首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the dynamic response of offshore structures to simultaneous loadings by random earthquake ground motions and random sea waves is presented. Emphasis is placed on the evaluation of dynamic soil-structure interaction effects and also on the evaluation of non-linear hydrodynamic damping effects due to sea waves for the seismic response. The structure is discretized using the finite element method. Sea waves are represented by Bretschneider's power spectrum and the Morison equation defines the wave forcing function. The Tajimi-Kanai power spectrum is used for the horizontal ground acceleration due to earthquakes. The governing equations of motion are obtained by the substructure method. Response analysis is carried out using the frequency-domain random vibration approach. It is found that the first few vibrational modes contribute significantly to the dynamic response. The response due to earthquake loadings is larger when the soil-structure interaction effects are considered. The hydrodynamic damping forces are higher in random seas than in still water and sea waves reduce the seismic response of offshore structures. Studies on the first passage probabilities of response indicate that small sea waves enhance the reliability of offshore structures against earthquake forces.  相似文献   

2.
This paper investigates the effects of random variations of soil properties on site amplification of seismic waves. First, based on attenuation laws and the filtered Tajimi–Kanai spectrum, seismic motion at the base rock of a soil site is stochastically generated according to an assumed earthquake with a given magnitude and epicentral distance. Motions on the surface of this layered random soil site are calculated by nonlinear wave propagation methods, and by assuming the incoming seismic wave consisting of SH wave or combined P and SV waves. Soil properties, including shear modulus, damping ratio and mass density, as well as ground water level are considered as random in the numerical calculation. The Rosenblueth method is used to solve the random dynamic responses of the soil site. Parametric calculations are performed to investigate the effects of various parameters on site amplification of seismic waves. The mean and maximum ground motions on surface of the site are estimated. Numerical results indicate that the estimated surface motions differ substantially if the random variations of soil properties and soil saturation level are taken into consideration in the analysis.  相似文献   

3.
Buildings are continually subject to dynamic loads, such as wind load, seismic ground motion, and even the load from internal utility machines. The recent trend of constructing more flexible high‐rise buildings underscores the importance of including viscoelastic dampers in building designs. Viscoelastic dampers are used to control the dynamic response of a building. If the seismic design is based only on the linear response spectrum, considerable error may occur when calculating the seismic response of a building; rubber viscoelastic dampers show non‐linear hysteretic damping that is quite different from viscous damping. This study generated a non‐linear response spectrum using a non‐linear oscillator model to simulate a building with viscoelastic dampers installed. The parameters used in the non‐linear damper model were obtained experimentally from dynamic loading tests. The results show that viscoelastic dampers effectively reduce the seismic displacement response of a structure, but transmit more seismic force to the structure, which essentially increases its seismic acceleration response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
A displacement-based design procedure using hysteretic damped braces (HYDBs) is proposed for the seismic retrofitting of unsymmetric-plan structures. An expression of the viscous damping equivalent to the hysteretic energy dissipated by the damped braced frame is proposed under bidirectional seismic loads, where corrective factors are assumed as a function of design parameters of the HYDBs. To this end, the nonlinear dynamic analysis of an equivalent two degree of freedom system is firstly carried out on seven pairs of real ground motions whose displacement response spectra match, on average, the design spectrum proposed by the Italian seismic code for a high-risk seismic zone and a medium subsoil class. Then, the extended N2 method considered by the European seismic code, which combines the nonlinear static analysis along the in-plan principal directions of the structure with elastic modal analysis, is adopted to evaluate the higher mode torsional effects. The town hall of Spilinga (Italy), a reinforced concrete (r.c.) framed building with an L-shaped plan, is supposed to be retrofitted with HYDBs. Six structural solutions are compared considering two alternative in-plan distributions of the HYDBs, to eliminate (elastic) torsional effects, and three design values of the frame ductility combined with a constant design value of the damper ductility. To check the effectiveness and reliability of the DBD procedure, the nonlinear static analysis of the test structures is carried out, by evaluating the vulnerability index of r.c. frame members and the ductility demand of HYDBs for different in-plan directions of the seismic loads.  相似文献   

