首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
So far, the direction and rate of relative motion between the Rivera and the North American plates (RIV-NAM) has been determined by the combination of two Euler poles: Rivera (RIV), with respect to Pacific (PAC), and PAC with respect to North America. Here, we estimate the relative motion of this plate pair (RIV-NAM) assuming that the horizontal projection of the direction of slip of the earthquakes occurring on the RIV-NAM boundaries reflect their relative plate motion. A catalog of earthquakes for which focal mechanisms are reported since 1976 is used in the analysis. Earthquakes were considered in the three segments of the RIV-NAM plate boundary: the subduction zone of the Rivera plate beneath the Jalisco block, the Tres Marias Escarpment and the events associated with the Tamayo Fracture Zone. The best fitting Euler pole is determined using a grid search of 64 potential poles. The slip direction predicted for each grid point is compared to the slip direction of the focal mechanisms of the earthquakes on the plate boundary. The best fitting Euler pole, determined in a root mean square sense (RMS), is located at 21.8°N, 107.6°W. A rate of rotation of 5.3°/year is estimated assuming the seismic earthquake cycle of the 1932 and 1995 great earthquakes represents a lower bound of the rate of plate motion in the subduction zone. The best fitting Euler pole shows that the subduction of the Rivera plate takes place in a direction perpendicular to the trench with a relative velocity of 4.3 cm/year, offshore Manzanillo. The rate of relative motion RIV-NAM decreases from SE to NW. North of approximately 21°N, the subduction of the Rivera plate becomes oblique to the trench and the relative velocity between the two plates decreases to an average of 1.9 cm/year. This slow rate of convergence may explain the rapid decrease of seismicity in the trench and the apparent absence of large earthquakes in this region. In the Tres Marias Escarpment, our best-fitting pole suggests that subduction stops, giving way to high-angle reverse faulting perpendicular to the Tres Marias Escarpment, in agreement with the reverse faulting earthquakes occurring here. To the north of 22.5°N, the slip predicted by the best-fitting pole suggests right-lateral faulting in a direction parallel to the Tamayo Fracture Zone, at a very low velocity (0.5–1.0 cm/year). The best fitting Euler pole determined here lies very close to the RIV-NAM plate boundary in the vicinity of the Tamayo Fracture Zone. This location of our best fitting Euler pole explains the low relative plate velocity, the relatively low level of seismic activity and the presence of a broad zone of deformation that accommodates the RIV-NAM motion.  相似文献   

2.
Deviations of slip vector azimuths of interplate thrust earthquakes from expected plate convergence directions at oblique subduction zones provide kinematic information about the deformation of forearcs and indirect evidence on the dynamics of the plate boundary. A global survey of slip vectors at major trenches of the world reveals a large variability in the kinematic response of forearcs to shear produced by oblique convergence. The variability in forearc deformation inferred from slip vector deflections is suggested to be caused by variations in forearc rheology rather than in the stresses acting on subduction zone thrust faults. Estimated apparent macroscopic rheologies range from elastic to perfectly plastic (or viscous). Forearc rheologies inferred from slip vectors do not correlate with age of the subducting lithosphere, but continental forearcs or old arcs appear to deform less than oceanic or young arcs. The inferred absence of forearc deformation at continental arcs from this study is counter to inferences drawn from compiled geologic information on forearc faults. Correlations of the apparent forearc rheology with backarc spreading, convergence rate, slab dip, arc curvature, and downdip length of the thrust contact are poor. However, great subduction zone earthquakes occur where forearcs are apparently more elastic (i.e., less deformed by oblique convergence), which suggests that the mechanical properties of forearcs rather than stress magnitude on thrust faults control both the kinematic behavior of forearcs and where great subduction zone earthquakes occur.  相似文献   

3.
中国大陆强震活动与其周缘强震活动的相关性   总被引:1,自引:0,他引:1       下载免费PDF全文
板块内部的应力主要来自于相邻板块的挤压,因而,我国大陆板块内部的地震活动与周围几大板块的运动紧密相关。板块边缘的强震活动是板块运动的明显标志。本文研究了板块边缘强震活动与大陆内部强震活动在时间、空间和强度上的相关性。从中总结出估计大陆内部地震形势的方法和指标,并且运用这些指标对我国大陆未来的地震形势作出了具体的推测。  相似文献   

