首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Pushtashan suprasubduction zone assemblage of volcanic rocks, gabbros, norites and peridotites occurs in the Zagros suture zone, Kurdistan region, northeastern Iraq. Volcanic rocks are dominant in the assemblage and consist mainly of basalt and basaltic andesite flows with interlayered red shale and limestone horizons. Earlier lavas tend to be MORB-like, whereas later lavas display island arc tholeiite to boninitic geochemical characteristics. Tholeiitic gabbros intrude the norites and display fractionation trends typical of crystallisation under low-pressure conditions, whereas the norites display calc-alkaline traits, suggesting their source included mantle metasomatised by fluids released from subducted oceanic crust. Enrichment of Rb, Ba, Sr, Th and the presence of negative Nb anomalies indicate generation in a suprasubduction zone setting. Trondhjemite and granodiorite intrusions are present in the volcanic rocks, gabbros and norites. SHRIMP U-Pb dating of magmatic zircons from a granodiorite yields a mean~(206)Pb/~(238)U age of 96.0 ±2.0 Ma(Cenomanian). The initial ε_(Hf) value for the zircons show a narrow range from +12.8 to+15.6, with a weighted mean of + 13.90±0.96. This initial value is within error of model depleted mantle at 96 Ma or slightly below that, in the field of arc rocks with minimal contamination by older continental crust. The compositional bimodality of the Pushtashan suprasubduction sequence suggests seafloor spreading during the initiation of subduction, with a lava stratigraphy from earlyerupted MORB transitioning into calc-alkaline lavas and finally by 96 Ma intrusion of granodioritic and trondhjemitic bodies with juvenile crustal isotopic signatures. The results confirm another Cretaceous arc remnant preserved as an allochthon within the Iraqi segment of the Cenozoic Zagros suture zone. Implications for the closure of Neo-Tethys are discussed.  相似文献   

2.
The Nain and Ashin ophiolites consist of Mesozoic melange units that were emplaced in the Late Cretaceous onto the continental basement of the Central-East Iran microcontinent(CEIM).They largely consist of serpentinized peridotites slices;nonetheless,minor tectonic slices of sheeted dykes and pillow lavas-locally stratigraphically associated with radiolarian cherts-can be found in these ophiolitic melanges.Based on their whole rock geochemistry and mineral chemistry,these rocks can be divided into two geochemical groups.The sheeted dykes and most of the pillow lavas show island arc tholeiitic(IAT)affinity,whereas a few pillow lavas from the Nain ophiolites show calc-alkaline(CA)affinity.Petrogenetic modeling based on trace elements composition indicates that both IAT and CA rocks derived from partial melting of depleted mantle sources that underwent enrichment in subduction-derived components prior to melting.Petrogenetic modeling shows that these components were represented by pure aqueous fluids,or sediment melts,or a combination of both,suggesting that the studied rocks were formed in an arc-forearc tectonic setting.Our new biostratigraphic data indicate this arc-forearc setting was active in the Early Cretaceous.Previous tectonic interpretations suggested that the Nain ophiolites formed,in a Late Cretaceous backarc basin located in the south of the CEIM(the so-called Nain-Baft basin).However,recent studies showed that the CEIM underwent a counter-clockwise rotation in the Cenozoic,which displaced the Nain and Ashin ophiolites in their present day position from an original northeastward location.This evidence combined with our new data and a comparison of the chemical features of volcanic rocks from different ophiolites around the CEIM allow us to suggest that the Nain-Ashin volcanic rocks and dykes were formed in a volcanic arc that developed on the northern margin of the CEIM during the Early Cretaceous in association with the subduction,below the CEIM,of a Neo-Tethys oceanic branch that was existing between the CEIM and the southern margin of Eurasia.As a major conclusion of this paper,a new geodynamic model for the Cretaceous evolution of the CEIM and surrounding Neo-Tethyan oceanic basins is proposed.  相似文献   

