首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shaking table tests are performed on a one‐bay one‐story steel frame with superelastic Cu–Al–Mn shape memory alloy (SMA) tension braces. The frame is subjected to a series of scaled ground motions recorded during the 1995 Kobe earthquake, Japan. The test results demonstrate that the SMA braces are effective to prevent residual deformations and pinching. It is also shown that the time history responses observed from the shaking table tests agree well with the numerical predictions using a rate‐independent piecewise‐linear constitutive model calibrated to the quasi‐static component tests of the SMA braces. This suggests that the loading rate dependence of Cu–Al–Mn SMAs as well as the modeling error due to the piecewise linear approximation can be neglected in capturing the global response of the steel frame. Numerical simulations under a suite of near‐fault ground motion records are further performed using the calibrated analytical models to demonstrate the effectiveness of the SMA braces when the variability of near‐fault ground motions is taken into account. A stopper, or a deformation restraining device, is also proposed to prevent premature fracture of SMA bars in unexpectedly large ground motions while keeping the self‐centering capability in moderate to large ground motions. The effectiveness of the stopper is also demonstrated in the quasi‐static component and shaking table tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The effectiveness of hysteretic passive devices to protect and mitigate the response of a structure under seismic loading is well established by both analytical and experimental research. Nevertheless, a systematic and well‐established methodology for the topological distribution and size of these devices in order to achieve a desired structural response performance does not exist. In this paper, a computational framework is proposed for the optimal distribution and design of yielding metallic buckling restrained braces (BRB) and/or friction dampers within steel moment‐resisting frames (MRF) for a given seismic environment. A Genetic Algorithm (GA) is used to solve the resulting discrete optimization problem. Specific examples involving two three‐story, four‐bay steel MRFs and a six‐story, three‐bay steel MRF retrofitted with yielding and/or friction braces are considered. The seismic environment consists of four synthetic ground motions representative of the west coast of the United States with 5% probability of exceedance in 50 years. Non‐linear time‐history analyses are employed to evaluate the potential designs. As a result of the evolutionary process, the optimal placement, strength and size of the dampers are obtained throughout the height of the steel MRF. Furthermore, the developed computational approach for seismic design based upon GAs provides an attractive procedure for design of MRFs with hysteretic passive dampers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Special concentrically braced frames (SCBFs) are considered as one of the most economical and effective lateral force‐resisting systems in structures located in the regions of high seismicity. Steel braces in a braced frame undergo large axial deformations in tension and compression to dissipate the seismic energy. However, past studies have shown that SCBFs exhibit the soft‐story hinge mechanisms and unpredictable failure patterns under earthquake loading conditions. These inelastic responses along with the use of continuous structural sections as columns over consecutive floors induce flexural demand that is not considered in the current design practice. In this study, the evaluation of seismic performance of nine SCBFs designed as per the current practice has been carried out for three different story heights (i.e., three‐story, six‐story, and nine‐story) and three types of brace configurations (namely, chevron, split X, and single X). Three additional design techniques are also explored based on (i) the inclusion of column moments in the design; (ii) the theory of formation of plastic hinges; and (iii) the design of braces considering the forces computed at their post‐buckled stages. Nonlinear dynamic analyses of these study frames have been evaluated numerically using a computer software Perform‐3D for a suite of 40 ground motions representing the design basis earthquake and maximum considered earthquake hazard levels. Analyses results showed that the SCBFs designed as per the modified procedures achieved the desired performance objectives without the formation of soft‐story mechanism. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Seismic design problem of a steel moment‐resisting frame is formulated as a multiobjective programming problem. The total structural (material) volume and the plastic dissipated energy at the collapse state against severe seismic motions are considered as performance measures. Geometrically nonlinear inelastic time‐history analysis is carried out against recorded ground motions that are incrementally scaled to reach the predefined collapse state. The frame members are chosen from the lists of the available standard sections. Simulated annealing (SA) and tabu search (TS), which are categorized as single‐point‐search heuristics, are applied to the multiobjective optimization problem. It is shown in the numerical examples that the frames that collapse with uniform interstorey drift ratios against various levels of ground motions can be obtained as a set of Pareto optimal solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
为检验抗侧刚度比和支撑布置方式等因素对具有不同总层数的屈曲约束支撑钢框架的抗震性能影响,借助SAP2000软件,探讨6层、12层、18层屈曲约束支撑钢框架结构在抗侧刚度比分别为1、2、3、4、5共五种工况及倒V型和单斜向两种支撑布置方式下的抗震性能。结果表明,屈曲约束支撑钢框架结构基底剪力-顶点位移曲线呈典型的双线性特征;随抗侧刚度比的增大,结构的层间位移角总体上呈降低趋势,基底剪力及支撑轴力增大,顶点水平位移变小,框架所分担的剪力降低;倒V型布置支撑较单斜向布置具有略大的基底剪力、谱加速度,较小的顶点位移、层位移、层间剪力和框架剪力分担率。分析表明,总体上来看,倒V型布置较单斜向布置时支撑框架结构具有略优的抗震性能;抗侧刚度比较支撑布置方式对支撑框架结构抗震性能的影响更为显著。  相似文献   

6.