4.
5.
川滇地区是我国地震危险性较高的地区之一.本文基于对特大强震的风险性考虑,使用全球地震模型OpenQuake软件,建立了川滇地区地震危险性预测新模型.首先根据构造特征划分多个震源分区,并整理出这些震源分区内断层活动特征与滑动速率;基于震源分区和断层模型,使用GPS应变率转换成的锥形古登堡-里克特关系作为整个区域的地震积累率,并允许超过历史最大震级的特大地震的出现,结合活动断层滑动速率所积累的地震发生率,给出震源分区内断层地震源和背景地震源的地震发生率的比率分配关系;在活动断层分段上,保留了大型断裂或其主要部分,没有根据小的阶区来对断层进行详细分段,以便分配特大地震发生率;并使用地震率平滑方法分配背景地震发生率.最后在OpenQuake中加入地震动预测方程,计算出了川滇地区的PGA分布图,为区域地震危险性提供科学依据.  相似文献   

6.
Euler vectors of 12 plates, including Philippine Sea plate (PH), relative to a randomly fixed Pacific plate(PA) were determined by inverting the 1122 data from NUVEL-1 global plate motion model, earthquake slip vectors along Philippine Sea plate boundary, and GPS observed velocities. Euler vectors of Philippine Sea plate relative to adjacent plates are also gained. Our results are well consistent with observed data and can satisfy the geological and geophysical constraints along the Caroline(CR)-PH and PA-CR boundaries. Deformation of Philippine Sea plate is also discussed by using the plate motion Euler parameters.  相似文献   

7.
鲜水河断裂带南段深部变形的重复地震研究   总被引:4,自引:3,他引:1       下载免费PDF全文
利用2000—2013年四川数字地震台网和水库台网的波形资料以及川西流动台阵的事件波形,通过辨识发生在同一断层位置上的重复地震来定量研究鲜水河断裂带南段的深部变形.针对研究区台站分布稀疏的客观情况,应用了子采样条件下基于S-P相对到时差来约束震源位置一致性的方法,在鲜水河断裂带识别出11组重复地震,并利用连续波形资料进行了重复地震完整性的初步测试,同时运用结合波形互相关资料的双差法来完成研究区背景地震和重复地震位置的精确定位.重新定位后的地震图像展示研究区中上地壳存在明显缺震层,其与壳内的低速低阻层相吻合.利用重复地震的地震矩和重复间隔,估算出鲜水河断裂带南段孕震深部的滑动速率为3.0~10.2mm·a-1,显示研究区不同地震构造区的深部滑动速率存在明显差异.  相似文献   

8.
The San Andreas Fault (SAF) is the Pacific-North American plate boundary, yet in southern California a significant portion of the relative plate motion is accommodated by the San Jacinto Fault (SJF). Here we investigate the initiation of the SJF and its interaction with the SAF in a three-dimensional visco-elasto-plastic finite-element model. The model results show that the restraining bend of the southern SAF causes strain localization along the SJF, thus may have contributed to its initiation. Slip on the SJF tends to reduce slip rate on the SAF and enhance deformation in the Eastern California Shear Zone. The initiation of the SJF and its interaction with the SAF reflect the evolving plate boundary zone as it continuously seeks the most efficient way to accommodate the relative plate motion.  相似文献   

9.
川滇菱形块体主要边界运动模型的GPS数据反演分析   总被引:29,自引:7,他引:29       下载免费PDF全文
利用川滇地区1991-1999年的高精度GPS观测处理结果,采用稳健 - 贝叶斯最小二乘算法与多断裂位错模型,分析研究了川滇菱形块体主要边界运动的定量模型.反演分析表明:川西鲜水河断裂带和安宁河断裂带的左旋走滑运动速率约30mm/a,倾滑运动(逆断层)速率分别约9-11mm/a;滇西红河断裂带、程海断裂带、鹤庆 - 洱源断裂带的走滑运动(分别为右旋、左旋、左旋)速率分别约、11、13mm/a,倾滑运动(正断层)速率分别约16、24、16mm/a;如将其视为弹性应力应变积累,则各断层每年有相当于6级左右的地震能量积累.依据上述反演结果,模拟了区域主要断层运动引起的水平位移、应变速率场图像,显示了边界断裂及其之间的相互作用.  相似文献   