3.
The eastern Pontides orogenic belt provides a window into continental arc magmatism in the Alpine-Himalayan belt.The late Mesozoic-Cenozoic geodynamic evolution of this belt remains controversial.Here we focus on the nature of the transition from the adakitic to non-adakitic magmatism in the Kale area of Gumushane region in NE Turkey where this transition is best preserved.The adakitic lithologies comprise porphyries and hyaloclastites.The porphyries are represented by biotite-rich andesites,hornblende-rich andesite and dacite.The hayaloclastites represent the final stage of adakitic activity and they were generated by eruption/intrusion of adakitic andesitic magma into soft carbonate mud.The non-adakitic lithologies include basaltic-andesitic volcanic and associated pyroclastic rocks. Both rock groups are cutting by basaltic dikes representing the final stage of the Cenozoic magmatism in the study area.We report zircon U-Pb ages of 48.71±0.74 Ma for the adakitic rocks,and 44.68±0.84 Ma for the non-adakitic type,suggesting that there is no significant time gap during the transition from adakitic to non-adakitic magmatism.We evaluate the origin,magma processes and tectonic setting of the magmatism in the southern part of the eastern Pontides orogenic belt.Our results have important bearing on the late Mesozoic-Cenozoic geodynamic evolution of the eastern Mediterranean region.  相似文献   

4.
The study of Late Cretaceous magmatic rocks, developed as a result of magmatism and related porphyry mineralization in the northern Lhasa block, is of significance for understanding the associated tectonic setting and mineralization. This paper reports zircon chronology, zircon Hf isotope data, whole-rock Sr–Nd isotope data, and geochemistry data of Balazha porphyry ores in the northern Lhasa block. Geochemical features show that Balazha ore-bearing porphyries in the northern Lhasa block belong to high-Mg# adakitic rocks with a formation age of ~90 Ma; this is consistent with the Late Cretaceous magmatic activity that occurred at around 90 Ma in the region. The age of adakitic rocks is similar to the molybdenite Re–Os model age of the ore-bearing porphyries in the northern Lhasa block, indicating that the diagenesis and mineralization of both occurred during the same magmatism event in the Late Cretaceous. The Hf and Sr–Nd isotope data indicate that these magmatic rocks are the product of crust–mantle mixing. Differing proportions of materials involved in such an event form different types of medium-acid rocks, including ore-bearing porphyries. Based on regional studies, it has been proposed that Late Cretaceous magmatism and porphyry mineralization in the northern Lhasa block occurred during collision between the Lhasa and Qiangtang blocks.  相似文献   

5.
The relations between ultrabasic rocks and gold deposits in time,space and genesis are discussed in this paper,the research results show that the ore-forming materials of the gold deposits is characteristic of crust-mantle mixing,The formation of the gold deposits is related with the activity of juvenile fluids along with the intrusion of ultrabasic dikes.The ascending juvenile fluids not only offered part of the gold.water and mineralizers for gold mineralization but also promoted the remobilization,deposition and enrichment of gold in crustal sediments.  相似文献   

6.
The presence of shale oil in the Cretaceous Hengtongshan Formation in the Tonghua Basin, drilled by the well TD-01, has been discussed in this geological investigation for the first time. To evaluate the high-quality source rocks of Cretaceous continental shale oil, the distribution characteristics and the evolution of the ancient environment, samples of shale were systematically analyzed in terms of sedimentary facies, organic geochemistry, and organic carbon isotopic composition. The results demonstrate that a TOC value of 1.5% represents the lower-limit TOC value of the high-quality source rocks. Source rocks have an aggregate thickness of 211 m and contain abundant organic matter, with TOC values of 2.69% on average and a maximum value over 5.44%. The original hydrocarbon-generative potential value(S_1+S_2) is between 0.18 mg/g and 6.13 mg/g, and the Ro is between 0.97% and 1.40%. The thermal maturation of the source rocks is relatively mature to highly mature. The δ13C value range is between -34.75‰ and -26.53‰. The ratio of saturated hydrocarbons to aromatic hydrocarbons is 1.55 to 5.24, with an average of 2.85, which is greater than 1.6. The organic types are mainly type Ⅱ_1, followed by type Ⅰ. The organic carbon source was C_3 plants and hydrophytes. The paleoclimate of the Hengtongshan Formation can be characterized as hot and dry to humid, and these conditions were conducive to the development of high-quality source rocks. A favorable paleoenvironment and abundant organic carbon sources provide a solid hydrocarbon generation base for the formation and accumulation of oil and gas in the shale of the Tonghua Basin.  相似文献   

