首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
内蒙古地区地方性震级的量规函数研究   总被引:2,自引:1,他引:1  
刘芳  张帆  张晖  赵铁锁  娜热  魏建民 《中国地震》2016,32(3):485-493
选取2008年1月~2015年11月内蒙古测震台网81个台站所记录的6342次地震事件,基于震级残差统计方法,计算了81个台站单台震级与台网平均震级的偏差、平均偏差和标准偏差。分析认为,BHS等6个台站震级偏差较大的原因可能是台站场地响应放大、台基风化等。台基校正前、后单台震级平均偏差值ΔMLi随震中距的变化曲线显示,曲线形态基本未有大的改变,台基校正后较之前震级平均偏差绝对值降低0.01,表明台基对地方性震级偏差的影响不大。同时,进行了81个台站的台基校正获得了内蒙古新量规函数,结果表明,全国量规函数除了震中距为0~120km时适合于内蒙古地区以外,其余情况下均偏高,不符合内蒙古地区的特征。因此,本文修定了全国量规函数,得到了校正后的内蒙古地区量规函数。  相似文献   

2.
Summary A statistical treatment is presented of the observed values of natural remanent magnetization and of magnetic susceptibility of natural minerals: magnetite, chromite, ilmenite pyrrhotite, haematite, cassiterite and garnets. It was found that for most minerals the distribution of the natural remanent magnetization as well as the magnetic susceptibility is logarithmically normal at a significance level of p=0.05. The typical values of Jn and x, the limits of the intervals of reliability of these typical values for p=0.05, and the standard deviations of the distribution were determined for the individual minerals. The end values of the sets were tested by two independent tests of extreme deviations at a level of significance of p=0.05. Following statistical deliberations it was proved that the lognormal distribution of the Jn and x values depended on the number of factors affecting these values, independently of the type of distribution of these so-called disturbing factors. By generalizing for rocks it was shown that the lognormal and normal types of distribution of Jn and x values are extreme cases as regards the observable types with rocks.  相似文献   

3.
4.
Observed polarization ellipses for fundamental-mode surface waves observed at a digital station in Hawaii deviate from those expected for isotropic models of crust and mantle structure for that region. The anomalous motion occurs as rotations of the ellipse about all three axes in a cartesian corrdinate system. The largest and most consistent deviations occur as anomalous slopes of the ellipse about the horizontal axis transverse to the direction of propagation.The observed orientations and magnitudes of these angles can be explained by models of the upper mantle which contain olivine for which thea-axis dips significantly from the horizontal and which includes a sufficiently thick sedimentary layer (1 km) and a thicker than normal oceanic crust (15 km). The ellipses are also generally inclined from great circle paths about the vertical axis and are tilted about the axis aligned with the propagation direction. Both angles are small and difficult to measure, but the inclination angles are consistent with a model of the upper mantle in which thea-axis of olivine is preferentially oriented in an east-west direction.  相似文献   

