首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple modal damping identification model developed by the present authors for classically damped linear building frames is extended here to the non-classically damped case. The modal damping values are obtained with the aid of the frequency domain modulus of the roof-to-basement transfer function and the resonant frequencies of the structure (peaks of the transfer function) as well as the modal participation factors and mode shapes of the undamped structure. The assumption is made that the modulus of the transfer function of the non-classically damped structure matches the one of the classically damped structure in a discrete manner, i.e., at the resonant frequencies of that function modulus. This proposed approximate identification method is applied to a number of plane building frames with and without pronounced non-classical damping under different with respect to their frequency content earthquakes and its limitations and range of applicability are assessed with respect to the accuracy of both the identified damping ratios and that of the seismic structural response obtained by classical mode superposition and use of those identified modal damping ratios.  相似文献   

2.
The response-spectrum mode superposition method is widely used for seismic response analyses of linear systems. In using this method, the complete quadratic combination (CQC) is adopted for classically damped linear systems and the complex complete quadratic combination (CCQC) formula is adopted for non-classically damped linear systems. However, in both cases, the calculation of seismic response analyses is very time consuming. In this paper, the variation of the modal correlation coefficients of displacement, velocity and displacement-velocity with frequency and damping ratios of two modes of interest are studied, Moreover, the calculation errors generated by using CQC and square-root-of-the-sum-of-thesquares (SRSS) methods (or CCQC and CSRSS methods) for different damping combinations are compared. In these analyses, some boundary lines for classically and non-classically damped systems are plotted to distinguish the allowed minimum frequency ratio at given geometric mean of the damping ratios of both modes if their relativity is neglected. Furthermore, the simplified method, which is a special mode quadratic combination method considering only relativity of adjacent modes in CQC method and named simplified CQC or partial quadratic combination (PQC) method for classically damped linear system, is proposed to improve computational efficiency, and the criterion for determination of how many correlated modes should be adopted is proposed. Similarly, the simplified CCQC or complex partial quadratic combination (CPQC) method for the non-classically damped linear system and the corresponding criterion are also deduced. Finally, a numerical example is given to illustrate the applicability, computational accuracy and efficiency of the PQC and CPQC methods.  相似文献   

3.
A method for parametric system identification of classically damped linear system in frequency domain is adopted and extended for non‐classically damped linear systems subjected up to six components of earthquake ground motions. This method is able to work in multi‐input/multi‐output (MIMO) case. The response of a two‐degree‐of‐freedom model with non‐classical damping, excited by one‐component earthquake ground motion, is simulated and used to verify the proposed system identification method in the single‐input/multi‐output case. Also, the records of a 10 storey real building during the Northridge earthquake is used to verify the proposed system identification method in the MIMO case. In this case, at first, a single‐input/multi‐output assumption is considered for the system and modal parameters are identified, then other components of earthquake ground motions are added, respectively, and the modal parameters are identified again. This procedure is repeated until all four components of earthquake ground motions which are measured at the base level of the building are included in the identification process. The results of identification of real building show that consideration of non‐classical damping and inclusion of the multi‐components effect of earthquake ground motions can improve the least‐squares match between the finite Fourier transforms of recorded and calculated acceleration responses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The step-by-step modal time history integration methods are developed for dynamic analysis of non-classically damped linear structures subjected to earthquake-induced ground motions. Both the mode displacement and mode acceleration-based algorithms are presented for the calculation of member and acceleration responses. The complex-valued eigenvectors are used to effect the modal decoupling of the equations of motion. However, the recursive step-by-step algorithms are still in terms of real quantities. The numerical results for the acceleration response and floor response spectra, obtained with these approaches, are presented. The mode acceleration approach is observed to be decidedly better than the mode displacement approach in as much as it alleviates the so-called missing mass effect, caused by the truncation of modes, very effectively. The utilization of the mode acceleration-based algorithms is, thus, recommended in all dynamic analyses for earthquake-induced ground motions.  相似文献   

5.
A new response spectrum method is developed for seismic analysis of linear multi-degree-of-freedom, multiply supported structures subjected to spatially varying ground motions. Variations of the ground motion due to wave passage, loss of coherency with distance and variation of local soil conditions are included. The method is based on fundamental principles of random vibration theory and properly accounts for the effects of correlation between the support motions as well as between the modes of vibration of the structure.  相似文献   