7.
The A'nyemaqen (阿尼玛卿) ophiolite belt along the southern margin of the East Kunlun (昆仑) Mountains marks the suture formed by the closure of paleo-Tethys. The Dur'ngoi ophiolite in the eastern part of this belt consists of meta-peridotite, mafic-ultramafic cumulates, sheeted dikes and basaltic lavas. The meta-peridotites consist of dunite, harzburgite, Iherzolite, feldspar-bearing lherzolite and garnet-bearing Iherzolite and contain residual spinel with Cr# [100×Cr/(Cr+AI)] ranging from 30 to 57 and Mg# [100×Mg/(Mg+Fe2+)] ranging from 50 to 75, indicating an AI- and Mg-rich series. The meta-peridotites have a relatively narrow range of composition with Mg# of 89.2-92.6, Al2O3 contents of (1-4) wt.% and slightly depleted chondrite normalized REE patterns, indicating that they represent relict mantle material that has undergone intermediate to low degrees of partial melting. Garnets in the Iherzolite are andradite, enriched in Ca and Fe and depleted in Mg and Al (And=95-97, Pyr=0.3-5, Gro=0-3), indicating a metamorphic origin. The cumulate rocks mainly consist of dunite, wehrlite, py-roxenite and gabbro. A well-layered gabbro-pyroxenite complex is defined by modal variations in pla-gioclase and pyroxene. Blocks of garnet-pyroxenite or rodingite are locally present in the meta-peridotites. Garnets in the cumulate rocks are grossular (Gro=69-90, And=9-19, Br=1-12), also metamorphic origin. The diabase dikes are moderately depleted in LREE [(La/Sm)N=0.5-0.8] and HREE resulting in slightly convex chondrite-normalized patterns with slightly positive Eu anomalies (δEu=1.1-1.3). The basaltic lavas have REE patterns similar to those of MORB with (La/Sm)N ratios of 0.5-1 and small negative Eu anomalies. They appear to have been derived from a depleted mantle source and to have undergone little or no differentiation during crystallization. SHRIMP U-Pb dating of zircons from the basaits yields 206pb/238U ages of 276-319 Ma (average 308.0±4.9 Ma). The Dur'ngoi ophiolite is interpreted as a dismembered fragment of paleo-oceanic crust emplaced during closure of the paleo-Tethyan Ocean basin. Three other suites of oceanic lavas are recognized in the area: island arc volcanic (IAV) rocks, possible back arc basin (BAB) basalts and possible post-collisional vol-canic (PCV) and plutonic rocks. The distribution of these rocks suggests north-directed subduc-tion. Opening of the A'nyemaqen oceanic basin started at least as early as Late Carboniferous(308 Ma) and the basin probably closed during the Early Triassic. The IAV formed in Late Permian (260 Ms), the BAB in Early-Middle Triassic, and the PCV in Late Triassic. Several large scale, ductile, sinistrai strike-slip fault zones, extending hun-dreds to thousands kilometers, formed along or north of the suture during the Early-Late Triassic, e.g., they are the south margin fault zone of East Kunlun (200-220 Ma), the Aityn Tagh fault (220-230 Ma), and the North Qaidam fault zone (240-250 Ma). These strike-slip faults were probably generated by oblique subduction and closure of the paleo-Tethyan Ocean basin, possibly during exhumation of the subducted plate or uplift of the overriding plate, coincident with post-collisional magmatism.  相似文献   

