首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
宁城盆地东南缘晚中生代岩石地层序列完整、连续,但该岩石地层序列及其所含生物群的地质年代归属问题还存在争议。含道虎沟生物群岩石地层剖面的发现和实测表明,研究区晚中生代地层序列从下至上由中侏罗世九龙山组—髫髻山组、晚侏罗世土城子组和早白垩世义县组组成。九龙山组—髫髻山组下部以沉积岩系为主,产道虎沟生物群,上部为中、基性火山岩,SHRIMP锆石U-Pb年龄为152Ma和164~165Ma。九龙山组—髫髻山组地层序列既为土城子组平行不整合覆盖,而且二者又同时被早白垩世义县组角度不整合覆盖。含道虎沟生物群的晚中生代岩石地层的地质年代早于热河生物群,为中侏罗世的产物,现暂将其统并为九龙山组—髫髻山组。  相似文献   

2.
燕山地区土城子组划分、时代与盆地性质探讨   总被引:13,自引:2,他引:13       下载免费PDF全文
燕山地区土城子组分布广泛,顶底清晰,是本区最具特色的岩石地层单位之一。区域地质对比研究表明,燕山西部土城子组与燕山中东部土城子组在地层、时代上有较大的不同,西部盆地中髫髻山组火山岩不发育或很少发育,土城子组在地层划分上常包含九龙山组或髫髻山期火山岩,时代为中晚侏罗世(J2—J3);东部盆地普遍发育髫髻山组火山岩浆或火山-沉积地层,土城子组划分与层型剖面一致。古生物化石和同位素年龄研究表明:土城子组时限在156~139Ma之间,属于晚侏罗世—早白垩世。土城子期盆地沉积的不对称性,相分布特征,古水流等指示其形成在一个挤压作用下的陆内火山-沉积盆地环境。  相似文献   

3.
辽宁建昌玲珑塔地区中侏罗世地层与化石初步报道   总被引:1,自引:0,他引:1  
辽西建昌县玲珑塔地区出露一套火山岩所夹的沉积地层, 富含叶肢介、介形类、双壳类、鱼、昆虫、脊椎动物和植物等化石。经区域地层研究, 结合对玲珑塔大西山地质剖面实测以及对该剖面新近所采集的各门类化石的综合研究, 确认此套沉积地层位于义县组之下, 属髫髻山组, 化石显示“燕辽生物群”面貌, 时代为中侏罗世。  相似文献   

4.
河北蔚县地区侏罗纪含煤地层   总被引:3,自引:3,他引:3  
<正> 河北省蔚县地区侏罗纪地层十分发育,自下而上分为郑家窑组、乔儿涧组、九龙山组、髫髻山组和后城组。其中九龙山组、髫髻山组和后城组是火山岩系或红层,时代属中侏罗世;郑家窑组和乔儿涧组含丰富的动、植物化石,是河北省重要的含煤地层之一。1957年河北省地质局综合普查二队在本区进行1/20万区域地质测量。申庆荣将侏罗纪含煤地层  相似文献   

5.
冀西北晚侏罗世火山-沉积盆地的性质及构造环境   总被引:15,自引:2,他引:15  
冀西北晚侏罗世髫髻山组和后城组火山岩的岩石学-地球化学分析结果揭示,晚侏罗世的火山岩主要为来自富集地幔的钾玄岩系列和部分壳源高钾酸性岩石组合。通过对髫髻山组之上的后城组的地层层序和沉积构造研究,认为这套河-湖相沉积形成在伸展背景下的断陷盆地之中,下部由粗粒冲积扇和辫状河体系组成,上部则为河湖相沉积物,并出现火山岩夹层,从而在总体上表现为一个向上变细的沉积层序。髫髻山组到后城组的层序反映出从断陷盆地到坳陷盆地的发展过程。此外,后城组形成后所发生的区域性挤压作用导致了这期伸展盆地的反转。  相似文献   