6.
The seismic response of the Mexico City Cathedral built of very soft soil deposits is evaluated by using motions recorded in various parts of the structure during several moderate earthquakes. This unique set of records provides significant insight into the seismic response of this and other similar historic stone masonry structures. Free‐field ground motions are carefully compared in time and frequency domains with motions recorded at building basement. The dynamic characteristics of the structure are inferred from the earthquake records by using system identification techniques. Variation of seismic response for different seismic intensities is discussed. It is shown that, due to the soil–structure interaction, due to large differences between dominant frequencies of earthquake ground motions at the site and modal frequencies of vibration of the structure, and due to a particularly high viscous damping, seismic amplifications of ground motion in this and similar historic buildings erected on soft soil deposits are much smaller than that induced in most modern constructions. Nevertheless, earthquake records and analytical results show that several components of the structure such as its central dome and the bell towers may be subjected to local vibrations that significantly amplify ground motions. Overall, results indicate that in its present state the structure has an acceptable level of seismic safety. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The modal pushover analysis (MPA) procedure, presently restricted to one horizontal component of ground motion, is extended to three‐dimensional analysis of buildings—symmetric or unsymmetric in plan—subjected to two horizontal components of ground motion, simultaneously. Also presented is a variant of this method, called the practical modal pushover analysis (PMPA) procedure, which estimates seismic demands directly from the earthquake response (or design) spectrum. Its accuracy in estimating seismic demands for very tall buildings is evaluated, demonstrating that for nonlinear systems this procedure is almost as accurate as the response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative whereby seismic demands can be estimated directly from the (elastic) design spectrum, thus avoiding the complications of selecting and scaling ground motions for nonlinear response history analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The stationary response of multi-degree-of-freedom non-classically damped linear systems subjected to stationary input excitation is studied. A modal decomposition procedure based on the complex eigenvectors and eigenvalues of the system is used to derive general expressions for the spectral moments of response. These expressions are in terms of cross-modal spectral moments and explicitly account for the correlation between modal responses; thus, they are applicable to structures characterized with significant non-classical damping as well as structures with closely spaced frequencies. Closed form solutions are presented for the important case of response to white-noise input. Various quantities of response of general engineering interest can be obtained in terms of these spectral moments. These include mean zero-crossing rate and mean, variance and distribution of peak response over a specified duration. Examples point out several instances where non-classical damping effects become significant and illustrate the marked improvement of the results of this study over conventional analysis based on classical damping approximations.  相似文献   

9.
This paper investigates the seismic response of tall cantilever wall buildings subjected to pulse type ground motion, with special focus on the relation between the characteristics of ground motion and the higher‐modes of response. Buildings 10, 20, and 40 stories high were designed such that inelastic deformation was concentrated at a single flexural plastic hinge at their base. Using nonlinear response history analysis, the buildings were subjected to near‐fault seismic ground motions and simple closed‐form pulses, which represented distinct pulses within the ground motions. Euler–Bernoulli beam models with lumped mass and lumped plasticity were used to model the buildings. The response of the buildings to the closed‐form pulses fairly matched that of the near‐fault records. Subsequently, a parametric study was conducted for the buildings subjected to three types of closed‐form pulses with a broad range of periods and amplitudes. The results of the parametric study demonstrate the importance of the ratio of the fundamental period of the structure to the period of the pulse to the excitation of higher modes. The study shows that if the modal response spectrum analysis approach is used — considering the first four modes with a uniform yield reduction factor for all modes, and with the square root of sum of squares modal combination rule — it significantly underestimates bending moment and shear force responses. A response spectrum analysis method that uses different yield reduction factors for the first and the higher modes is presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Coulomb damping can be utilized effectively to reduce the dynamic response of structures subjected to seismic ground motions. To activate this damping, some parts of a vibrating structure are allowed to slide at rough interfaces. The dynamic response of structures provided with sliding interfaces at the base, between a floor slab and frame and in the cross bracings of a frame has been examined recently. In this paper, a simple slab sliding system provided with a spring to introduce a recovery mechanism and to reduce the sliding displacement requirement for low frequency structures has been examined. The equations of motion for this system are developed. An approach is presented to solve these coupled equations for earthquake induced ground motions. Structures with varying frequency and friction characterisics are considered and the numerical results are presented in response spectrum form. It is observed that, in low frequency structures, provision of a rather weak spring can reduce the sliding displacement requirements without significantly increasing the forces in the supporting frame and the acceleration input to supported secondary systems.  相似文献   