8.
Abstract: The Late Cretaceous Khabr–Marvast tectonized ophiolite is located in the middle part of the Nain–Baft ophiolite belt, at the south-western edge of the central Iranian microcontinent. Although all the volcanic rocks in the study area indicate subduction-related magmatism (e.g. high LILE (large ion lithophile elements) / HFSE (high field strenght elements) ratios and negative anomalies in Nb and Ta), geological and geochemical data clearly distinguish two distinct groups of volcanic rocks in the tectonized association: (1) group 1 is comprised of hyaloclastic breccias, basaltic pillow lavas, and andesite sheet flows. These rocks represent the Nain–Baft oceanic crust; and (2) group 2 is alkaline lavas from the top section of the ophiolite suite. These lavas show shoshonite affinity, but do not support the propensity of ophiolite.  相似文献   

9.
The Shihu gold deposit, situated in the Taihang Mesozoic orogen of the North China Craton (NCC), is hosted by ductile-brittle faults within Archean metamorphic core complex. The deposit is characterized by gold-bearing quartz-polymetallic sulfides veins. The Mapeng granitoids stock and intermediate-basic dikes intruded the metamorphic basement rocks, and are spatially related to gold mineralization. Detailed laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) U-Pb zircon ages of the granitic rocks, dykes and mineralized quartz veins in the studied area reveal its magmatic and mineralized history. The mineralized quartz veins contain inherited zircons with ages of about 2.55 Ga and 1.84 Ga, probably coming from the basement. These two Precambrian events are coeval with those in other parts of the NCC. The Mapeng granitoid stock, the largest intrusion in the area, was emplaced at ca. 130 Ma, and is coeval with magmatic zircon populations from diorites and quartz diorite pophyrites in the same region. The ca. 130 Ma magmatism and gold mineralization were most likely related to an underplating event that took place in the Taihang orogen at Late Mesozoic. The timing of gold mineralization with respect to felsic magmatism in the area is similar to those observed in other major gold-producing provinces in the NCC. This episode is simultaneous with those in the eastern margin of NCC, indicative of a widespread late Yanshanian metallogenic event that was a response to the Early Cretaceous lithosphere in the eastern NCC, in which the mesothermal gold deposits were formed from similar tectono-magmatic environments.  相似文献   

10.
Petrological and geochemical studies on some volcanic and sub-volcanic rocks from the Lower Benue rift indicate that they are basalts, basaltic and doleritic sills, trachybasalt and trachyte which generally belong to the alkali basalt series. The alkaline affinity is clearly evident in both their normative and modal mineral compositions, as well as their chemical compositions. The generally high fractionation indices [(La/Yb)N] are 7.06 to 17.65 for the basaltic rocks and 23.59 to 135. 35 for the trachytic rocks, against low values commonly seen in subalkaline (tholeiitic) series, with strong enrichments in the incompatible elements. All this strongly supports their alkaline affinity. The basaltic rocks are generally fine-grained and porphyritic, consisting of phenocrysts of clinopyroxene and olivine in the groundmass of the same minerals together with plagioclase. The clinopyroxene is either diopside or clinoenstatite. The trachyte consists of oligoclase, orthoclase, biotite, quartz and exhibits typical trachytic, flow structure. The basaltic and doleritic sills are commonly altered, with calcite and epidote as common alteration prod-ucts. This alteration, which is reflected in the erratic behaviour of K2O, MnO and P2O5 on Harker variation diagrams, high values of LOI, strong depletions in the more mobile LILE (Rb, K, Ba and Sr) and high Th/Ta ratios, is attributed to the effects of an aqueous fluid phase and crustal contamination. On the whole, the mineralogical, as well as major-, trace-elements and REE data suggest that the rocks are co-genetic and most likely derived from differentiation of an alkali olivine-basalt magma, generating through variable low degrees of partial melting of probably an enriched lithospheric (upper) mantle following an asthenospheric uplift (mantle plume or intumescence) with HIMU signa-tures in a within-plate continental rift tectonic setting. This corroborates earlier results obtained for the intrusive rocks in the region.  相似文献   

