首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 298 毫秒
1.
Results obtained for rigid structures suggest that rocking can be used as seismic response modification strategy. However, actual structures are not rigid: structural elements where rocking is expected to occur are often slender and flexible. Modeling of the rocking motion and impact of flexible bodies is a challenging task. A non‐linear elastic viscously damped zero‐length spring rocking model, directly usable in conventional finite element software, is presented in this paper. The flexible rocking body is modeled using a conventional beam‐column element with distributed masses. This model is verified by comparing its pulse excitation response to the corresponding analytical solution and validated by overturning analysis of rocking blocks subjected to a recorded ground motion excitation. The rigid rocking block model provides a good approximation of the seismic response of solitary flexible columns designed to uplift when excited by pulse‐like ground motions. Guidance for development of rocking column models in ordinary finite element software is provided. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A new finite element model to analyze the seismic response of deformable rocking bodies and rocking structures is presented. The model comprises a set of beam elements to represent the rocking body and zero‐length fiber cross‐section elements at the ends of the rocking body to represent the rocking surfaces. The energy dissipation during rocking motion is modeled using a Hilber–Hughes–Taylor numerically dissipative time step integration scheme. The model is verified through correct prediction of the horizontal and vertical displacements of a rigid rocking block and validated against the analytical Housner model solution for the rocking response of rigid bodies subjected to ground motion excitation. The proposed model is augmented by a dissipative model of the ground under the rocking surface to facilitate modeling of the rocking response of deformable bodies and structures. The augmented model is used to compute the overturning and uplift rocking response spectra for a deformable rocking frame structure to symmetric and anti‐symmetric Ricker pulse ground motion excitation. It is found that the deformability of the columns of a rocking frame does not jeopardize its stability under Ricker pulse ground motion excitation. In fact, there are cases where a deformable rocking frame is more stable than its rigid counterpart. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates the planar rocking response of an array of free‐standing columns capped with a freely supported rigid beam in an effort to explain the appreciable seismic stability of ancient free‐standing columns that support heavy epistyles together with the even heavier frieze atop. Following a variational formulation, the paper concludes to the remarkable result that the dynamic rocking response of an array of free‐standing columns capped with a rigid beam is identical to the rocking response of a single free‐standing column with the same slenderness yet with larger size, that is a more stable configuration. Most importantly, the study shows that the heavier the freely supported cap beam is (epistyles with frieze atop), the more stable is the rocking frame regardless of the rise of the center of gravity of the cap beam, concluding that top‐heavy rocking frames are more stable than when they are top light. This ‘counter intuitive’ finding renders rocking isolation a most attractive alternative for the seismic protection of bridges with tall piers, whereas its potential implementation shall remove several of the concerns associated with the seismic connections of prefabricated bridges. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In order to use rocking as a seismic response modification strategy along both directions of seismic excitation, a three‐dimensional (3D) rocking model should be developed. Since stepping or rolling rocking structural members out of their initial position is not a desirable performance, a rocking design should not involve these modes of motion. To this end, a model that takes the aforementioned constraint into account needs to be developed. This paper examines the 3D motion of a bounded rigid cylinder that is allowed to uplift and sustain rocking and wobbling (unsteady rolling) motion without sliding or rolling out of its initial position (i.e., a 3D inverted pendulum). Thus, the cylinder is constrained to zero residual displacement at the end of its 3D motion. This 3D dynamic model of the rocking rigid cylinder has two DOFs (three when damping is included), making it the simplest 3D extension of Housner's classical two‐dimensional (2D) rocking model. The development of models with and without damping is presented first. They are simple enough to perform extensive parametric analyses. Modes of motion of the cylinder are identified and presented. Then, 3D rocking and wobbling earthquake response spectra are constructed and compared with the classical 2D rocking earthquake response spectra. The 3D bounded rocking earthquake response spectra for the ground motions considered seem to have a very simple linear form. Finally, it is shown that the use of a 2D rocking model may lead to unacceptably unconservative estimates of the 3D rocking and wobbling seismic response. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Allowing structures to uplift modifies their seismic response; uplifting works as a mechanical fuse and limits the forces transmitted to the superstructure. However, engineers are generally reluctant to construct an unanchored structure because the system could overturn due to lacking redundancy. Using a safety factor for the design of a flat rocking foundation, ie, designing it wider, goes against the main idea of this seismic modification method as the force demand for the structure increases. We propose to extend the flat base of a rocking block with curved extensions to better protect the block from overturning, yet not prevent its uplifting. After investigating the seismic response of such rocking blocks, we extend the study to investigate the seismic response of rolling and rocking frames comprising columns with curved base extensions. The equations of motion are derived, time history analyses are performed, and rocking spectra are constructed. We draw two important conclusions: (a) the response of a class of rocking oscillators with curved base extensions is equivalent to the response of a flat-base rocking oscillators of the same slenderness, yet larger size; (b) the rotation demand on two negative stiffness rocking and rolling oscillators with the same uplifting acceleration and the same size is roughly the same as long as the rocking oscillators are not close to overturning. The above findings can serve as a basis for the rational seismic design of structures supported on rocking columns with curved bases, a system that has been used since the 1960s.  相似文献   