5.
A new parameter parsimonious rainfall–run‐off model, the Distance Distribution Dynamics (DDD) model, is used to simulate hydrological time series at ungauged sites in the Lygne basin in Norway. The model parameters were estimated as functions of catchment characteristics determined by geographical information system. The multiple regression equations relating catchment characteristics and model parameters were trained from 84 calibrated catchments located all over Norway, and all model parameters showed significant correlations with catchment characteristics. The significant correlation coefficients (with p‐value < 0.05) ranged from 0.22 to 0.55. The suitability of DDD for predictions in ungauged basins was tested for 17 catchments not used to estimate the multiple regression equations. For ten of the 17 catchments, deviations in Nash–Sutcliffe efficiency (NSE) criteria between the calibrated and regionalised model were less than 0.1, and for two calibrated catchments within the Lygne basin, the deviations were less than 0.08. The median NSE for the regionalized DDD for the 17 catchments for two time series was 0.66 and 0.72. Deviations in NSE between calibrated and regionalised models are well explained by the deviations between calibrated and regressed parameters describing spatial snow distribution and snowmelt respectively. The quality of the simulated run‐off series for the ungauged sites in the Lygne basin was assessed by comparing flow indices describing high, medium and low flow estimated from observed run‐off at the 17 catchments and for the simulated run‐off series. The indices estimated for the simulated series were generally well within the ranges defined by the 17 observed series. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Using the characteristic earthquake model, we calculate the probability of occurrence of earthquakes M w > 5.5 for individual fault sources in the Central Apennines for the 30-year period (2007–2037). We show the effect of time-dependent and time-independent occurrence (Brownian passage time (BPT) and Poisson) models together with uncertain slip rates and uncertain maximum magnitudes and, hence, uncertain recurrence times. In order to reduce the large prior geological slip rate uncertainty distribution for most faults, we obtain a posterior slip rate uncertainty distribution using a likelihood function obtained from regional historical seismicity. We assess the uncertainty of maximum magnitude by assuming that the uncertainty in fault width and length are described by a normal distribution with standard deviation equal to ±20% of the mean values. We then estimate the uncertainties of the 30-year probability of occurrence of a characteristic event using a Monte Carlo procedure. Uncertainty on each parameter is represented by the 16th and the 84th percentiles of simulated values. These percentiles bound the range that has a 68% probability of including the real value of the parameter. We do these both for the Poisson case and for the BPT case by varying the aperiodicity parameter (α value) using the values 0.3, 0.5, and 0.7. The Bayesian posterior slip rate uncertainties typically differ by a factor of about 2 from the 16th to the 84th percentile. Occurrence probabilities for the next 30 years at the 84th percentile typically range from 1% to 2% for faults where the Poisson model dominates and from 2% to 21% where one of the BPT models dominates. The uncertainty in occurrence probability under the time-dependent hypothesis is very large, when measured by the ratio of the 84th to the 16th percentile, frequently being as much as two orders of magnitude. On the other hand, when measured by standard deviation, these standard deviations range from 2% to 6% for those faults whose elapsed time since previous event is large, but always 2% or less for faults with relatively recent previous occurrence, because the probability of occurrence is always small.  相似文献   

7.
Introduction The current earthquake damage and losses assessment is based on the parameters obtained from rapid determination of earthquake location. It has been proved that there exist uncertainties of the rapidly determined parameters. For example, the deviation of fast determined magnitude from the magnitude determined by the international common technique obeys the normal distribu-tion, and such deviation is decreasing year after year with improvement of networks performance (MENG, 1994;…  相似文献   

8.
本文视地震系统为模糊灰色系统,由此建立关于发震时间的模糊灰色预测模型,该模型认为已知地震样本集及待预测集的震级分布属模糊正态分布,应用模糊聚类思路于样本集元素的选取,引入最佳震级从属函数μ~*的选择过程。针对可能产生的趋势性偏差,根据实际资料对模型进行了修正。并以华北平原地震带、燕山渤海地震带及山西地震带为例,对模糊灰色GM(1,1)预测模型的实际应用及有关问题进行了初步讨论。  相似文献   

9.
江西地区地方性震级的量规函数与台基校正值研究   总被引:1,自引:0,他引:1  
本文采用《江西测震台网地震观测报告》,选取2007年10月~2015年12月所记录的499次M_L≥1.5地震事件,对各子台测定震级与台网平均震级偏差进行定量的统计分析,从震级偏差频次分布、量规函数、台基、方位角等方面分析产生震级偏差的原因。在对量规函数和台基进行校正后,震级偏差绝对值在0.2以内的样本数达到了68.6%,并给出了适合江西地区的量规函数和台基校正值。  相似文献   