11.
Magmatic Cu-Ni sulfide deposits are generally associated with mafic-ultramafic rocks and it has not been reported that lamprophyre is one of the surrounding rocks of Cu-Ni sulfide deposits. The Dhi Samir deposit in Yemen, however, is a rare example of Cu-Ni deposits which are hosted in lamprophyre dikes. In this paper, comprehensive research is made on petrology, petrochemistry and isotope geochemistry for Cu-Ni-bearing rocks in the Dhi Samir area and the results show that dark rocks related to Cu-Ni orebodies are sodium-weak potassium and belong to calc-alkaline series lamprophyre, especially camptonite, characterized by enriched alkali, iron and titanium. In these rocks large-ion-lithophile elements are obviously concentrated, while high field strength elements slightly depleted, showing clear negative anomalies of Ta and Nb, and weak deficiency of Ti. The SREE is very high (225.67-290.05 ppm) and the REE partition curves are flat and right-inclined, featuring a LREE-enriched pattern with low negative Eu anomalies. Study of magmatic source areas indicates that the rocks have low (87Sr/86Sr) and high εNd(t), and the magmas were probably derived from the enriched mantle I (EM-I) end-member. Based on the LA-ICPMS on zircon U-Pb isotope dating, the lamprophyre in the Dhi Samir mining area has an age of 602±2.6 Ma, indicating that the rock was formed in the late Proterozoic and in an intraplate setting due to magmatism of an extensional environment in the post-Pan-Africa orogeny.  相似文献   

12.
The development of Early Cretaceous mafic dikes in northern and southern Jiangxi allows an understanding of the geodynamic setting and characteristics of the mantle in southeast China in the Cretaceous. Geological and geochemical characteristics for the mafic dikes from the Wushan copper deposit and No. 640 uranium deposit are given in order to constrain the nature of source mantle, genesis and tectonic implications. According to the mineral composition,the mafic dikes in northern Jiangxi can be divided into spessartite and olive odinite types, which belong to slightly potassium-rich calc-alkaline lamprophyre characterized by enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), large depletion in high strength field elements (HSFE) and with negative Nb, Ta and Ti anomalies, as well as 87Sr/86Sr ratios varying from 0.7055 to 0.7095 and 143Nd/r44Nd ratios varying from 0.5119 to 0.5122.All features indicate that the magma responsible for the mafic dikes was derived mainly from metasomatic lithosphere mantle related to dehydration and/or upper crust melting during subduction. Differences in geochemical characteristics between the mafic dikes in northern Jiangxi and the Dajishan area, southern Jiangxi were also studied and they are attributed to differences in regional lithospheric mantle components and/or magma emplacement depth. Combining geological and geochemical characteristics with regional geological history, we argue that southeast China was dominated by an extensional tectonic setting in the Early Cretaceous, and the nature of the mantle source area was related to enrichment induced by asthenosphere upwelling and infiltration of upper crust-derived fluids responding to Pacific Plate subduction.  相似文献   

13.
单林 《地球化学》1982,(2):205-212,218
Shixiahe ignimbrites in Gansu Province were formed as a result of the fracture eruption during Mesozoic time. They are typical welded rocks, the cooling elements of which are still seen clearly, with well developed columnar joints, plastic fragments and fhidal structure. The unit weight of the rocks was found lying between those of lavas and tuffs. Crystallinoclastic plagioclases of both abyssal and volcanic types were recognized. In crystallinoclastic quartz fluid and glass inclusious were identified with the inclusion temperature ranging from 500 to 600℃. In accordance with the petrochemical characteristics these ignimbrites are thought to be rhyotaxitic aluminiumsupersaturated calc-alkali rocks of Pacific type. Studies On the indices σ and τ figured out by A: Rittmann and V. Gottini show that this type of rocks should be assigned to igneous rocks occurring in the orogenic zones and island-arc areas.  相似文献   

14.
Ages determined with the 40Ar/39Ar isotopic system affirms the Early Cretaceous volcanic activity in the Barton Peninsula, King George Island, Antarctica. Two specimens of basaltic andesite collected from the lowermost volcanic sequence of the peninsula were irradiated and analyzed in different experiments, yielding an identical age spectrum, and two magmatic thermal events of the Early Cretaceous (120.4± 1.6 Ma, 119± 1 Ma) and Early Tertiary (53.1± 1.5 Ma, 52± 1 Ma) are distinguished. The former is interpreted to represent the primary cooling age of basaltic andesite, whereas the latter is the thermal reset age caused by the intrusion of granitic pluton. These new ages clearly indicate that volcanism was active during the Early Cretaceous on the Barton Peninsula and that intensive hydrothermal alteration and mineralization of Mesozoic volcanic rocks resulted from Tertiary magmatism.  相似文献   

