首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This series of high quality elemental abundance analyses of mostly Main Sequence normal and peculiar B, A, and F stars defines their properties and provides data for the comparison with analyses of somewhat similar stars and with theoretical predictions. Most use high dispersion and high S/N (≥ 200) spectrograms obtained with CCD detectors at the long camera of the 1.22‐m Dominion Astrophysical Observatory telescope's coudé spectrograph. Here we expand the range of stars examined to include two relatively quiescent F supergiants. ν Her (F2 II) and 41 Cyg (F5 Ib‐II) are analyzed as consistently as possible with previous studies. These LTE fine analyses use the ATLAS9 and the WIDTH9 programs of R. L. Kurucz. High signal‐to‐noise spectrograms and high quality atomic data were employed. The derived values of these photometrically constant stars are somewhat different with the abundances of ν Her being somewhat metal‐poor and those of 41 Cyg being crudely solar‐like. Our analyses indicate that the basic results of Luck & Wepfer (1995) who also studied ν Her and 41 Cyg are not likely to be significantly changed by new studies of all their stars. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The High Efficiency and Resolution Canterbury University Large échelle Spectrograph (HERCULES) a fibre-fed échelle spectrograph that was designed and built at the University of Canterbury and has been in operation at Mt. John University Observatory since April 2001.HERCULES receives light from the f/13.5 Cassegrain focus of the 1 m McLellan telescope. Resolving powers of R = 41 000, 70 000 and 82 000 are available. An R2 200 × 400 mm échelle grating provides dispersion and cross-dispersion uses a large BK7 prism in double pass. The wavelength coverage is designed to be 380–880 nm in a single exposure. The maximum detective quantum efficiency of the fibre, spectrograph and detector system is about 18% in 2 arc second seeing. High wavelength stability (to better than 10 ms-1 in radial velocity) is achieved by installing the whole instrument in a large vacuum tank at 2–4 torr and by there being no moving parts. The tank is in a thermally isolated and insulated environment. The paper describes the design philosophy of HERCULES and its performance during the first year of operation. Now deceased; formerly at This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
SARG is a cross dispersed echelle spectrograph in operation since late spring 2000 at the Italian Telescopio Nazionale Galileo (TNG) 3.5 m telescope, La Palma. SARG offers both single object and long slit (up to 26 arcsec) observing modes covering a spectral range from λ = 0.37 up to1 μm, with resolution ranging from R = 29,000 up to R = 164,000. Cross dispersion is provided by means of a selection of four grisms; interference filters may be used for the long slit mode (up to 26 arcsec). A dioptric camera images the cross dispersed spectra onto a mosaic of two 2048 × 4096 EEV CCDs (pixel size: 13.5 μm) allowing complete spectral coverage at all resolving power for λ < 0.8 μm. In order to reach a high wavelength calibration precision an iodine-absorbing cell is provided. A Distributed Active Temperature Control System (DATCS) maintains constant the temperature of all spectrograph components at a preset value. Early results show that SARG works according to original specifications in terms of wavelength coverage, efficiency (measured peak efficiency is about 13%),resolution (maximum resolution R = 164,000 using a 0.3 arcsec slit, R ∼144,000 using an image slicer), and stability (preliminary estimates of radial velocity accuracy is ∼3 m/s using the iodine cell and ±150 m/s without the iodine cell). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The results of morphological and spectral study of the galaxies Kaz 5, Kaz 92, and Kaz 390 are presented. The observations were made on the 2.6-m telescope at the Byurakan Observatory with the VAGR microlenses spectrograph. Isophotes of the images of the galaxies are constructed in the , [NII] λλ6584 , 6548, and [SII] λλ6731, 6717 emission lines and in the continuum. The masses of Kaz 5 and Kaz 92 are determined to be 8.6 × 108 M and 6.1 × 109 M , respectively. The mass of the gaseous component in the centers of regions I and IV of Kaz 390, which encompass a 1 pixel area, are also determined. The morphological structure of the central region of Kaz 5 in the observed spectral range, λλ6400–6800?, differs completely from the structure of the same part of the galaxy observed with the 6-m and 2.5-m telescopes. It is shown that these differences in the structure in images of Kaz 5 are mostly explained by the comparatively low resolution of the telescope in combination with the VAGR spectrograph. Absorbing matter also contributes to this effect. It is also shown that a “deficit” of nitrogen has been observed in the region of Kaz 390 studied here (a circle of diameter 40″). Translated from Astrofizika, Vol. 52, No. 1, pp. 63–74 (February 2009).  相似文献   