The present paper investigates the seismic reliability of the application of buckling restrained braces (BRBs) for seismic retrofitting of steel moment resisting framed buildings through fragility analysis. Samples of regular three‐storey and eight‐storey steel moment resisting frames were designed with lateral stiffness insufficient to comply with the code drift limitations imposed for steel moment resisting frame systems in earthquake‐prone regions. The frames were then retrofitted with concentrically chevron conventional braces and BRBs. To obtain robust estimators of the seismic reliability, a database including a wide range of natural earthquake ground motion records with markedly different characteristics was used in the fragility analysis. Nonlinear time history analyses were utilized to analyze the structures subjected to these earthquake records. The improvement of seismic reliability achieved through the use of conventional braces and BRBs was evaluated by comparing the fragility curves of the three‐storey and eight‐storey model frames before and after retrofits, considering the probabilities of four distinct damage states. Moreover, the feasibility of mitigating the seismic response of moment resisting steel structures by using conventional braces and BRBs was determined through seismic risk analysis. The results obtained indicate that both conventional braces and especially BRBs improve significantly the seismic behavior of the original building by increasing the median values of the structural fragility curves and reducing the probabilities of exceedance of each damage state. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an analytical study aimed at evaluating the feasibility of using buckling-restrained braces as a retrofit scheme for existing multi-bay multi-story steel buildings. For that purpose, the seismic response of four two-dimensional frame models representative of typical steel buildings designed in a region of high seismicity was analyzed prior to and after including buckling-restrained braces as a retrofit strategy. The braces were designed following Force-Based and Displacement-Based approaches. The structural performance of the different versions of the frames was evaluated by subjecting each one to a set of twenty ground motions representative of the design earthquake with 10% exceedance probability in fifty years. It was observed that buckling-restrained braces allow for an efficient reduction in the peak drift demands in the retrofitted frames. However, since the beneficial effect of the braces cannot be fully controlled under a Force-Based design approach, it was concluded that a Displacement-Based design approach is the best option to achieve optimum structural performance.  相似文献   

8.
The paper investigates the degree of accuracy achievable when some non‐linear static procedures based on a pushover analysis are used to evaluate the seismic performance. In order to assess the significance of different sources of errors, three types of structural systems are analysed: (i) single‐degree‐of‐freedom (SDOF) systems with different hysteretic behaviour; (ii) shear‐type multi‐degree‐of‐freedom (MDOF) systems with elastic–perfect plastic (EPP) shear force–interstorey drift relationships; (iii) a steel moment‐resisting frame with rigid joints and EPP moment–curvature relationship. In SDOF systems, the source of approximation comes only from the calibration of the demand spectrum, while in MDOF systems some further errors are introduced by the schematization with an equivalent SDOF system. The non‐linear static procedures are compared with rigorous time‐history analyses carried out by considering ten generated earthquake ground motions compatible with the Eurocode 8 elastic spectra. It was found that SDOF systems with longer periods satisfy the equal displacement approximation regardless of the hysteretic model, while hysteresis loops with smaller energy dissipated indicate lower response for shorter periods. This is the opposite of what predicted by the ATC‐40 capacity spectrum method, which underestimates and overestimates, respectively, the actual response of low‐ and high‐ductility systems. Conversely, the inelastic spectrum method proposed by Vidic, Fajfar and Fischinger leads to the most accurate results for all types of structural systems. The analyses carried out on EPP shear‐type frames point out a large concentration of the ductility demand on some storeys. However, such a concentration markedly reduces when some hardening is accounted for. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Cyclic loading tests were performed on three one‐storey steel frames and four three‐storey concrete‐filled tube (CFT) moment frames reinforced with a new type of earthquake‐resisting element consisting of a steel plate shear wall with vertical slits. In this shear wall system, the steel plate segments between the slits behave as a series of flexural links, which provide fairly ductile response without the need for heavy stiffening of the wall. The steel shear walls and the moment frames behaved in a ductile manner up to more than 4% drift without abrupt strength degradation or loss of axial resistance. Results of these tests and complementary analysis provide a basis for an equivalent brace model to be employed in commercially available frame analysis programs. Test and analytical results suggest that the horizontal force is carried by the bolts in the middle portion of the wall–frame connection, while the vertical forces coupled with the moment in the connection are resisted by the bolts in the edge portion of the connection, for which the friction bolts in the connection should be designed. When sufficient transverse stiffening is provided, full plastic strength and non‐degrading hysteretic behaviour can be achieved for this new type of shear wall. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
This paper reports a study for the seismic performance of one large‐scaled (1/15) model of 30‐story steel‐reinforced concrete frame‐concrete core wall mixed structure. The study was implemented by both shaking table tests, in which the similarity ratio for lateral and gravitational accelerations was kept to 1:1, and numerical nonlinear dynamic analysis. The test observations presented herein include story displacement, interstory drift, natural vibration periods, and final failure mode. The numerical analysis was performed to simulate the shaking table test procedure, and the numerically obtained responses were verified by the test results. On the basis of the numerical results, the progressions of structural stiffness, base shear, and overturning moment were investigated, and the distributions of base shear and overturning moment between frame and core wall were also discussed. The test demonstrates the seismic performance of the steel‐reinforced concrete frame‐core wall mixed structure and reveals the potential overturning failure mode for high rise structures. The nonlinear analysis results indicate that the peripheral frames could take more shear forces after core wall damaged under severe earthquakes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the seismic response of tall cantilever wall buildings subjected to pulse type ground motion, with special focus on the relation between the characteristics of ground motion and the higher‐modes of response. Buildings 10, 20, and 40 stories high were designed such that inelastic deformation was concentrated at a single flexural plastic hinge at their base. Using nonlinear response history analysis, the buildings were subjected to near‐fault seismic ground motions and simple closed‐form pulses, which represented distinct pulses within the ground motions. Euler–Bernoulli beam models with lumped mass and lumped plasticity were used to model the buildings. The response of the buildings to the closed‐form pulses fairly matched that of the near‐fault records. Subsequently, a parametric study was conducted for the buildings subjected to three types of closed‐form pulses with a broad range of periods and amplitudes. The results of the parametric study demonstrate the importance of the ratio of the fundamental period of the structure to the period of the pulse to the excitation of higher modes. The study shows that if the modal response spectrum analysis approach is used — considering the first four modes with a uniform yield reduction factor for all modes, and with the square root of sum of squares modal combination rule — it significantly underestimates bending moment and shear force responses. A response spectrum analysis method that uses different yield reduction factors for the first and the higher modes is presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper,an experimental and analytical study of two half-scale steel X-braced frames with equal nominal shear strength under cyclic loading is described.In these tests,all members except the braces are similar.The braces are made of various steel grades to monitor the effects of seismic excitation.Internal stiffeners are employed to limit the local buckling and increase the fracture life of the steel bracing.A heavy central core is introduced at the intersection of the braces to decrease their effective length.Recent seismic specifications are considered in the design of the X-braced frame members to verify their efficiency.The failure modes of the X-braced frames are also illustrated.It is observed that the energy dissipation capacity,ultimate load capacity and ductility of the system increase considerably by using lower grade steel and proposed detailing.Analytical modeling of the specimens using nonlinear finite element software supports the experimental findings.  相似文献   

13.