15.
This paper re-describes the characteristics of pre-Ordovician (Pt3) metamorphic volcanic rocks in the Huimin-Manlai region of Yunnan Province from the aspects of petrographic characteristics, rock assemblage, petrochemistry, REE, trace elements, lead isotopes and geotectonic setting. The metamorphic volcanic rocks maintain blasto-intergranular and blasto-andesitic textures; the volcanic rocks are characterized by a basalt-andesite-dacite assemblage; the volcanic rocks are basic-intermediate-intermediate-acid in chemical composition, belonging to semi-alkaline rocks, with calc-alkaline series and tholeiite series coexisting, and they are characterized by low TiO2 contents; their REE distribution patterns are of the LREE-enrichment right-inclined type; the volcanic rocks are enriched in large cation elements and commonly enriched in Th and partly depleted in Ti, Cr and P, belonging to the Gondwana type as viewed from their Pb isotopic composition; petrochemically the data points fall mostly within the field of island-arc volcanic rocks. All these characteristics provided new evidence for the existence of original Tethysan island-arc volcanic rocks in the region studied.  相似文献   

16.
《地学前缘(英文版)》2020,11(4):1123-1131
Collision between the Indian and Eurasian plates formed the ~2500 km long Yarlung Zangbo Suture Zone and produced the Himalaya mountains and Tibetan plateau.Here we offer a new explanation for tectonic events leading to this collision:that the northward flight of India was caused by an Early Cretaceous episode of subduction initiation on the southern margin of Tibet.Compiled data for ophiolites along the Yarlung Zangbo Suture Zone show restricted ages between 120 Ma and 130 Ma,and their supra-subduction zone affinities are best explained by seafloor spreading in what became the forearc of a north-dipping subduction zone on the southern margin of Tibet.The subsequent evolution of this new subduction zone is revealed by integrating data for arcrelated igneous rocks of the Lhasa terrane and Xigaze forearc basin deposits.Strong slab pull from this new subduction zone triggered the rifting of India from East Gondwana in Early Cretaceous time and pulled it northward to collide with Tibet in Early Paleogene time.  相似文献   

17.
The Hengshan complex is located in the central part of SE China, which underwent rapid tectonic uplift in the Cretaceous just like many other complexes on the continent. (40)~Ar–(39)~Ar geochronological data from the Hengshan complex suggest that two episodes of crustal cooling/extension took place in this part of the continent during the Cretaceous time. The first stage of exhumation was active during ca. 136–125 Ma, with a cooling rate of 10 °C/Ma. The second stage of exhumation happened at ca. 98–93 Ma, with a cooling rate of 10 °C/Ma. Considering the folding in the Lower Cretaceous sedimentary rocks and the regional unconformity underneath the Upper Cretaceous red beds, it is believed that the Cretaceous crustal extension in SE China was interrupted by a compressional event. The reversion to extension, shortly after this middle Cretaceous compression, led to the rapid cooling/exhumation of the Hengshan complex at ca. 98–93 Ma. The Cretaceous tectonic processes in the hinterland of SE China could be controlled by interactions between the continental margin and the Paleo–pacific plate.  相似文献   