10.
利用2008年汶川M8.0地震获得的强震动记录数据,根据《仪器地震烈度计算暂行规程》计算得到各台站处的仪器地震烈度值,分析仪器地震烈度与宏观地震烈度的对应关系,研究该仪器烈度计算方法的适用性。结果表明,利用该算法所得的仪器烈度值与宏观烈度完全吻合的比率为47.5%,偏差±1度以内的比率为89.1%,说明二者对应情况较为理想,仪器烈度可在一定程度上客观反映实际的震害情况;在各宏观烈度区内仪器烈度值虽然具有一定的离散性,但其均值与宏观烈度区值的偏差相对较小,均控制在±0.3度以内。另外,文中还绘制了汶川地震仪器烈度分布图,虽然与宏观烈度在整体分布上具有一定的对应关系,但受多种因素的影响,仪器烈度分布与宏观烈度分布不可能完全一致。仪器烈度与宏观烈度的概念和属性有所差异,发挥的作用也不尽相同,不应混淆和相互替代。  相似文献   

11.
Abstract

The well-established physical and mathematical principle of maximum entropy (ME), is used to explain the distributional and autocorrelation properties of hydrological processes, including the scaling behaviour both in state and in time. In this context, maximum entropy is interpreted as maximum uncertainty. The conditions used for the maximization of entropy are as simple as possible, i.e. that hydrological processes are non-negative with specified coefficients of variation (CV) and lag one autocorrelation. In this first part of the study, the marginal distributional properties of hydrological variables and the state scaling behaviour are investigated. Application of the ME principle under these very simple conditions results in the truncated normal distribution for small values of CV and in a nonexponential type (Pareto) distribution for high values of CV. In addition, the normal and the exponential distributions appear as limiting cases of these two distributions. Testing of these theoretical results with numerous hydrological data sets on several scales validates the applicability of the ME principle, thus emphasizing the dominance of uncertainty in hydrological processes. Both theoretical and empirical results show that the state scaling is only an approximation for the high return periods, which is merely valid when processes have high variation on small time scales. In other cases the normal distributional behaviour, which does not have state scaling properties, is a more appropriate approximation. Interestingly however, as discussed in the second part of the study, the normal distribution combined with positive autocorrelation of a process, results in time scaling behaviour due to the ME principle.  相似文献   

12.
The sea surface cannot be used as reference for Major Vertical Datum definition because its deviations from the ideal equipotential surface are very large compared to rms in the observed quantities. The quasigeoid is not quite suitable as the surface representing the most accurate Earth's model without some additional conditions, because it depends on the reference field. The normal Earth's model represented by the rotational level ellipsoid can be defined by the geocentric gravitational constant, the difference in the principal Earth's inertia moments, by the angular velocity of the Earth's rotation and by the semimajor axis or by the potential (U 0 ) on the surface of the level ellipsoid. After determining the geopotential at the gauge stations defining Vertical Datums, gravity anomalies and heights should be transformed into the unique vertical system (Major Vertical Datum). This makes it possible to apply Brovar's (1995) idea of determining the reference ellipsoid by minimizing the integral, introduced by Riemann as the Dirichlet principle, to reach a minimum rms anomalous gravity field. Since the semimajor axis depends on tidal effects, potential U 0 should be adopted as the fourth primary fundamental geodetic constant. The equipotential surface, the actual geopotential of which is equal to U 0 , can be adopted as reference for realizing the Major Vertical Datum.  相似文献   

13.
Estimation of low flows in rivers continues to be a vexing problem despite advances in statistical and process‐based hydrological models. We develop a method to estimate minimum streamflow at seasonal to annual timescales from measured streamflow based on regional similarity in the deviations of daily streamflow from minimum streamflow for a period of interest. The method is applied to 1,019 gauged sites in the Western United States for June to December 2015. The gauges were clustered into six regions with distinct timing and magnitude of low flows. A gamma distribution was fit each day to the deviations in specific discharge (daily streamflow divided by drainage area) from minimum specific discharge for gauges in each region. The Kolmogorov–Smirnov test identified days when the gamma distribution was adequate to represent the distribution of deviations in a region. The performance of the gamma distribution was evaluated at gauges by comparing daily estimates of minimum streamflow with estimates from area‐based regression relations for minimum streamflow. Each region had at least 8 days during the period when streamflow measurements would provide better estimates than the regional regression equation, but the number of such days varied by region depending on aridity and homogeneity of streamflow within the region. Synoptic streamflow measurements at ungauged sites have value for estimating minimum streamflow and improving the spatial resolution of hydrological model in regions with streamflow‐gauging networks.  相似文献   