5.
The inertial range of incompressible MHD turbulence is most conveniently described in terms of counter propagating waves. Shear Alfvén waves control the cascade dynamics. Slow waves play a passive role and adopt the spectrum set by the shear Alfvén waves. Cascades composed entirely of shear Alfvén waves do not generate a significant measure of slow waves. MHD turbulence is anisotropic with energy cascading more rapidly along k than along k . Anisotropy increases with k such that the excited modes are confined inside a cone bounded by k k perp 2/3. The opening angle of the cone, θ(k )∝ k -1/3, defines the scale dependent anisotropy. MHD turbulence is generically strong in the sense that the waves which comprise it are critically damped. Nevertheless, deep inside the inertial range, turbulent fluctuations are small. Their energy density is less than that of the background field by a factor θ2(k )≪. MHD cascades are best understood geometrically. Wave packets suffer distortions as they move along magnetic field lines perturbed by counter propagating wave packets. Field lines perturbed by unidirectional waves map planes perpendicular to the local field into each other. Shear Alfvén waves are responsible for the mapping's shear and slow waves for its dilatation. The former exceeds the latter by θ-1(k )≫ 1 which accounts for dominance of the shear Alfvén waves in controlling the cascade dynamics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In this paper we have investigated the beat wave excitation of an ion-acoustic wave at the difference frequency of two kinetic (or shear) Alfvén waves propagating in a magnetized plasma with β<1 (β=8π n e0 T e/B 0 2 , where n e0 is the unperturbed electron number density, T e is the electron temperature, and B 0 is the external magnetic field). On account of the interaction between two kinetic Alfvén waves of frequencies ω 1 and ω 2, the ponderomotive force at the difference frequency ω 1ω 2 leads to the generation of an ion-acoustic wave. Also because of the filamentation of the Alfvén waves, magnetic-field-aligned density dips are observed. In this paper we propose that the ion-acoustic wave generated by this mechanism may be one of the possible mechanisms for the heating and acceleration of solar wind particles.  相似文献   

7.
The general solution of the Henon–Heiles system is approximated inside a domain of the (x, C) of initial conditions (C is the energy constant). The method applied is that described by Poincaré as ‘the only “crack” permitting penetration into the non-integrable problems’ and involves calculation of a dense set of families of periodic solutions that covers the solution space of the problem. In the case of the Henon–Heiles potential we calculated the families of periodic solutions that re-enter after 1–108 oscillations. The density of the set of such families is defined by a pre-assigned parameter ε (Poincaré parameter), which ascertains that at least one periodic solution is computed and available within a distance ε from any point of the domain (x, C) for which the approximate general solution computed. The approximate general solution presented here corresponds to ε = 0.07. The same solution is further improved by “zooming” into four square sub-domain of (x, C), i.e. by computing sufficient number of families that reduce the density parameter to ε = 0.003. Further zooming to reduce the density parameter, say to ε = 10−6, or even smaller, although easily performable in both areas occupied by stable as well as unstable solutions, was found unnecessary. The stability of all members of each and all families computed was calculated and presented in this paper for both the large solution domain and for the sub-domains. The correspondence between areas of the approximate general solution occupied by stable periodic solutions and Poincaré sections with well-aligned section points and also correspondence between areas occupied by unstable solutions and Poincaré sections with randomly scattered section points is shown by calculating such sections. All calculations were performed using the Runge-Kutta (R-K) 8th order direct integration method and the large output received, consisting of many thousands of families is saved as “Atlas of the General Solution of the Henon–Heiles Problem,” including their stability and is available at request. It is concluded that approximation of the general solution of this system is straightforward and that the chaotic character of its Poincaré sections imposes no limitations or difficulties.  相似文献   