18.
The Pengshan Sn-polymetallic ore field is located in the southeastern part of the Yangtze block, spanning the southeast edge of the MLYDZ and the northern edge of the mid-segment of the Jiangnan Uplift, and on one side of the MLYDZ. The studies of LA–ICP–MS zircon U–Pb chronology and petrogeochemistry for Early Cretaceous acid granites from the Pengshan ore field were carried out in this paper. We report zircon U–Pb geochronology and whole-rock geochemistry for acid granites in the Pengshan ore field. The zircon U–Pb ages of the muscovite-granite, biotite adamellite and granite-porphyry are 127.6 ± 1.7 Ma, 126.9 ± 1.6 Ma and 126.6 ± 2.0 Ma, respectively. The granites in Pengshan are characterized by a high silicon content and are rich in alkali. They belong to high-potassium, calc-alkaline, peraluminous granite. The rocks have a relatively high Rb/Ba ratio, and the data points for muscovite-granite and biotite adamellite all fall within the clay-rich sources region, near the pelite-derived end-member, showing that the Pengshan muscovite-granite and biotite adamellite mainly originated from the partial melting of metapelites with high maturity. The transformation of the compressional and extensional tectonics in this region approximately 128 Ma obviously lags behind that in the mid-segment of the Jiangnan Uplift (135 Ma), but occurred earlier than the MLYDZ (126 Ma). The Pengshan ore field extends from the mid-segment of the Jiangnan Uplift to the MLYDZ. Although the tectonic stress field is constrained by the combination of the two secondary tectonic units, the time of tectonic system transformation is closer to the MLYDZ because the spatial orientation of the area is enclosed in the MLYDZ. Relevant geophysical and drilling data confirm the rationality of Pengshan–Ao’xia as a multi-center vertical zoning ore field, and show the scientificity of the prospecting idea of abutting joint between the north-west of Pengshan area and the south-east of Ao’xia area.  相似文献   

19.
Several orogenic cycles of mountain building and subsequent collapse associated with periods of shallowing and steepening of subduction zones have been recognized in recent years in the Andes.Most of them are characterized by widespread crustal delamination expressed by large calderas and rhyolitic flare-up produced by the injection of hot asthenosphere in the subduction wedge.These processes are related to the increase of the subduction angle during trench roll-back.The Payenia paleoflat-slab,in the southern Central Andes of Argentina and Chile(34°—37°S) recorded a complete cycle from crustal thickening and mountain uplift to extensional collapse and normal faulting,which are related to changes in the subduction geometry.The early stages are associated with magmatic expansion and migration,subsequent deformation and broken foreland.New ages and geochemical data show the middle to late Miocene expansion and migration of arc volcanism towards the foreland region was associated with important deformation in the Andean foothills.However,the main difference of this orogenic cycle with the previously described cycles is that the steepening of the oceanic subducted slab is linked to basaltic flooding of large areas in the retroarc under an extensional setting.Crustal delamination is concentrated only in a narrow central belt along the cordilleran axis.The striking differences between the two types of cycles are interpreted to be related to the crustal thickness when steepening the subducting slab.The crustal thickness of the Altiplano is over 60-80 km,whereas Payenia is less than 42 km in the axial part,and near 30 km in the retroarc foothills.The final extensional regime associated with the slab steepening favors the basaltic flooding of more than 8400 km~3 in an area larger than 40,000 km2,through 800 central vents and large fissures.These characteristics are unique in the entire present-day Andes.  相似文献   

20.
Plate tectonic activity has played a critical role in the development of petrotectonic associations in the Kadiri schist belt. The calc alkaline association of basalt, andesite, dacite and rhyolite(BADR) is the signature volcanic rock suite of the convergent margin. The N-S belt has gone below the unconformity plane of Cuddapah sediments. In the northern part geochemical and structural attributes of the Kadiri greenstone belt is studied along with microscopic observations of selected samples. Harker diagram plots of major elements generally indicate a liquid line of descent from a common source, such that BADR rocks are derived from a common parent magma of basaltic to andesitic composition. These calc-alkaline volcanic rocks are formed at convergent margins where more silicic rocks represent more highly fractionated melt. All the litho-units of this greenstone belt indicate crush and strain effects. The stretched pebbles in the deformed volcanic matrix with tectonite development along with associated greenschist facies metamorphism, alteration and hydration is remarkable. Flow foliation plane with N-S strike and very low angle(5° to 10°) easterly dip and N-S axial planar schistosity formed due to later phase isoclinal folding can be clearly identified in the field. Basic intrusives are quite common in the surrounding area. All the observations including the field setting and geochemistry clearly demonstrate ocean-continent subduction as the tectonic environment of the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号