14.
为准确提取震前异常信息,以2017年新疆精河MS6.6地震为例,基于乌鲁木齐台站W-N(k)测段数据,利用离差统计分析方法与原始曲线分析方法分别从定量与定性两个角度研究了地震前后的数据异常特征。结果显示,震前测段数据的变差系数成倍增大,离差分布曲线偏离正态分布,原始曲线出现大幅转折,断层活动形式出现明显变化,震后异常特征消失。通过效果图可知,结合两种方法分析数据异常具有一定的可行性,能为震前异常识别提供参考。  相似文献   

15.
选取宁夏"十五"宽频带数字地震台网2009年1月—2016年12月的1 782个地震事件、7 345条地震记录资料,通过震级残差统计和多元回归分析计算各台站单台震级与台网平均震级的偏差、平均偏差和标准偏差,分析震级偏差的频次分布,修正M_L量规函数,得到宁夏地区的地方性均匀震级量规函数和台基改正量。且采用多元回归分析方法,得到最大地动位移的衰减关系及与之对应的量规函数。结果表明,修正后的震级均方差由原来的0.237 0降低为0.228 9,震级修正最大值为0.51。  相似文献   

16.
以河北测震台网记录的河北及周边地区地震事件为数据源,计算单台测定震级与台网平均震级的平均偏差、标准偏差,采用统计、对比、归纳分析等方法,分析偏差的分布情况,依据震中距分段计算平均偏差,得到震级偏差的分布规律及相应校正值;最后通过对量规函数、台基岩性等进行校正,对比拟合出符合河北台站特点的新量规函数,使误差精度在规定范围之内。  相似文献   

17.
 The null distribution of the lag-k sample serial correlation coefficient (r k , k=1,2,3) was investigated by Monte Carlo simulation. For a time series with normal, exponential, Pearson 3, EV1 (Gumbel), or generalized Pareto (GP) distribution type, the null distribution of its r k can be approximated by the normal distribution with mean −1/(nk) and variance 1/(n−1). But for a time series with the lognormal, EV2 or EV3 (Weibull) distribution type, the null distribution of r k is skewed distributed. In such cases, a simulation technique is suggested to construct percentile confidence intervals at a given significance level.  相似文献   

18.
In the first part of the paper [Molodenskii, 2011], we considered the problem of ambiguity in the solution of the inverse problem of retrieval of density distribution in the Earth’s core and mantle and determination of the Q factors in the mantle from the entire set of modern data on seismic velocities (V p and V S ), the frequencies f i and quality factors Q i of free oscillations of the Earth, and the amplitudes and phases of its forced nutations. We have constructed the model distributions of these parameters, in which the root-meansquared (rms) deviations of all observed values from the predicted ones are much smaller than in the PREM model. Below, we compare the observed amplitudes of the forced nutation with the values predicted by our model. In order to understand how rigid are the constraints imposed by the amplitudes of forced nutation, we not only calculate the deviations of the observed amplitudes of nutation from the predictions by our model but also estimate the changes in these deviations caused by small variations in several parameters of the model. To the parameters to be varied we refer those which have no or barely any effect on the periods and damping constants of free oscillations but have a pronounced effect on the amplitudes of forced nutation. These parameters include (1) the rheological properties of the mantle in the interval of periods from an hour to a day; (2) the dynamical flattening of the liquid core; (3) the dynamic flattening of the solid inner core; (4) the viscosity of the liquid core; and (5) the moment of inertia of the solid inner core. In addition, we estimate the effects of variations in the moment of inertia of the liquid core to be small (±0.2%) and not to affect, within the observation error, the periods of free oscillations. We show that the uncertainty in the model depth distributions of density considerably decreases when the new data on the amplitudes and phases of the forced nutation of the Earth are taken into account. With these data, it is possible to estimate the creep function for the lower mantle in a wide range of periods from a second to a day.  相似文献   