6.
An argument of engineers and researchers against the use of rocking as a seismic response modification technique is that the rocking motion of a structure is chaotic and the existing models are incapable of predicting it well. This argument is supported by the documented inability of rocking models to predict the motion of a specimen excited by a single ground motion. A statistical comparison of the experimental and the numerical responses of a rigid rocking oscillator not to a specific ground motion, but to ensembles of ground motions that have the same statistical properties, is presented. It is shown that the simple analytical model proposed by Housner in 1963 is capable of predicting the statistics of seismic response of a rigid rocking oscillator.  相似文献   

7.
This paper characterizes the ability of natural ground motions to induce rocking demands on rigid structures. In particular, focusing on rocking blocks of different size and slenderness subjected to a large number of historic earthquake records, the study unveils the predominant importance of the strong‐motion duration to rocking amplification (ie, peak rocking response without overturning). It proposes original dimensionless intensity measures (IMs), which capture the total duration (or total impulse accordingly) of the time intervals during which the ground motion is capable of triggering rocking motion. The results show that the proposed duration‐based IMs outperform all other examined (intensity, frequency, duration, and/or energy‐based) scalar IMs in terms of both “efficiency” and “sufficiency.” Further, the pertinent probabilistic seismic demand models offer a prediction of the peak rocking demand, which is adequately “universal” and of satisfactory accuracy. Lastly, the analysis shows that an IM that “efficiently” captures rocking amplification is not necessarily an “efficient” IM for predicting rocking overturning, which is dominated by the velocity characteristics (eg, peak velocity) of the ground motion.  相似文献   