5.
Viscoelastic dampers, as supplementary energy dissipation devices, have been used in building structures under seismic excitation or wind loads. Different analytical models have been proposed to describe their dynamic force deformation characteristics. Among these analytical models, the fractional derivative models have attracted more attention as they can capture the frequency dependence of the material stiffness and damping properties observed from tests very well. In this paper, a Fourier-transform-based technique is presented to obtain the fractional unit impulse function and the response of structures with added viscoelastic dampers whose force-deformation relationship is described by a fractional derivative model. Then, a Duhamel integral-type expression is suggested for the response analysis of a fractional damped dynamic system subjected to deterministic or random excitation. Through numerical verification, it is shown that viscoelastic dampers are effective in reducing structural responses over a wide frequency range, and the proposed schemes can be used to accurately predict the stochastic seismic response of structures with added viscoelastic dampers described by a Kelvin model with fractional derivative.  相似文献   

6.
A comprehensive study is performed on the dynamic behavior of offshore wind turbine (OWT) structure supported on monopile foundation in clay. The system is modeled using a beam on nonlinear Winkler foundation model. Soil resistance is modeled using American Petroleum Institute based cyclic p–y and t–z curves. Dynamic analysis is carried out in time domain using finite element method considering wind and wave loads. Several parameters, such as soil–monopile–tower interaction, rotor and wave frequencies, wind and wave loading parameters, and length, diameter and thickness of monopile affecting the dynamic characteristics of OWT system and the responses are investigated. The study shows soil–monopile–tower interaction increases response of tower and monopile. Soil nonlinearity increases the system response at higher wind speed. Rotor frequency is found to have dominant role than blade passing frequency and wave frequency. Magnitude of wave load is important for design rather than resonance from wave frequency.  相似文献   

7.
针对核电厂结构,在考虑土-结构相互作用(SSI)的情况下进行随机地震反应分析,探讨地基岩土参数的不确定性对反应堆厂房楼层反应谱(FRS)的影响。运用ANSYS软件模块建立核电厂(NPP)结构有限元模型,通过设置边界弹簧单元和阻尼装置来考虑SSI效应;并且通过设置具有概率意义的弹簧刚度和阻尼系数,来模拟土特性参数的不确定性。随机响应分析与确定性分析的结果对比,揭示了岩性地基条件下SSI效应对核电厂FRS的影响以及地基岩土参数不确定性对FRS的影响程度。研究表明,在岩性地基条件下,亦不应忽略SSI效应;考虑SSI效应的随机分析模型同确定性模型相比,二者的分析结果较为接近,两方法都可用于NPP的FRS敏感性分析评估之中,并可进行相互比照。  相似文献   

8.
The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplified methods and consider many assumptions to combine seismic demand with the other operational loads effecting the design of these structures. As the turbines increase in size and capacity, the interaction between seismic loads and aerodynamic loads becomes even more important. In response to the need for a computational tool that can perform coupled simulations of wind and seismic loads, a seismic module is developed for the FAST code and described in this research. This platform allows engineers working in this industry to directly consider interaction between seismic and other environmental loads for turbines. This paper details the practical application and theory of this platform and provides examples for the use of different capabilities. The platform is then used to show the suitable earthquake and operational load combination with the implicit consideration of aerodynamic damping by estimating appropriate load factors.  相似文献   

9.
This paper introduces the mathematics and procedures used in developing a time-dependent damping model for integration analyses of structural response. To establish the time-dependent viscous damping model, frequency-dependent damping ratios of the structure under a series of steady-state unit impulses corresponding to actual loads are first calculated. For simplicity, the ratios can be incorporated with the static stiffness of the structure to model approximately the impulse induced damping spectrum. According to the nature of the problem, these ratios can be calculated from the theoretical impedance functions and experimental observations. With the computed damping spectrum, the damping coefficient in the time domain can be obtained with the Fourier transform technique. Adopting the impulse–response method, the damping can be modeled rationally through integration with changing loads. Numerical examples are presented to show the feasibility of this model while the transform criterion is satisfied.  相似文献   

10.
The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing the control effectiveness in mega-frame buildings. In this paper, a dynamic equation and method to assemble parameter matrixes for a mega-sub controlled structure under random wind loads is presented. Semi-active control using magnetorheological dampers for the MSCS under random wind loads is investigated, and is compared with a corresponding system without dampers. A parametric study of the relative stiffness ratio and relative mass ratio between the mega-frame and the substructures, as well as the additional column stiffness ratio that influences the response control effectiveness of the MSCS, is discussed. The studies reveal, for the first time, that different control mechanisms exist. The results indicate that the proposed structure employing semi-active control can offer an effective control mechanism. Guidelines for selecting parameters are provided based on the analytical study.  相似文献   