6.
冀北承德盆地髫髻山组火山岩的时代   总被引:16,自引:11,他引:16  
刘健赵越  柳小明 《岩石学报》2006,22(11):2617-2630
随着近年来的研究进展,代表燕山期大规模火山喷发的髫髻山期(蓝旗期)火山岩的年代学数据得到迅速积累。本文在结合前人对燕山地区髫髻山期(蓝旗期)火山岩 U-Pb 同位素定年工作的基础上,对取自冀北承德盆地兴隆山附近髫髻山组火山岩顶、底样品的锆石进行 U-Pb LA-ICP-MS 定年,试图进一步限定该地区髫髻山期火山岩起始和结束的时代。承德盆地髫髻山组火山岩定年结果表明,其顶部晶屑凝灰岩时代为153±1Ma(2σ),底部粗安岩时代为156±3Ma(2σ)。两者时代在误差范围内一致,说明该地区髫髻山组火山岩喷发是在短时期内完成的。燕山地区髫髻山期(蓝旗期)火山岩时代综合对比分析结果表明髫髻山组(蓝旗组)火山岩初步限定的底部年龄和顶部年龄分别为158±1Ma、153±1Ma。其形成时代在晚侏罗世。土城子组(后城组)与髫髻山组(蓝旗组)火山岩的界线年龄为153±1Ma,这是第一次获得我国中生代陆相地层界线年龄。土城子组顶部的时限确定在134±2~136±2Ma 之间。其沉积时代为晚侏罗世至早白垩世。而髫髻山组火山岩之下的九龙山组的时代可能亦为晚侏罗世。区域张家口组的底部时代限定在134±2Ma。  相似文献   

7.
冀西下花园盆地黑岱山—八宝山一带在中、上元古界雾迷山组、下马岭组之上,早一中侏罗世下花园组之下,分布一套以中基性火山岩为主夹火山碎屑岩、沉积岩的地层,层位稳定,特征明显(图1)。已往资料将八宝山一带这一套地层的火山岩划为辉绿岩,其碎屑岩归入下花园组。黑岱山一带的这一层位或称髫髻山统或称崔家庄组(见下表)。一九八二年进行1∶5万区域地质调查时,笔者等对该套地层层序进行了详细的追索和观察,并在八宝山水窑沟村北测制剖面和采集化石,确定了该套地层层位应属南大岭组,钾—氩全岩同位素年令值为1.73亿年。  相似文献   

8.
华北东北部晚中生代陆相地层、生物群及其年代学研究   总被引:1,自引:0,他引:1  
华北东北部晚中生代陆相地层十分发育,从下至上为九龙山组、髫髻山组、土城子组、张家口组、大北沟组、义县组和九佛堂组。它们主要的岩石组合为陆相火山岩熔岩、火山碎屑岩和间夹的河流-湖泊相沉积岩。九龙山组、髫髻山组(165-154 Ma)火山沉积岩系中发育以带毛恐龙(近鸟龙)、哺乳动物、翼龙和昆虫类等为代表的燕辽生物群(J2-J3),晚侏罗世末期土城子组时期(154-139Ma)该生物群大多数生物属种消亡,并在早白垩世早期(张家口组、大北沟组、义县组和九佛堂组)(144-120Ma)萌生新的生物群-热河生物群(K1),以恐龙、哺乳类、被子植物、鱼类和昆虫等为特征。中侏罗世-早白垩世燕辽生物群和热河生物群表现了明显的演化关系,响应着古环境变化与重大地质事件发生的复杂地球表层圈层作用。  相似文献   