10.
陶玮  洪汉净  刘培洵  于泳  郑秀珍 《地震》2003,23(2):48-57
根据主要构造分布、震源机制解分布及地震活动状况,将中国大陆及邻区分成20个单元,6个区。利用中国地震局地球物理研究所提供的地震目录,计算近百年来各单元和各区的6级以上强震释放应变能,做出时间滑动后的应变能—时间曲线图,分析认为:(a)中国大陆及邻区百年来的强震活动是一个复杂的时空动态过程,每个区、带有其高、低潮,然而各地区没有统一的地震释放应变能高潮与低潮;(b)强震的活动与平静只是相对而言的,没有绝对的活动或平静;(c)微动态期划分较好的体现了强震活动特征,每个微动态期内至少有一个高潮期,且强震集中在一个主体地区内发生,各搬动态期的能量可以有起伏。通过进一步的讨论和分析,提出中国大陆地壳变形主要受三方面因素的控制:(1)印度板块、太平洋板块和菲律宾板块的活动及其变化控制中国强震活动图像的总体格局;(2)大陆地壳结构的非均匀性及其变化影响了主体地区的形态结构;(3)地壳形变的继承性影响强震活动主体地区形成与变迁的过程。  相似文献   

11.
师皓宇  马念杰 《地震学报》2018,40(3):332-340
以龙门山附近区域水平运动特性以及深部岩体力学特性为基本条件,采用FLAC模拟软件计算分析了龙门山断裂带及附近区域的地貌形成过程和地应力演化机制。研究结果认为:区域板块运动是龙门山地貌形成的重要原因,龙门山3条断层在62万年内的相对滑移速率分别为1.53,0.245和0.458 mm/a,与实际监测结果基本吻合;龙门山断裂带左侧呈抬升趋势,右侧四川盆地的垂向运动保持稳定;随着区域板块的运动,3条断裂带附近主应力的变化均经历了3个阶段,即应力低态稳定阶段,应力增高阶段和应力高态稳定阶段,最终形成应力积聚—应力释放的平衡局面;断裂带附近的最大、最小主应力比值介于2.94—3.71之间,平均为3.3,与实际监测结果基本吻合。由此可以推断,龙门山及附近区域将长期处于高偏应力环境,即长期处于“应力累积—进入临界状态—发震—新的应力累积”的地震周期。   相似文献   

12.
Large earthquakes (Mw > 6, Imax > VIII) occur at the Ibero-Maghrebian region, extending from a point (12ºW) southwest of Cape St. Vincent to Tunisia, with different characteristics depending on their location, which cause considerable damage and casualties. Seismic activity at this region is associated with the boundary between the lithospheric plates of Eurasia and Africa, which extends from the Azores Islands to Tunisia. The boundary at Cape St. Vincent, which has a clear oceanic nature in the westernmost part, experiences a transition from an oceanic to a continental boundary, with the interaction of the southern border of the Iberian Peninsula, the northern border of Africa, and the Alboran basin between them, corresponding to a wide area of deformation. Further to the east, the plate boundary recovers its oceanic nature following the northern coast of Algeria and Tunisia. The region has been divided into four zones with different seismic characteristics. From west to east, large earthquake occurrence, focal depth, total seismic moment tensor, and average seismic slip velocities for each zone along the region show the differences in seismic release of deformation. This must be taken into account in developing an EEWS for the region.  相似文献   