11.
A new response-spectrum mode superposition method, entirely in real value form, is developed to analyze the maximum structural response under earthquake ground motion for generally damped linear systems with repeated eigenvalues and defective eigenvectors. This algorithm has clear physical concepts and is similar to the complex complete quadratic combination (CCQC) method previously established. Since it can consider the effect of repeated eigenvalues, it is called the CCQC-R method, in which the correlation coefficients of high-order modal responses are enclosed in addition to the correlation coefficients in the normal CCQC method. As a result, the formulas for calculating the correlation coefficients of high-order modal responses are deduced in this study, including displacement, velocity and velocity-displacement correlation coefficients. Furthermore, the relationship between high-order displacement and velocity covariance is derived to make the CCQC-R algorithm only relevant to the high-order displacement response spectrum. Finally, a practical step-by-step integration procedure for calculating high-order displacement response spectrum is obtained by changing the earthquake ground motion input, which is evaluated by comparing it to the theory solution under the sine-wave input. The method derived here is suitable for generally linear systems with classical or non-classical damping.  相似文献   

12.
作为一种特殊的地震动,长周期地震动对结构的危害已引起国内外学者的关注。选取10条KiK-net、K-NET台网中典型的长周期地震动,以及10条国内外的短周期地震动,对比分析两者时程特征和反应谱特征的差异。将所选长、短周期地震动输入钢框架结构模型;通过非线性时程分析,研究钢框架结构在长、短周期地震动作用下的响应差异。结果表明:短周期地震动的平均地面峰值加速度是长周期地震动的3.26倍,而平均地面峰值位移比长周期地震动低10.89%;短周期地震动作用下,钢框架结构顶点加速度响应平均值是长周期地震动的5.16倍,结构顶点位移响应平均值仅比长周期地震动多0.91%;长周期地震动作用下,钢框架结构层间位移角响应较大,结构底部受影响范围更广。对于长周期地震动隐患地区的高层钢框架结构,应对长、短周期震害分别进行考虑;对于中、长周期钢框架结构,建议选用峰值位移作为抗震分析指标。  相似文献   

13.
近断层地震动中长周期、短持时和高能量的加速度脉冲将对高层摩擦摆基础隔震结构的减震性能产生不利影响,考虑土-结构相互作用(SSI效应)后的隔震结构将产生动力耦合效应,可能进一步放大隔震结构地震响应。为此,通过一幢框架-核心筒高层摩擦摆基础隔震结构的非线性地震响应分析,考察近断层脉冲型地震动作用下框架-核心筒摩擦摆基础隔震结构的层间位移角、楼层加速度和隔震层变形等响应规律,揭示隔震体系的损伤机理。基于集总参数SR (sway-rocking)模型,分析不同场地类别与不同地震动类型对隔震体系动力响应影响规律。结果表明:高层摩擦摆基础隔震结构在近断层脉冲型地震动作用下的减震效果相比普通地震动减震效果变差,楼层剪力、层间位移角和隔震层变形等超越普通地震动作用下的1.5倍;对于Ⅲ和Ⅳ类场地类别,考虑SSI效应使隔震结构的地震响应进一步放大,弹塑性层间位移角随着土质变软增大尤为明显。  相似文献   

14.
A method is presented to obtain the exact complex-valued eigenproperties of a classically damped structure and equipment system. The non-classically damped character of the combined system as well as the effect of dynamic interaction between primary structure and equipment are properly included in the calculation of these eigenproperties. It is necessary only to know the classical modal properties of the structure and, of course, the equipment characteristics. The eigenvalues are obtained as the solution of a non-linear equation which can be easily solved by the Newton–Raphson algorithm. Once the eigenvalues are known, the corresponding eigenvectors are obtained from simple closed-form expressions. The method can be used equally effectively with light as well as heavy equipment. Numerical results demonstrating the effectiveness of the method are presented. A procedure which utilizes the complex-valued eigenproperties is developed for calculating the floor response spectra directly from the ground spectra. Numerical results of floor response spectra obtained from this procedure are presented. The floor spectra calculated by this approach include the structure–equipment interaction effect.  相似文献   