11.
损伤和缺陷对海洋平台抗冰抗震性能的影响   总被引:1,自引:0,他引:1  
现役导管架式海洋平台可能会存在裂纹、凹痕、腐蚀等缺陷和损伤,并可能受到海洋生物附着及地基土冲刷的影响,这些问题将减小构件强度或者放大荷载作用.取一座导管架海洋平台为例,应用动力时程及整体推进法进行分析,对比损伤前后动冰力作用下结构响应、结构抗冰能力曲线及剩余强度储备系数,并取3个地震波对损伤前后结构的地震响应、抗震能力曲线、抗震安全裕度系数进行对比.结果显示损伤和缺陷极大地降低了海洋平台抗冰抗震性能,对现役海洋平台的检测和维修也有一定借鉴意义.  相似文献   

12.
基于我国现行的风荷载规范,建立了在风荷载作用下结构-主动调谐质量阻尼器(ATMD)系统的动力方程。定义ATMD最优参数准则为:结构-ATMD系统的位移或加速度响应方差的最小化。ATMD有效性的评价准则为:设置ATMD结构的最小化位移或加速度响应方差与未设置ATMD结构的位移或加速度响应方差之比(分别称为位移和加速度减振系数)。根据上述准则,在频域内数值研究了结构自振频率、标准化加速度反馈增益系数、质量比对ATMD系统的最优参数(包括最优频率比和阻尼比)、有效性和冲程的影响。此外,为了比较的目的,论文同时考虑了结构TMD风致振动控制的情况。  相似文献   

13.
The response of buried pipelines to random excitation by earthquake forces is obtained using a lumped mass model. The earthquake is considered as a stationary random process characterized by a power spectral density function (PSDF). The cross spectral density function between two random inputs along the length of the pipe is defined with the help of the local earthquake PSDF which is the same for all points, and a frequency dependent exponentially decaying (with distance) function. Soil resistance to dynamic excitation along the pipelength is obtained in an approximate manner with the help of frequency independent impedance functions derived from half-space analysis and Mindlin's static stresses within the soil due to point loads. The proposed method has the advantage that it can take into consideration the cross terms in soil stiffness and damping matrices and can consider any boundary condition that needs to be satisfied at the ends of the pipe. A parametric study is also made to show the influence of cross terms in the soil stiffness and damping matrices on the response of the pipe.  相似文献   

14.
The insertion of steel braces equipped with viscoelastic dampers (VEDs) (‘dissipative braces’) is a very effective technique to improve the seismic or wind behaviour of framed buildings. The main purpose of this work is to compare the earthquake and wind dynamic response of steel‐framed buildings with VEDs and achieve optimal properties of dampers and supporting braces. To this end, a numerical investigation is carried out with reference to the steel K‐braced framed structure of a 15‐storey office building, which is designed according to the provisions of Eurocodes 1 and 3, and to four structures derived from the first one by the insertion of additional diagonal braces and/or VEDs. With regard to the VEDs, the following cases are examined: absence of dampers; insertion of dampers supported by the existing K‐braces in each of the structures with or without additional diagonal braces; insertion of dampers supported by additional diagonal braces. Dynamic analyses are carried out in the time domain using a step‐by‐step initial stress‐like iterative procedure. For this purpose, the frame members and the VEDs are idealized, respectively, by a bilinear model, which allows the simulation of the nonlinear behaviour under seismic loads, and a six‐element generalized model, which can be considered as an in‐parallel‐combination of two Maxwell models and one Kelvin model. Artificially generated accelerograms, whose response spectra match those adopted by Eurocode 8 for a medium subsoil class and for different levels of peak ground acceleration, are considered to simulate seismic loads. Along‐wind loads are considered assuming, at each storey, time histories of the wind velocity for a return period Tr=5 years, according to an equivalent spectrum technique. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
本文提出巨型框筒部分悬挂结构新体系,研究这种结构体系对地震反应特性,提出用阻尼器进行巨型框筒部分悬挂体系地震反应的控制方法,采用结构动力学有限元方法,建立空间分析模型,对结构体系进行地震随机振动分析、时程分析和地震反应谱分析。分析结果表明,这种结构体系能有效地减小结构的地震响应,最后研究了影响控制效果的主要因素及控制器参数的影响规律。  相似文献   