This paper investigates the effect of the composite action on the seismic performance of steel special moment frames (SMFs) through collapse. A rational approach is first proposed to model the hysteretic behavior of fully restrained composite beam‐to‐column connections, with reduced beam sections. Using the proposed modeling recommendations, a system‐level analytical study is performed on archetype steel buildings that utilize perimeter steel SMFs, with different heights, designed in the West‐Coast of the USA. It is shown that in average, the composite action may enhance the seismic performance of steel SMFs. However, bottom story collapse mechanisms may be triggered leading to rapid deterioration of the global strength of steel SMFs. Because of composite action, excessive panel zone shear distortion is also observed in interior joints of steel SMFs designed with strong‐column/weak‐beam ratios larger than 1.0. It is demonstrated that when steel SMFs are designed with strong‐column/weak‐beam ratios larger than 1.5, (i) bottom story collapse mechanisms are typically avoided; (ii) a tolerable probability of collapse is achieved in a return period of 50 years; and (iii) controlled panel zone yielding is achieved while reducing the required number of welded doubler plates in interior beam‐to‐column joints. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents an analytical study evaluating the influence of ground motion duration on structural damage of 3‐story, 9‐story, and 20‐story SAC steel moment resisting frame buildings designed for downtown Seattle, WA, USA, using pre‐Northridge codes. Two‐dimensional nonlinear finite element models of the buildings are used to estimate the damage induced by the ground motions. A set of 44 ground motions is used to study the combined effect of spectral acceleration and ground motion significant duration on drift and damage measures. In addition, 10 spectrally equivalent short‐duration shallow crustal ground motions and long‐duration subduction zone records are selected to isolate duration effect and assess its effect on the response. For each ground motion pair, incremental dynamic analyses are performed at at least 20 intensity levels and response measures such as peak interstory drift ratio and energy dissipated are tracked. These response measures are combined into two damage metrics that account for the ductility and energy dissipation. Results indicate that the duration of the ground motion influences, above all, the combined damage measures, although some effect on drift‐based response measures is also observed for larger levels of drift. These results indicate that because the current assessment methodologies do not capture the effects of ground motion duration, both performance‐based and code‐based assessment methodologies should be revised to consider damage measures that are sensitive to duration. Copyright © 2016 John Wiley & Sons, Ltd  相似文献   

15.
This paper presents the development, experimental testing, and numerical modelling of a new hybrid timber‐steel moment‐resisting connection that is designed to improve the seismic performance of mid‐rise heavy timber moment‐resisting frames (MRF). The connection detail incorporates specially designed replaceable steel links fastened to timber beams and columns using self‐tapping screws. Performance of the connection is verified through experimental testing of four 2/3 scale beam‐column connections. All 4 connection specimens met the acceptance criteria specified in the AISC 341‐10 provisions for steel moment frames and exhibit high strength, ductility, and energy dissipation capacity up to storey drifts exceeding 4%. All of the timber members and self‐tapping screw connections achieved their design objective, remaining entirely elastic throughout all tests and avoiding brittle modes of failure. To assess the global seismic performance of the newly developed connection in a mid‐rise building, a hybrid timber‐steel building using the proposed moment‐resisting connection is designed and modelled in OpenSees. To compare the seismic performance of the hybrid MRF with a conventional steel MRF, a prototype steel‐only building is also designed and modelled in OpenSees. The building models are subject to a suite of ground motions at design basis earthquake and maximum credible earthquake hazard levels using non‐linear time history analysis. Analytical results show that drifts and accelerations of the hybrid building are similar to a conventional steel building while the foundation forces are significantly reduced for the hybrid structure because of its lower seismic weight. The results of the experimental program and numerical analysis demonstrate the seismic performance of the proposed connection and the ability of the hybrid building to achieve comparable seismic performance to a conventional steel MRF.  相似文献   

16.
A numerical investigation was undertaken to evaluate the response of dual structural systems that consisting of steel plate shear walls and moment‐resisting frames. The primary objective of the study was to investigate the influence of elastic base shear distribution between the wall and the frame on the global system response. A total of 10 walls and 30 wall–frame systems, ranging from 3 to 15 stories, were selected for numerical assessment. These systems represent cases in which the elastic base shear resisted by the frame has a share of 10, 25, or 50% of the total base shear resisted by the dual system. The numerical study consisted of 1600 time history analyses employing three‐dimensional finite elements. All 40 structures were separately analyzed for elastic and inelastic response by subjecting them to the selected suite of earthquake records. Interstory drifts, top story drift, base shears resisted by the wall, and the frame were collected during each analysis. Based on the analysis results, important response quantities, such as the strength reduction, the overstrength, and the displacement amplification factors, are evaluated herein. Results are presented in terms of displacement measures, such as the interstory drift ratio and the top story drift ratio. Analysis results revealed that the increase in the strength reduction factor with the amount of load share is insignificant. Furthermore, there is an inverse relationship between the ductility reduction and the overtsrength. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Damage to buildings observed in recent earthquakes suggests that many old reinforced concrete structures may be vulnerable to the effects of severe earthquakes. One suitable seismic retrofit solution is the installation of steel braces to increase the strength and ductility of a building. Steel bracings have some compelling advantages such as their comparatively low weight, their suitability for prefabrication, and the possibility of openings for utilities, access, and light. The braces are typically connected to steel frames that are fixed to the concrete structure using post‐installed concrete anchors along the perimeter. However, these framed steel braces are not without some disadvantages such as heavier steel usage and greater difficulties during the installation. Therefore, braces without steel frames appear to be an attractive alternative. In this study, braces were connected to gussets furnished with anchor brackets, which were fixed by means of a few post‐installed concrete anchors. The clear structural system and the increased utilization of the anchors allowed the anchorage to be designed precisely and economically. The use of buckling‐restrained braces (BRBs) provides additional benefits in comparison with conventional braces. BRBs improve the energy dissipation efficiency and allow the limitation of the brace force to be taken up by the highly stressed anchorage. Cyclic loading tests were conducted to investigate the seismic performance of BRBs connected with post‐installed anchors used to retrofit reinforced concrete frames. The tests showed that the proposed design method is feasible and increases strength as well as ductility to an adequate seismic performance level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A methodology for the optimal design of supplemental viscous dampers for regular as well as irregular yielding shear‐frames is presented. It addresses the problem of minimizing the added damping subject to a constraint on an energy‐based global damage index (GDI) for an ensemble of realistic ground motion records. The applicability of the methodology for irregular structures is achieved by choosing an appropriate GDI. For a particular choice of the parameters comprising the GDI, a design for the elastic behavior of the frame or equal damage for all stories is achieved. The use of a gradient‐based optimization algorithm for the solution of the optimization problem is enabled by first deriving an expression for the gradient of the constraint. The optimization process is started for one ‘active’ ground motion record which is efficiently selected from the given ensemble. If the resulting optimal design fails to satisfy the constraints for other records from the original ensemble, additional ground motions (loading conditions) are added one by one to the ‘active’ set until the optimum is reached. Two examples for the optimal designs of supplemental dampers are given: a 2‐story shear frame with varying strength distribution and a 10‐story shear frame. The 2‐story shear frame is designed for one given ground motion whereas the 10‐story frame is designed for an ensemble of twenty ground motions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This study explores seismic performance of steel frame buildings with SMA-based self-centering bracing systems using a probabilistic approach. The self-centering bracing system described in this study relies on superelastic response of large-diameter cables. The bracing systems is designed such that the SMA cables are always stressed in tension. A four-story steel frame building characterized until collapse in previous research is selected as a case-study building. The selected steel frame building is designed with SMA bracing systems considering various design parameters for SMA braces. Numerical models of these buildings are developed by taking into account the ultimate state of structural components and SMA braces as well as the effect of gravity frames on lateral load resistance. Nonlinear static analyses are conducted to assess the seismic characteristics of each frame and to examine the effect of SMA brace failure on the seismic load carrying capacity of SMA-braced frames. Incremental dynamic analyses (IDA) are performed to compute seismic response of the designed frames at various seismic intensity levels. The results of IDA are used to develop probabilistic seismic demand models for peak inter-story and residual inter-story drifts. Seismic demand hazard curves of peak and residual inter-story drifts are generated by convolving the ground motion hazard with the probabilistic seismic demand models. Results show that steel frames designed with SMA bracing systems provide considerably lower probability of reaching at a damage state level associated with residual drifts compared to a similarly designed steel moment resisting frame, especially for seismic events with high return periods. This indicates reduced risks for the demolition and collapse due to excessive residual drifts for SMA braced steel frames.  相似文献   

20.
Braced frames are one of the most economical and efficient seismic resisting systems yet few full‐scale tests exist. A recent research project, funded by the National Science Foundation (NSF), seeks to fill this gap by developing high‐resolution data of improved seismic resisting braced frame systems. As part of this study, three full‐scale, two‐story concentrically braced frames in the multi‐story X‐braced configuration were tested. The experiments examined all levels of system performance, up to and including fracture of multiple braces in the frame. Although the past research suggests very limited ductility of SCBFs with HSS rectangular tubes for braces recent one‐story tests with improved gusset plate designs suggest otherwise. The frame designs used AISC SCBF standards and two of these frames designs also employed new concepts developed for gusset plate connection design. Two specimens employed HSS rectangular tubes for bracing, and the third specimen had wide flange braces. Two specimens had rectangular gusset plates and the third had tapered gusset plates. The HSS tubes achieved multiple cycles at maximum story drift ratios greater than 2% before brace fracture with the improved connection design methods. Frames with wide flange braces achieved multiple cycles at maximum story drift greater than 2.5% before brace fracture. Inelastic deformation was distributed between the two stories with the multi‐story X‐brace configuration and top story loading. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号