng Fm. in the Carbon Capture and Sequestration (CCS) Demonstration Projects in the Ordos Basin, northwestern China. The study employed a combination method of experiments and numerical simulation to investigate the dissolution mechanism and impact factors of CO2 in these saline aquifers. The results showed (1) CO2 solubility in different types of water chemistry were shown in ascending order: MgCl2-type water < CaCl2-type water < Na2SO4-type water < NaCl-type water < Na2CO3-type water < distilled water. These results were consistent with the calculated results undertaken by TOUGHREACT with about 5% margin of error. CO2 solubility of Shiqianfeng Fm. saline was 1.05 mol/L; (2) compared with distilled water, the more complex the water’s chemical composition, the greater the increase in HCO3 ?concentration. While the water’s composition was relatively simple, the tested water’s HCO3 ?concentrations were in close accord with the calculated value undertaken by the TOUGHREACT code, and the more complex the water’s composition, the poorer the agreement was, probably due to the complex and unstable HCO3 ? complicating matters when in an aqueous solution system including both tested HCO3 ?concentration and calculated HCO3 ?concentration; (3) the CO2 solubility in the saline at the temperature conditions of 55 °C and 70 °C were 1.17 and 1.02 mol/L. When compared with the calculated value of 1.20 and 1.05 mol/L, they were almost the same with only 1 and 3% margin of error; concentrations of HCO3 ? were 402.73 mg/L (0.007 mol/L) and 385.65 mg/L (0.006 mol/L), while the simulation results were 132.16 mg/L (0.002 mol/L) and 128.52 mg/L (0.002 mol/L). From the contrast between the tested data and the calculated data undertaken by the TOUGHREACT code, it was shown that TOUGHRACT code could better simulate the interaction between saline and CO2 in the dissolution sequestration capacity. Therefore, TOUGHREACT code could be used for the inter-process prediction of CO2 long-term geological storage of CO2; (4) The Ca2+ concentration and SO4 2?concentration in saline water had less effect on the solubility of CO2 and HCO3 ?concentration. In addition, TDS and pH values of saline affected not only the solubility of CO2, but also the conversion of CO2 to HCO3 ? due to that they can affect the activity and acid-base balance. So in fact, we just need to consider that the TDS and pH values are main impact factors in the dissolution sequestration capacity of CO2 geological sequestration in deep saline aquifers.  相似文献   

19.
A numerical model was developed to investigate the potential to detect fluid migration in a (homogeneous, isotropic, with constant pressure lateral boundaries) porous and permeable interval overlying an imperfect primary seal of a geologic CO2 storage formation. The seal imperfection was modeled as a single higher-permeability zone in an otherwise low-permeability seal, with the center of that zone offset from the CO2 injection well by 1400 m. Pressure response resulting from fluid migration through the high-permeability zone was detectable up to 1650 m from the centroid of that zone at the base of the monitored interval after 30 years of CO2 injection (detection limit = 0.1 MPa pressure increase); no pressure response was detectable at the top of the monitored interval at the same point in time. CO2 saturation response could be up to 774 m from the center of the high-permeability zone at the bottom of the monitored interval, and 1103 m at the top (saturation detection limit = 0.01). More than 6% of the injected CO2, by mass, migrated out of primary containment after 130 years of site performance (including 30 years of active injection) in the case where the zone of seal imperfection had a moderately high permeability (10??17 m2 or 0.01 mD). Free-phase CO2 saturation monitoring at the top of the overlying interval provides favorable spatial coverage for detecting fluid migration across the primary seal. Improved sensitivity of detection for pressure perturbation will benefit time of detection above an imperfect seal.  相似文献   

20.
This paper studied the CO2-EGR in Altmark natural gas field with numerical simulations. The hydro-mechanical coupled simulations were run using a linked simulator TOUGH2MP-FLAC3D. In order to consider the gas mixing process, EOS7C was implemented in TOUGH2MP. A multi-layered 3D model (4.4 km × 2 km × 1 km) which consists of the whole reservoir, caprock and base rock was generated based on a history-matched PETREL model, originally built by GDF SUEZ E&P Deutschland GmbH for Altmark natural gas field. The model is heterogeneous and discretized into 26,015 grid blocks. In the simulation, 100,000 t CO2 was injected in the reservoir through well S13 within 2 years, while gas was produced from the well S14. Some sensitivity analyses were also carried out. Simulation results show that CO2 tends to migrate toward the production well S14 along a NW–SE fault. It reached the observation wells S1 and S16 after 2 years, but no breakthrough occurred in the production well. After 2 years of CO2 injection, the reservoir pressure increased by 2.5 bar, which is beneficial for gas recovery. The largest uplift (1 mm) occurred at the bottom of the caprock. The deformation was small (elastic) and caprock integrity was not affected. With the injection rate doubled the average pressure increased by 5.3 bar. Even then the CO2 did not reach the production well S14 after 2 years of injection. It could be concluded that the previous flow field was established during the primary gas production history. This former flow field, including CO2 injection/CH4 production rate during CO2-EGR and fault directions and intensity are the most important factors affecting the CO2 transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号