16.
Research on wind-induced responses of a large-scale membrane structure   总被引:1,自引:1,他引:0  
The wind-induced responses of a large-scale membrane structure, Expo Boulevard, are evaluated in this study. To obtain the wind pressure distribution on the roof surface, a wind tunnel test is performed. A brief analysis of wind pressure on the membrane roof is conducted first and then an analysis of the wind-induced responses of the structure is carried out using a numerical integral method in the time domain. In the process of calculation, the geometrical nonlinearity is taken into account. Results indicate that mean, RSM and peak values of the structure responses increase nonlinearly while the approaching flow velocity increases. Strong nonlinear characteristics are observed in the displacement responses, whereas the responses of nodal stress and cable axial force show minimal nonlinear properties when the membrane structure is subjected to wind loads. Different values of the damping ratio only have a minimal impact on the RSM response of the structure because the background component is a dominant part of the total dynamic response and the resonant component is too small. As the damping ratio increases from 0.02 to 0.05, the RMS responses of vertical displacement, nodal stress and cable axial force decrease by 8.1%, 6.7% and 17.9%, respectively. Since the mean component plays a significant role in the wind-induced response, the values of the gust response factor are not high for Expo Boulevard.  相似文献   

17.
李喜梅  杜永峰 《地震工程学报》2016,38(1):103-108,115
曲线梁桥由于其平面不规则性导致结构在地震激励下产生弯扭耦合效应,使得隔震曲线梁桥的地震响应更加复杂。目前常用的控制方法是将隔震技术与附加减震装置相结合对曲线梁桥进行控制。本文将地震动考虑为一均匀调制非平稳随机过程,针对隔震曲线梁桥长周期、低频率的特点,选取Clough-Pension平稳地震动功率谱模型作为随机地震动输入模型,对无控(NON-C)、经典线性最优控制(COC)以及序列最优控制算法(SOC)三种状态下的曲线桥梁进行随机响应分析。通过建立曲线梁桥在随机地震动作用下的运动方程,求出减震控制结构的位移谱密度、加速度谱密度响应及时变方差。分析结果表明:序列最优控制算法(SOC)在使隔震层位移得到减小的同时,可以更有效地控制上部结构的地震响应,具有更好的控制效果。  相似文献   

18.
A new response spectrum method, which is named complex multiple-support response spectrum (CMSRS) method in this article, is developed for seismic analysis of non-classically damped linear system subjected to spatially varying multiple-supported ground motion. The CMSRS method is based on fundamental principles of random vibration theory and properly accounts for the effect of correlation between the support motions as well as between the modal displacement and velocity responses of structure, and provides an reasonable and acceptable estimate of the peak response in term of peak seismic ground motions and response spectra at the support points and the coherency function. Meanwhile, three new cross-correlation coefficients or cross covariance especially for the non-classically damped linear structures with multiple-supports excitations are derived under the same assumptions of the MSRS method of classically damped system. The CMSRS method is examined and compared to the results of time history analyses in two numerical examples of non-classically damped structures in consideration of the coherences of spatially variable ground motion. The results show that for non-classically damped structure, the cross terms representing the cross covariance between the pseudo-static and dynamic component are also quite small just as same as classically damped system. In addition, it is found that the usual way of neglecting all the off-diagonal elements in transformed damping matrix in modal coordinates in order to make the concerned non-classically damped structure to become remaining proportional damping property will bring some errors in the case of subjected to spatially excited inhomogeneous ground motion.  相似文献   

19.
This review type of paper shows how the poroelastodynamic theory of Biot can be applied to some soil dynamics problems encountered in transportation engineering, which have been solved by the present authors. These problems involve rigid walls retaining poroelastic soil and subjected to harmonic seismic waves and moving loads on poroelastic soil. Both classes of problems involve a soil layer over bedrock, are of the plane strain type and are solved analytically by two methods: a direct (almost exact and exact for the above two classes of problems) method and an approximate method. The effects of shear modulus, porosity, permeability and hysteretic damping of the soil medium as well as the seismic frequency for retaining walls and velocity for moving loads on the dynamic response are numerically evaluated in order to assess their relative importance on that response.  相似文献   

20.
This note is an extension of earlier works that presented probability distribution functions for amplitudes of the peaks (the highest, the second highest … the m-th highest) in response of deterministic single degree-of-freedom (SDOF) and multi degree-of-freedom (MDOF) structures to ground motion, with deterministic Fourier spectrum and duration. It shows how these probability distribution functions can be evaluated if the Fourier spectrum and duration of the excitation are random variables specified via distribution functions. Two cases are considered: (l) when the structural model is deterministic, and (2) when the modal frequencies are random variables. The procedure presented here approximates the transfer function of the structural response by Dirac delta functions at the modal frequencies, and is applicable to multi-storey buildings with small modal damping, and with natural frequencies that are not too close. The resulting probability distribution functions are needed in seismic hazard calculations of peak response amplitudes of SDOF and MDOF structures that will not be exceeded with given confidence during the service time of the structure from any earthquake at all known faults within certain distance from the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号