13.
The region of the Aegean Sea and the surrounding areas in the Eastern Mediterranean lies on the boundary zone between the Eurasian and the African plates. It is a zone of widespread extensive deformation and, therefore, reveals a high level of seismicity.Three-dimensional velocity structure, beneath the crust and upper mantle of the region between 33.0°N–43.0°N and 18.0°E–30.6°E, is determined.The data used are arrival times ofP-waves from 166 earthquakes, recorded at 62 seismological stations. In total, 3973 residual data are inverted.The resultant structure reveals a remarkable contrast of velocity. In the top crustal layer, low velocities are dominant in Western Turkey and on the Greek mainland, while a high velocity zone is dominant in the Ionian Sea and in the southern Aegean Sea.In the upper mantle, high velocity zones dominate along the Hellenic arc, corresponding to the subducting African plate and in the northern part of the region, corresponding to the subducting African plate and in the northern part of the region, corresponding to the margin of Eurasian plate.A low velocity zone is dominant in the Aegean Sea region, where large-scale extension and volcanic activity are predominant, associated with the subduction of the African plate.  相似文献   

14.
云南强震活动的多层次动力源分析   总被引:2,自引:2,他引:2  
对云南地区多层次动力过程作了分析研究,结果表明,若以两大板块之间在边界上的相互作用为最高层次的动力作用,云南地区现代构造运动至少包括三个层次的动力作用过程:(1)印度板块和亚欧板块两大地壳板块在喜马拉雅碰撞带东部弧顶和东翼相互作用产生的边界动力源对云南地区产生的直接影响和间接作用;还有菲律宾海板块对亚欧板块的北西西向的推挤,通过华南地区对云南东部的间接作用,构成了云南地区现代构造运动第一层次动力作用;(2)以康滇菱形断块为主体,包括川青断块、滇西南断块带等板内断块的整体向南南东—南东方向的相对移动产生的动力作用,是第二层次的动力作用;(3)由于板内断块边界断裂运动速率的差异,主要是水平滑动速率差异造成的板内断块内部次级断块移动产生的动力作用,是第三层次的动力作用。对印度板块和亚欧板块两大地壳板块碰撞挤压带东部弧顶和东翼相互作用产生的边界动力源与云南及邻区构造运动、构造应力场分布格局和强震活动关系作了分析研究,认为云南及邻区多层次动力作用过程,是强震活动时空分布的主要原因。  相似文献   

15.
— The Indo-Burma (Myanmar) subduction boundary is highly oblique to the direction of relative velocity of the Indian tectonic plate with respect to the Eurasian plate. The area includes features of active subduction zones such as a Wadati-Benioff zone of earthquakes, a magmatic arc, thrust and fold belts. It also has features of oblique subduction such as: an arc-parallel strike-slip fault (Sagaing Fault) that takes up a large fraction of the northward component of motion and a buttress (the Mishmi block) that resists the motion of the fore-arc sliver. In this paper, I have examined the seismicity, slip vectors and principal axes of the focal mechanisms of the earthquakes to look for features of active subduction zones and for evidence of slip partitioning as observed in other subduction zones. The data set consists of Harvard CMT solutions of 89 earthquakes (1977–1999 with 4.8≦̸Mw≦̸7.2 and depths between 3–140 km). Most of these events are shallow and intermediate depth events occurring within the Indian plate subducting eastward beneath the Indo-Burman ranges. Some shallow events within the fore-arc region have arc-parallel Paxes, reflecting buttressing of the fore-arc sliver at its leading edge. Some of the shallowest events have nearly E-W oriented P axes which might account for recent folding and thrusting. Examination of earthquake slip vectors in this region shows that the slip vector azimuths of earthquakes in the region between 20°–26°N are rotated towards the trench normal, which is an indication of partial partitioning of the oblique convergence. It is seen that all aspects of seismicity, including the paucity of shallow underthrusting earthquakes and the orientation of P axes, are consistent with oblique convergence. The conclusions of this paper are consistent with recent geological studies and interpretations such as the coexistence of eastward subduction, volcanic activity and transcurrent movement through mid-Miocene to Quaternary period.  相似文献   