8.
We give here a proof of Bruns’ Theorem which is both complete and as general as possible: Generalized Bruns’ Theorem.In the Newtonian (n+1)-body problem in p with n≥2 and 1≤pn+1, every first integral which is algebraic with respect to positions, linear momenta and time, is an algebraic function of the classical first integrals: the energy, the p(p−1)/2 components of angular momentum and the 2p integrals that come from the uniform linear motion of the center of mass. Bruns’ Theorem only dealt with the Newtonian three-body problem in ℝ3; we have generalized the proof to n+1 bodies in ℝp with pn+1. The whole proof is much more rigorous than the previous versions (Bruns, Painlevé, Forsyth, Whittaker and Hagiara). Poincaré had picked out a mistake in the proof; we have understood and developed Poincaré’s instructions in order to correct this point (see Subsection 3.1). We have added a new paragraph on time dependence which fills in an up to now unnoticed mistake (see Section 6). We also wrote a complete proof of a relation which was wrongly considered as obvious (see Section 3.3). Lastly, the generalization, obvious in some parts, sometimes needed significant modifications, especially for the case p=1 (see Section 4). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The transfer of wave energy to plasma energy is a very crucial issue in coronal holes and helmet streamer regions. Mixed mode Alfvén waves, also known as kinetic Alfvén wave (KAW) can play an important role in the energization of the plasma particles because of their potential ability to heat and accelerate the plasma particles via Landau damping. This paper presents an investigation of the growth of a Gaussian perturbation on a non-uniform kinetic Alfvén wave having Gaussian wave front. The effect of the nonlinear coupling between the main KAW and the perturbation has been studied. The dynamical equations for the field of the main KAW and the perturbation have been established and their semi-analytical solution has been obtained in the low (β≪ me/mi≪ 1) and the high (β≫ me/mi≪ 1) β cases. The critical field of the main KAW and the perturbation has been evaluated. Nonlinear evolution of the main KAW and the perturbation into the filamentary structures and its dependence on various parameters of the solar wind and the solar corona have been investigated in detail. These filamentary structures can act as a source for the particle acceleration by wave particle interaction because the KAWs are mixed modes and Landau damping is possible. Especially, in the solar corona, the low β and the high β cases could correspond to the coronal holes and the helmet streamer. The presence of the primary and the secondary filaments of the perturbation may change the spectrum of the Alfvénic turbulence in the solar wind.  相似文献   

10.
We describe the future night‐time spectrograph for the GREGOR solar telescope and present its science core projects. The spectrograph provides a 3‐pixel resolution of up to R = 87 000 in 45 échelle orders covering the wavelength range 390‐900 nm with three grating settings. An iodine cell can be used for high‐precision radial velocity work in the 500‐630 nm range. The operation of the spectrograph and the telescope will be fully automated without the presence of humans during night‐time and will be based on the successful STELLA control system. Future upgrades include a second optical camera for even higher spectral resolution, a Stokes‐V polarimeter and a link to the laser‐frequency comb at the Vacuum Tower Telescope. The night‐time core projects are a study of the angular‐momentum evolution of “The Sun in Time” and a continuation of our long‐term Doppler imaging of active stars (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
This paper gives the results of a programme attempting to exploit ‘la seule bréche’ (Poincaré, 1892, p. 82) of non-integrable systems, namely to develop an approximate general solution for the three out of its four component-solutions of the planar restricted three-body problem. This is accomplished by computing a large number of families of ‘solutions précieuses’ (periodic solutions) covering densely the space of initial conditions of this problem. More specifically, we calculated numerically and only for μ = 0.4, all families of symmetric periodic solutions (1st component of the general solution) existing in the domain D:(x 0 ∊ [−2,2],C ∊ [−2,5]) of the (x 0, C) space and consisting of symmetric solutions re-entering after 1 up to 50 revolutions (see graph in Fig. 4). Then we tested the parts of the domain D that is void of such families and established that they belong to the category of escape motions (2nd component of the general solution). The approximation of the 3rd component (asymmetric solutions) we shall present in a future publication. The 4th component of the general solution of the problem, namely the one consisting of the bounded non-periodic solutions, is considered as approximated by those of the 1st or the 2nd component on account of the `Last Geometric Theorem of Poincaré' (Birkhoff, 1913). The results obtained provoked interest to repeat the same work inside the larger closed domain D:(x 0 ∊ [−6,2], C ∊ [−5,5]) and the results are presented in Fig. 15. A test run of the programme developed led to reproduction of the results presented by Hénon (1965) with better accuracy and many additional families not included in the sited paper. Pointer directions construed from the main body of results led to the definition of useful concepts of the basic family of order n, n = 1, 2,… and the completeness criterion of the solution inside a compact sub-domain of the (x 0, C) space. The same results inspired the ‘partition theorem’, which conjectures the possibility of partitioning an initial conditions domain D into a finite set of sub-domains D i that fulfill the completeness criterion and allow complete approximation of the general solution of this problem by computing a relatively small number of family curves. The numerical results of this project include a large number of families that were computed in detail covering their natural termination, the morphology, and stability of their member solutions. Zooming into sub-domains of D permitted clear presentation of the families of symmetric solutions contained in them. Such zooming was made for various values of the parameter N, which defines the re-entrance revolutions number, which was selected to be from 50 to 500. The areas generating escape solutions have being investigated. In Appendix A we present families of symmetric solutions terminating at asymptotic solutions, and in Appendix B the morphology of large period symmetric solutions though examples of orbits that re-enter after from 8 to 500 revolutions. The paper concludes that approximations of the general solution of the planar restricted problem is possible and presents such approximations, only for some sub-domains that fulfill the completeness criterion, on the basis of sufficiently large number of families.  相似文献   