8.
This paper examines the rocking response and stability of rigid blocks standing free on an isolated base supported: (a) on linear viscoelastic bearings, (b) on single concave and (c) on double concave spherical sliding bearings. The investigation concludes that seismic isolation is beneficial to improve the stability only of small blocks. This happens because while seismic isolation increase the ‘static’ value of the minimum overturning acceleration, this value remains nearly constant as we move to larger blocks or higher frequency pulses; therefore, seismic isolation removes appreciably from the dynamics of rocking blocks the beneficial property of increasing stability as their size increases or as the excitation pulse period decreases. This remarkable result suggests that free‐ standing ancient classical columns exhibit superior stability as they are built (standing free on a rigid foundation) rather than if they were seismically isolated even with isolation system with long isolation periods. The study further confirms this finding by examining the seismic response of the columns from the peristyle of two ancient Greek temples when subjected to historic records. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a numerical investigation on the seismic response of multidrum classical columns. The motivation for this study originates from the need to understand: (a) the level of ground shaking that classical multidrum columns can survive, and (b) the possible advantages or disadvantages of retrofitting multidrum columns with metallic shear links that replace the wooden poles that were installed in ancient times. The numerical study presented in this paper is conducted with the commercially available software Working Model 2D?, which can capture with fidelity the sliding, rocking, and slide‐rocking response of rigid‐body assemblies. This paper validates the software Working Model by comparing selected computed responses with scarce analytical solutions and the results from in‐house numerical codes initially developed at the University of California, Berkeley, to study the seismic response of electrical transformers and heavy laboratory equipment. The study reveals that relative sliding between drums happens even when the g‐value of the ground acceleration is less than the coefficient of friction, µ, of the sliding interfaces and concludes that: (a) typical multidrum classical columns can survive the ground shaking from strong ground motions recorded near the causative faults of earthquakes with magnitudes Mw=6.0–7.4; (b) in most cases multidrum classical columns free to dislocate at the drum interfaces exhibit more controlled seismic response than the monolithic columns with same size and slenderness; (c) the shear strength of the wooden poles has a marginal effect on the sliding response of the drums; and (d) stiff metallic shear links in‐between column drums may have an undesirable role on the seismic stability of classical columns and should be avoided. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
11.
A novel modeling approach for the seismic response assessment of rocking frames is presented. Rocking frames are systems with columns that are allowed to fully, or partially, uplift. Despite the apparent lack of a mechanism to resist lateral forces, they have a remarkable capacity against earthquake loading. Rocking frames are found in old structures, for example, ancient monuments, but it is also a promising design concept for modern structures such as bridges or buildings. The proposed modeling can be implemented in a general-purpose structural analysis software, avoiding the difficulties that come with the need of formulating and solving specifically tailored differential equations, or the use of detailed computational models. Different configurations of a rocking portal frame problem are examined. The model is based on rigid, or flexible, beam elements that describe the members of the frame. Negative-stiffness rotational springs are smartly positioned at the rocking interfaces in order to simulate the rocking restoring moment, while the mass and the rotational moment of inertia are considered either lumped or distributed. Both the cases of rigid and flexible piers/columns are discussed, while it is shown that frames with restrained columns can be considered in a straightforward manner. A simple alternative based on an equivalent oscillator that follows the generalized rocking equation of motion is also investigated. The efficiency and the accuracy of the proposed modeling is demonstrated with the aid of carefully chosen case studies.  相似文献   

12.
A design procedure for seismic retrofitting of concentrically and eccentrically braced frame buildings is proposed and validated in this paper. Rocking walls are added to the existing system to ensure an almost uniform distribution of the interstorey displacement in elevation. To achieve direct and efficient control over the seismic performance, the design procedure is founded on the displacement‐based approach and makes use of overdamped elastic response spectra. The top displacement capacity of the building is evaluated based on a rigid lateral deformed configuration of the structure and on the ductility capacity of the dissipative members of the braced frames. The equivalent viscous damping ratio of the braced structure with rocking walls is calculated based on semi‐empirical relationships specifically calibrated in this paper for concentrically and eccentrically braced frames. If the equivalent viscous damping ratio of the structure is lower than the required equivalent viscous damping ratio, viscous dampers are added and arranged between the rocking walls and adjacent reaction columns. The design internal forces of the rocking walls are evaluated considering the contributions of more than one mode of vibration. The proposed design procedure is applied to a large set of archetype braced frame buildings and its effectiveness verified by nonlinear dynamic analysis.  相似文献   

13.
The seismic response of rocking frames that consist of a rigid beam freely supported on rigid freestanding rectangular piers has received recent attention in the literature. Past studies have investigated the special case where, upon planar rocking motion, the beam maintains contact with the piers at their extreme edges. However, in many real scenarios, the beam‐to‐pier contact lies closer to the center of the pier, affecting the overall stability of the system. This paper investigates the seismic response of rocking frames under the more general case which allows the contact edge to reside anywhere in‐between the center of the pier and its extreme edge. The study introduces a rocking block model that is dynamically equivalent to a rocking frame with vertically symmetric piers of any geometry. The impact of top eccentricity (ie, the distance of the contact edge from the pier's vertical axis of symmetry) on the seismic response of rocking frames is investigated under pulse excitations and earthquake records. It is concluded that the stability of a top‐heavy rocking frame is highly influenced by the top eccentricity. For instance, a rocking frame with contacts at the extreme edges of the piers can be more seismically stable than a solitary block that is identical to one of the frame's piers, while a rocking frame with contacts closer to the centers of the piers can be less stable. The concept of critical eccentricity is introduced, beyond which the coefficient of restitution contributes to a greater reduction in the response of a frame than of a solitary pier.  相似文献   