19.
Recent seismicity in the northeast India and its adjoining region exhibits different earthquake mechanisms – predominantly thrust faulting on the eastern boundary, normal faulting in the upper Himalaya, and strike slip in the remaining areas. A homogenized catalogue in moment magnitude, M W, covering a period from 1906 to 2006 is derived from International Seismological Center (ISC) catalogue, and Global Centroid Moment Tensor (GCMT) database. Owing to significant and stable earthquake recordings as seen from 1964 onwards, the seismicity in the region is analyzed for the period with spatial distribution of magnitude of completeness m t, b value, a value, and correlation fractal dimension D C. The estimated value of m t is found to vary between 4.0 and 4.8. The a value is seen to vary from 4.47 to 8.59 while b value ranges from 0.61 to 1.36. Thrust zones are seen to exhibit predominantly lower b value distribution while strike-slip and normal faulting regimes are associated with moderate to higher b value distribution. D C is found to vary from 0.70 to 1.66. Although the correlation between spatial distribution of b value and D C is seen predominantly negative, positive correlations can also be observed in some parts of this territory. A major observation is the strikingly negative correlation with low b value in the eastern boundary thrust region implying a possible case of extending asperity. Incidentally, application of box counting method on fault segments of the study region indicates comparatively higher fractal dimension, D, suggesting an inclination towards a planar geometrical coverage in the 2D spatial extent. Finally, four broad seismic source zones are demarcated based on the estimated spatial seismicity patterns in collaboration with the underlying active fault networks. The present work appraises the seismicity scenario in fulfillment of a basic groundwork for seismic hazard assessment in this earthquake province of the country.  相似文献   

20.
This study investigates the behavior of flux and head in a strongly heterogeneous three-dimensional aquifer system. The analyses relied on data from 520 slug tests together with 38,000 one-foot core intervals lithological data from the site of the General Separations Area in central Savannah River Site, South Carolina, USA. The skewness in the hydraulic conductivity histograms supported the geologic information for the top two aquifers, but revealed stronger clay content, than was reported for the bottom aquifer. The log-normal distribution model described adequately the hydraulic conductivity measurements for all three aquifers although, other distributions described equally well the bottom aquifer measurements. No apparent anisotropy on the horizontal plane was found for the three aquifers, but ratios of horizontal to vertical correlation lengths between 33 and 75 indicated a strong stratification at the site. Three-dimensional Monte Carlo stochastic simulations utilized a grid with larger elements than the support volume of measurements, but of sub-REV (representative elementary volume) dimensions. This necessitated, on one hand, the use of upscaled hydraulic conductivity expressions, but on the other hand did not allow for the use of anisotropic effective hydraulic conductivity expressions (Sarris and Paleologos in J Stoch Environ Res Risk Assess 18: 188–197, 2004). Flux mean and standard deviations components were evaluated on three vertical cross-sections. The mean and variance of the horizontal flux component normal to a no-flow boundary tended to zero at approximately two to three integral scales from that boundary. Close to a prescribed head boundary both the mean and variance of the horizontal flux component normal to the boundary increased from a stable value attained at a distance of about five integral scales from that boundary. The velocity field 〈qx〉 was found to be mildly anisotropic in the top two aquifers, becoming highly anisotropic in the bottom aquifer; 〈qy〉 was anisotropic in all three aquifers with directions of high continuity normal to those of the 〈qx〉 field; finally, 〈qz〉 was highly anisotropic in all three aquifers, with higher continuity along the east–west direction. The mean head field was found to be continuous, despite the high heterogeneity of the underlying hydraulic conductivity field. Directions of high continuity were in alignment with field boundaries and mean flow direction. Conditioning did not influence significantly the expected value of the flux terms, with more pronounced being the effect on the standard deviation of the flux vector components. Conditioning reduced the standard deviations of the horizontal flux components by as much as 50% in the bottom aquifer. Variability in the head cross-sections was affected only marginally, with an average 10% reduction in the respective standard deviation. Finally, the location of the conditioning data did not appear to have a significant effect on the surrounding area, with uniform reduction in standard deviations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号