12.
We use 240 CCD spectra taken in 1998–2000 with the coude echelle spectrograph of the 2-m telescope of the National Academy of Sciences of Azerbaijan to study temporal radial velocity and line profile variations of the ion, HeI, and Hβ lines in the spectrumof the α Cyg supergiant. We demonstrate that these variations are caused by pulsation-type motions in the star’s atmosphere. Ion and HeI lines oscillate in the main fundamental mode with a period of about 12.0 ± 0.5 d and an amplitude of 5.0 ± 0.5 km/s. These ion-line oscillations continue for about 35 days. Then the difference between the radial velocities of strong and weak ion lines results in a gradual decay of oscillations over a time interval of about 5.0 ± 1.0 d . Thereafter the process repeats itself. For the Hβ line we found two significant periods, two amplitudes, and three characteristic radial velocity variability behaviors for the blue and red halves of the absorption profile: with equal variability parameters (period P and amplitude A); with equal P and A, but with a phase shift between the radial velocity variations of the blue and red halves of the absorption profile; with different P and A for the two halves of the absorption profile. The star’s center of mass radial velocity as inferred from the γ-velocity is −4.5 ± 0.5 km/s. The average expansion velocity of the atmospheric layers, where the Hβ line forms, amounts to about −16.5 ± 0.5 km/s and varies temporally with an amplitude of about 3.0 km/s.  相似文献   

13.
The Faraday rotation of a radio source (Pioneer 6) occulted by the solar corona has been measured by Levy et al. (1969). During the course of these measurements, three large-scale transient phenomena were observed. These events were preceded by subflares and class 1 flares. These transient events are interpreted as evidence for a coronal magnetic bottle at 10 R . The velocity of propagation for the disturbance is set at 200 km/sec; the dimension of the region, 10 R ; field strength at 10 R , 0.02 G; particle density, 2.0 × 104/cm3; Alfvén speed, 320 km/sec. From the nature of the observations and the lack of related effects from similar flares on the interplanetary sector pattern observed at 1 AU, it is suggested that such coronal magnetic bottles expand to perhaps 10–30 R and then contract to a few solar radii. Such a phenomena is evidence for an expansion of the corona with a sub-Alfvénic velocity. It is further suggested that such magnetic bottles may be important in the storage and diffusion of solar generated cosmic ray particles. NAS-NRC Postdoctoral Resident Research Associate.  相似文献   

14.
The solar observational facilities at ARIES (erstwhile U.P. State Observatory, UPSO), Nainital, began in the sixties with the acquisition of two moderate sized (25 cm, f/66 off-axis Skew Cassegrain and 15 cm, f/15 refractor) telescopes. Both these systems receive sunlight through a 45 cm and 25 cm coelostat respectively. The backend instruments to these systems comprised of a single pass grating spectrograph for spectroscopic study of the Sun and a Bernhard-Halle filter, coupled with a Robot recorder camera for solar patrolling in respectively. With the advancement in solar observing techniques with high temporal and spatial resolution in and other wavelengths, it became inevitable to acquire sophisticated instrumentation for data acquisition. In view of that, the above facilities were upgraded, owing to which the conventional photographic techniques were replaced by the CCD camera systems attached with two 15 cm, f/15 Coude refractor telescopes. These CCD systems include the Peltier cooled CCD camera and photometrics PXL high speed modular CCD camera which provide high temporal and spatial resolution of ∼ 25 ms and ∼ 1.3 arcsec respectively.  相似文献   

15.
Two basic problems of dynamics, one of which was tackled in the extensive work of Z. Kopal (see e.g. Kopal, 1978, Dynamics of Close Binary Systems, D. Reidel Publication, Dordrecht, Holland.), are presented with their approximate general solutions. The ‘penetration’ into the space of solution of these non-integrable autonomous and conservative systems is achieved by application of ‘The Last Geometric Theorem of Poincaré’ (Birkhoff, 1913, Am. Math. Soc. (rev. edn. 1966)) and the calculation of sub-sets of ‘solutions précieuses’ that are covering densely the spaces of all solutions (non-periodic and periodic) of these problems. The treated problems are: 1. The two-dimensional Duffing problem, 2. The restricted problem around the Roche limit. The approximate general solutions are developed by applying known techniques by means of which all solutions re-entering after one, two, three, etc, revolutions are, first, located and then calculated with precision. The properties of these general solutions, such as the morphology of their constituent periodic solutions and their stability for both problems are discussed. Calculations of Poincaré sections verify the presence of chaos, but this does not bear on the computability of the general solutions of the problems treated. The procedure applied seems efficient and sufficient for developing approximate general solutions of conservative and autonomous dynamical systems that fulfil the PoincaréBirkhoff theorems. The same procedure does not apply to the sub-set of unbounded solutions of these problems.  相似文献   