14.
In this paper, the dynamic behavior of multi-drum columns and colonnades with epistyles under earthquake excitations is examined through planar numerical simulations. A specialized software application, developed utilizing the discrete element methods (DEM), is used to investigate the influence of certain parameters on the seismic response of such multi-body structural systems. First, this custom-made software is extensively validated by comparing the computed responses of various problems, such as sliding, rocking and free vibration dynamics of rigid bodies, with the corresponding analytical solutions. Then, the developed software is used to study the influence of the frequency content and amplitude of the ground motions on the columns and colonnades, as well as the geometric characteristics of these structures. Parameters such as the number of drums that assemble each column and the number of columns of a colonnade appear to be defining parameters that affect the seismic response of colonnades with epistyles. For ground motions with relatively low predominant frequencies, rocking is the dominant effect in the response, while with the increase of the excitation frequency the response becomes even more complex involving both sliding and rocking phenomena. The numerical simulations show that earthquakes with relatively low predominant frequencies seem to endanger both standalone columns and colonnades with epistyles more than earthquakes with higher predominant frequencies.  相似文献   

15.
<正>This paper focuses on the investigation of a hybrid seismic isolation system with passive variable friction dampers for protection of structures against near fault earthquakes.The seismic isolation can be implemented by replacing the conventional columns fixed to the foundations by seismic isolating ones.These columns allow horizontal displacement between the superstructure and the foundations and decouple the building from the damaging earthquake motion.As a result, the forces in the structural elements decrease and damage that may be caused to the building by the earthquake significantly decreases.However,this positive effect is achieved on account of displacements occurring in the isolating columns.These displacements become very large when the structure is subjected to a strong earthquake.In this case,impact may occur between the parts of the isolating column yielding their damage or collapse.In order to limit the displacements in the isolating columns,it is proposed to add variable friction dampers.A method for selecting the dampers' properties is proposed.It is carried out using an artificial ground motion record and optimal active control algorithm.Numerical simulation of a seven-story structure shows that the proposed method allows efficient reduction in structural response and limits the displacements at the seismic isolating columns.  相似文献   

16.
By now, it is well known that long‐period surface waves can induce resonant response in high‐rise buildings, in particular those located in sedimentary basins. Rayleigh wave passage has been reported to induce rocking motion at the base of the buildings which can increase displacement demands significantly. However, the building behavior to base rocking has not been extensively studied because commercially available instruments do not record rotational components of ground motion, and thus, rocking time histories have not been available to the analysts. In a recent study, we proposed an effective method for estimating the rocking associated with Rayleigh waves, which takes into account their frequency‐dependent phase velocities. In the present work, we select a number of recorded seismic motions which include surface waves on sedimentary basins from recent well‐recorded earthquake events. Then, we proceed to identify and extract the recorded surface waves by using the technique mentioned above. Using realistic soil‐structure analytical models that have been proposed in the published literature for high‐rise buildings, we study their response to Rayleigh waves as they respond to both translational and rocking motions. Of particular interest is to compare the response of such structures with and without the presence of rotational motions due to surface waves. Using the roof displacement and the building interstory drift as response quantities, our results indicate that demands are controlled by rotational (rocking) motions associated with Rayleigh waves.  相似文献   

17.
Tall rigid blocks are prevalent in ancient historical constructions. Such structures are prone to rocking behaviour under strong ground motion, which is recognizably challenging to predict and mitigate. Our study is motivated by the need to provide innovative nonintrusive solutions to attenuate the rocking response of historical buildings and monuments. In this paper, we examine a novel scheme that employs external resonators buried next to the rocking structure as a means to control its seismic response. The strategy capitalizes on the vibration absorbing potential of the structure-soil-resonator interaction. Furthermore, the benefits of combining the resonators with inerters in order to reduce their gravitational mass without hampering their motion-control capabilities are also explored. Advanced numerical analyses of discrete models under coherent acceleration pulses with rocking bodies of different slenderness ratios under various ground motion intensities highlight the significant vibration absorbing qualities of the external resonating system. The influence of key system parameters such as the mass, stiffness, and damping of the resonator and those of the soil-structure-resonator arrangement are studied. Finally, a case study on the evaluation of the response of rocking structures with external resonators under real pulse-like ground-motion records confirms the important reductions in peak seismic rotational demands obtained with the proposed arrangement.  相似文献   