15.
A method is proposed for the deterministic and stochastic non-stationary analysis of linear composite systems with cascaded secondary subsystems subjected to a seismic input. This method makes it possible to evaluate, by means of a unitary formulation, the deterministic and non-stationary stochastic response of both classically and non-classically damped subsystems and of secondary subsystems multiply supported on the primary one, as well as the ground. The proposed procedure is very efficient from a computational point of view, because of the Kronecker algebra systematically employed. Indeed, by using this algebra, it is possible to obtain in a very compact and elegant form the eigenproperties of the composite system as a function of the eigenproperties of the two subsystems taken separately. Moreover, it is possible to write the first order differential equations governing the evolution of the second order moments of the response and to solve them in a simple way.  相似文献   

16.
The evaluation of the dynamic response of non-classically damped linear structures requires the solution of an eigenproblem with complex eigenvalues and modal shapes. Since in practice only a small number of complex modes are needed, the complex eigenvalue problem is solved in the modal subspace in which the generalized damping matrix is not uncoupled by classical real modes. It follows that the evaluation of the structural response requires in both cases the determination of complex modes by numerical techniques, which are not as robust as techniques currently used for the solution of the real eigenvalue problem, and the use of complex algebra. In the present paper an unconditionally stable step-by-step procedure is presented for the response of non-classically damped structures in the modal subspace without using complex quantities. The method is based on the evaluation of the fundamental operator in approximated form of the numerical procedure. In addition, the method can be easily modified to incorporate the modal superposition pseudo-static correction terms.  相似文献   

17.
On the basis of the pseudo-excitation method (PEM), a random vibration methodology is formulated for the seismic analysis of multi-supported structures subjected to spatially varying ground motions. The ground motion spatial variability consists of the wave passage, incoherence and site–response effects. Advantages of this method are that less computation effort is required and that the cross-correlations both between normal modes and between excitations are automatically included. Random seismic responses of a realistic long-span bridge due to the wave passage, incoherence and site–response effects are extensively investigated. It is shown that all these effects have significant influence on the seismic response of the structure.  相似文献   

18.
结构平稳随机地震反应时域分析:方法   总被引:3,自引:3,他引:3  
给出了三种常用的随机地震地面运动过程模型,即理想白噪声模型、金井清模型、改进金井清模型的相关函数表达式.引入状态向量,在状态空间中建立地震地面运动激励下的结构振动方程,并求解出结构的复模态特性和复模态反应.利用复模态叠加法推导出线性时不变多自由度体系在这三种随机地震动激励下的平稳协方差反应的解析式,可在时域内直接计算结构随机反应的统计特征.该方法物理概念清晰,结论简便明确,可作为实际工程结构平稳随机地震反应的实用分析方法.  相似文献   

19.
This paper presents a study of the influence of spatially variable ground motions on the longitudinal seismic response of a short, three-span, 30-degree skewed, reinforced concrete highway bridge. Linear and nonlinear finite element models are created for the bridge and linear elastic and nonlinear inelastic time history analyses conducted. Three different types of illustrative excitations are considered: The first utilizes spatially variable ground motions incorporating the effects of variable soil conditions, loss of coherency and wave passage as input motions at the structures' supports. The time history with the smallest peak displacement and the one with the largest peak displacement from the spatially variable ones are then used as uniform input motions at all bridge supports. The comparative analysis of the bridge model shows that the uniform ground motion input with the largest peak displacement cannot provide conservative seismic demands for all structural components—in a number of cases it results in lower response than that predicted by spatially variable motions. The present results indicate that there is difficulty in establishing uniform input motions that would have the same effect on the response of bridge models as spatially variable ones. Consequently, spatially variable input motions need to be applied as excitations at the bridge supports.  相似文献   

20.
在研究多个工程场地钻孔资料的基础上,选取和构造了若干典型场地剖面,利用目前工程上广泛应用的场地地震反应分析的一维等效线性化波动方法,计算了各剖面在不同基底地震动输入的反应谱值及地表加速度峰值,分析了覆盖层厚度对反应谱峰值及峰值周期、地表加速度峰值和放大倍数的影响,得出了一些有意义的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号