16.
We present new radial velocities of the high‐mass X‐ray binary star 4U 2206+54 based on optical spectra obtained with the Coudé spectrograph at the 2 m RCC telescope of the Rozhen National Astronomical Observatory, Bulgaria in the period November 2011–July 2013. The radial velocity curve of the He I δ6678 Å line is modeled with an orbital period Porb = 9.568 d and an eccentricity of e = 0.3. These new measurements of the radial velocity resolve the disagreements of the orbital period discussions. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The influence of collisions between neutrals and ions on the energy flux of Alfvén-type waves in partially ionized plasma based on the three-fluid equations is considered. It has been shown that amplitudes of Alfvén waves that are generated or propagating in the solar photosphere do not depend on the ionization ratio, if the wave periods are much larger than 10−4 s. This contradicts results of Vranjes et al. (Astron. Astrophys. 478, 553, 2008) and is explained by the strong coupling due to ion–neutral collisions. Alfvén waves can be effectively excited in the photosphere of the Sun by convective motions, providing the required energy for coronal heating.  相似文献   

18.
We study a nonlinear mechanism for the excitation of kinetic Alfvén waves (KAWs) by fast magneto-acoustic waves (FWs) in the solar atmosphere. Our focus is on the excitation of KAWs that have very small wavelengths in the direction perpendicular to the background magnetic field. Because of their small perpendicular length scales, these waves are very efficient in the energy exchange with plasmas and other waves. We show that the nonlinear coupling of the energy of the finite-amplitude FWs to the small-scale KAWs can be much faster than other dissipation mechanisms for fast wave, such as electron viscous damping, Landau damping, and modulational instability. The nonlinear damping of the FWs due to decay FW = KAW + KAW places a limit on the amplitude of the magnetic field in the fast waves in the solar corona and solar-wind at the level B/B 0∼10−2. In turn, the nonlinearly excited small-scale KAWs undergo strong dissipation due to resistive or Landau damping and can provide coronal and solar-wind heating. The transient coronal heating observed by Yohkoh and SOHO may be produced by the kinetic Alfvén waves that are excited by parametric decay of fast waves propagating from the reconnection sites.  相似文献   

19.
A quiescent filament was observed near the center of the disk (N5, W5) with the MSDP spectrograph of the 50 cm refractor of the Pic-du-Midi Observatory on June 17, 1986. We focus our study on the statistical moments of the Dopplershift,V 1, and the intensity,I 1, at the center of a chord of the Hα profile (±0.256 Å), versus the minimum intensityI 0. We use a statistical model simulating a numbern max of threads (of optical thicknessτ 0 and source functionS 0), seen over the chromosphere. The threadsj along the same line-of-sighti are identical except for the velocityv j (gaussian distributionv 0,σ v). We search for the best fit between the observed and simulated quantities:V 1,σ (V 1),I 1,σ(I 1), and the histogram of theI 0 values over the field of view. A good fit is obtained with: (a) threads characterized byτ 0 = 0.2,S 0 = 0.06 (unit of the continuum at disk center), mean upward velocityv 0 = 1.7 km s−1 and gaussian-type velocity distributionσ v = 3.5 km s−1. Other possible values ofτ 0 andσ v are discussed; (b) underlying chromosphere deduced from observed quiet Sun (outside the filament) by modifying the chromospheric velocities: additional mean upward velocity 0.7 km s−1, standard deviation reduced by a factorF c ∼ 0.7. The results are discussed in connection with the values deduced from prominence observations.  相似文献   

20.
The exact nonlinear cylindrical solution for incompressible Hall – magnetohydrodynamic (HMHD) waves, including dissipation, essentially from electron – neutral collisions, is obtained in a uniformly rotating, weakly ionized plasma such as exists in photospheric flux tubes. The ω – k relation of the waves, called here Hall – MHD waves, demonstrates the dispersive nature of the waves, introduced by the Hall effect, at large axial and radial wavenumbers. The Hall – MHD waves are in general elliptically polarized. The partially ionized plasma supports lower frequency modes, lowered by the factor δ≡ratio of the ion mass density to the neutral particle mass density, as compared to the fully ionized plasma (δ=1). The relation between the velocity and the magnetic field fluctuations departs significantly from the equipartition found in Alfvén waves. These short-wavelength and arbitrarily large amplitude waves could contribute toward the heating of the solar atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号