18.
A new floor connecting system developed for low‐damage seismic‐resistant building structures is described herein. The system, termed Inertial Force‐Limiting Floor Anchorage System (IFAS), is intended to limit the lateral forces in buildings during an earthquake. This objective is accomplished by providing limited‐strength deformable connections between the floor system and the primary elements of the lateral force‐resisting system. The connections transform the seismic demands from inertial forces into relative displacements between the floors and lateral force‐resisting system. This paper presents the IFAS performance in a shake‐table testing program that provides a direct comparison with an equivalent conventional rigidly anchored‐floor structure. The test structure is a half‐scale, 4‐story reinforced concrete flat‐plate shear wall structure. Precast hybrid rocking walls and special precast columns were used for test repeatability in a 22‐input strong ground‐motion sequence. The structure was purposely designed with an eccentric wall layout to examine the performance of the system in coupled translational‐torsional response. The test results indicated a seismic demand reduction in the lateral force‐resisting system of the IFAS structure relative to the conventional structure, including reduced shear wall base rotation, shear wall and column inter‐story drift, and, in some cases, floor accelerations. These results indicate the potential for the IFAS to minimize damage to the primary structural and non‐structural components during earthquakes.  相似文献   

19.
The aim of this work is to propose seismic reliability‐based relationships between the strength reduction factors and the displacement ductility demand of nonlinear structural systems equipped with friction pendulum isolators (FPS) depending on the structural properties. The isolated structures are described by employing an equivalent 2dof model characterized by a perfectly elastoplastic rule to account for the inelastic response of the superstructure, whereas, the FPS behavior is described by a velocity‐dependent model. An extensive parametric study is carried out encompassing a wide range of elastic and inelastic building properties, different seismic intensity levels and considering the friction coefficient as a random variable. Defined a set of natural seismic records and scaled to the seismic intensity corresponding to life safety limit state for L'Aquila site (Italy) according to NTC08, the inelastic characteristics of the superstructures are designed as the ratio between the average elastic responses and increasing strength reduction factors. Incremental dynamic analyses (IDAs) are developed to evaluate the seismic fragility curves of both the inelastic superstructure and the isolation level assuming different values of the corresponding limit states. Integrating the fragility curves with the seismic hazard curves related to L'Aquila site (Italy), the reliability curves of the equivalent inelastic base‐isolated structural systems, with a design life of 50 years, are derived proposing seismic reliability‐based regression expressions between the displacement ductility demand and the strength reduction factors for the superstructure as well as seismic reliability‐based design (SRBD) abacuses useful to define the FPS properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper is concerned with the superficial similarities and fundamental differences between the oscillatory response of a single‐degree‐of‐freedom (SDOF) oscillator (regular pendulum) and the rocking response of a slender rigid block (inverted pendulum). The study examines the distinct characteristics of the rocking spectrum and compares the observed trends with those of the response spectrum. It is shown that the rocking spectrum reflects kinematic characteristics of the ground motions that are not identifiable by the response spectrum. The paper investigates systematically the fundamental differences in the dynamical structure of the two systems of interest and concludes that rocking structures cannot be replaced by ‘equivalent’ SDOF oscillators. The study proceeds by examining the validity of a simple, approximate design methodology, initially proposed in the late 1970s and now recommended in design guidelines to compute rotations of slender structures by performing iteration either on the true displacement response spectrum or design spectrum. This paper shows that the simple design approach is inherently flawed and should be abandoned, in particular for smaller, less‐slender blocks. The study concludes that the exact rocking spectrum emerges as a distinct intensity measure of ground motions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号