16.
Historical seismicity is used in order to map spatial distribution of seismic moment released by past earthquakes and to compare strain rate deduced from seismicity to those measured by geodetic GPS survey. Spatial analyses are performed on the seismicity of northern boundary of Central Iranian Block which coincides with the Alborz Mountains. This belt has been responsible for several catastrophic earthquakes in the past. In this study, the records of historical and instrumental earthquakes in the Alborz Mountains are used to calculate and plot geographical distribution of seismic moment released in time. A two-dimensional distribution function is proposed and used here to spread seismic moment along causative tectonic features. Using accumulated seismic moment, average slip rates across active faults are estimated for 32 sub-zones along the Alborz Mountains and western Kopet Dag. Seismic moment released by historical and recent earthquakes on this belt accounts for slip rate of 3–5 mm/year which is in good agreement with the geodetic vectors recently deduced from GPS survey in this region. The study also reveals geographical variations of slip rates along some 900 km length of this zone based on seismic history. The results are compared against finding from similar study in this region. Portions of Central and Eastern Alborz show lower seismic strain rate which could imply aseismic motion or overdue earthquakes. Completeness of historical earthquake catalogue and its reliability with regard to earthquake magnitudes, locations, and rupturing systems are among many plausible factors controlling the credibility of such results. Therefore, any conclusions derived from these results remain as reliable as the data and assumptions used for the analyses.  相似文献   

17.
中国及邻区现代地块运动的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
洪汉争 《地震地质》1990,12(4):319-331
本文利用板块几何学的方法研究中国及邻区地块间的相对运动,用数值方法计算了地块运动的角速度及边界断层的滑动速率。计算结果与活断层数据相当吻合,本文还利用地块运动速度讨论了我国现代构造活动  相似文献   

18.
薛丁 《地震》2008,28(2):74-78
地震构造是强震发生的必要基础,强震的孕育和发生与构造密切相关。强震的孕育和发生不仅与震中周围构造有关,而且与孕震区所在的整个构造带有关。这就表明整个构造带的地震活动性与未来强震都有关联。因此,在做测震学参数异常预测地震时,必须考虑整个构造带的地震活动。过去人们常以震中周围地区的地震活动资料来做测震学参数的异常分析,可能会丢失部分信息。文中以金沙江—红河边界带和地震学参量Mf值的结合为例,对基于活动地块边界带的测震学参数强震预测进行了探索,其结果对丽江地震预测效果很好,这对边界带的地震危险性判定有某种参考价值。  相似文献   

19.
—The plate boundary along the north-central Caribbean margin is geologically complex. Our understanding of this complexity is hampered by the fact that plate motions are relatively slow (1 to 2 cm/yr), so that recent seismicity often does not provide a complete picture of tectonic deformation. Studies of the faulting processes of instrumentally recorded earthquakes occurring prior to 1962 thus provide important information regarding the nature and rate of seismic deformation within the region, and are essential for a comprehensive assessment of seismic hazard. We have conducted body waveform modeling studies of eight earthquakes which occurred along the north-central Caribbean plate margin, extending from southeastern Cuba to the Swan Island fracture zone (75 to 83°W). None of these earthquakes has been previously studied and several occurred in regions where no recent (post-1962) seismicity has been recorded. The plate margin in the western portion of our study area is characterized by a transform fault-spreading center system. In the central and eastern portions of our study area the plate margin is a complex, diffuse region of deformation that couples transform motion in the Cayman trough to subduction along the Lesser Antilles arc. Our results show that the western portion of the study area has only experienced large strike-slip earthquakes. Off southeastern Cuba two earthquakes appear to have occurred on high angle, northward dipping, reverse faults with south to southeastward directed slip vectors. An earthquake in northern Jamaica in 1957 shows pure strike-slip faulting, most likely along an east-west trending fault. Finally, an unusual sequence of events located in the Pedro Bank region ~70 km southwest of Jamaica has a mainshock with a reverse-oblique mechanism, suggesting continuity of the plate interface stress field well south of the northern Caribbean margin.  相似文献   

20.
IntroductionIt has been brought forward in the plate tectonic theory that the global lithosphere consists of a number of active blocks floating above the asthenosphere since 1960s. And from then on, the kinematics and dynamics of lithosphere have been the frontal subjects in the contemporary geoscientific study. The Pacific Plate is the biggest one covering one fourth of the earth surface. Situated in the Eurasia Plate, our country is affected directly by the compression from the Pacific Pl…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号