9.
北票组是辽西侏罗纪主要含煤地层,大部分学者从植物化石角度论述其时代为早侏罗世,区域上与窑坡组、永定庄组、富县组、三工河组对比。本文从地层层序、岩性、构造演化、古气候演化等角度对北票组的地质时代和区域对比进行了讨论,认为该组为印支期后地壳伸展阶段早侏罗世早—中期兴隆沟组火山喷发之后和中侏罗世中晚期海房沟组、蓝旗组燕山期火山活动之前的含煤盆地沉积产物。前者火山活动在冀北、京西形成南大岭组,在北疆三工河组局部形成火山岩夹层;后者火山活动在冀北、京西形成九龙山组、髫髻山组,晋北形成云岗组、天池河组,北疆形成头屯河组。北票组底部杂色地层化石稀少,有机质含量低,气候应相对干热,北票组(杂色地层以上部分)、海房沟组、蓝旗组植物化石和孢粉证明古气候由温湿向干热逐渐演化,而该特征和中国北方以至全球早侏罗世晚期干热、中侏罗世从早期到晚期由温湿向干热的演化规律—致。从而,北票组底部杂色地层属于早侏罗世晚期并和三工河组、富县组、永定庄组、阳眷组、窑坡组底部对比;北票组杂色地层以上部分属于中侏罗世早期,与西山窑组、延安组、大同组、下花园组、窑坡组(K1砂岩以上部分)对比。  相似文献   

10.
辽西燕辽生物群分布特征及新发现   总被引:1,自引:0,他引:1  
我国辽宁省西部地区一直是中生代古生物化石的重要产地,近几年发现了大量的珍稀动植物化石,产生了重要的影响,但有一些化石的层位尚不明确。近三年来,笔者在辽宁西部葫芦岛建昌以及朝阳辖区下的朝阳县、凌源市以及建平县针对一套中侏罗世火山岩所夹的沉积岩地层进行了详细的化石调查工作。首先,根据髫髻山组地层出露条件,在金岭寺—羊山盆地的建昌县玲珑塔大西山村测制了髫髻山组主干剖面,除此之外还在大平房—梅勒营子盆地和凌源—三十家子盆地测制了辅助剖面,同时在剖面上逐层进行化石采集;之后研究本次工作采集的化石以及收集该地区燕辽生物群化石资料;最后将化石落到准确的层位之上,并将各盆地化石层进行对比。通过剖面的测制以及化石的挖掘和调查,确定其为中侏罗世髫髻山组,属燕辽生物群中期,确定了一批珍稀化石的产出层位,为了方便不同盆地化石层对比,本文命名了两个新的珍稀化石层位——大西山化石层和棺材山化石层,将化石与层位一一对应,并且完成了对辽西主要盆地化石层的对比;与之同时挖掘出了一批珍贵的动植物化石,丰富了燕辽生物群古生物的内容,为今后的研究提供了翔实的资料。  相似文献   

11.
本文报道了浙江东阳发现的中国第2个翼龙足迹化石点, 也是亚洲发现的第8个翼龙足迹化石点。化石足迹产于晚白垩世早期方岩组的紫红色泥质粉砂岩中。发现有3个手的印迹和1个右足印。手的印迹的长宽分别为6.5 cm 和4cm. 非对称具有3个指的印迹。足迹9 cm长和1.5 cm宽。该足迹不同于以前发现的, 可能代表一新的类型。除了翼龙足迹外, 还发现鸟类、小型兽脚类、鸟脚类及蜥脚类脚印, 形成一个丰富的动物群, 它的发现为研究该地区的古生态环境及古地理具有重要意义。同时为以后在该地区发现这些造迹动物的骨骼化石提供了重要依据。  相似文献   

12.
<正>There are many skarn deposits that occur in volcanic rocks as stratiform and lentoid bodies,for example the Lower Yangtze River Valley,Western Tianshan Mountains and Lhasa Terrane in China,the Nuuk in West Greeland and the Austroalpine Alps(e.g.Xv et al.,1984;Appel,1994;Raith and Stein,2000;Wang et al.,2001;Gu et al.,2007;Hou et al.,2011;Zhou et al.,2011;Jiang et al.,2012;Xu et al.,2010;Wang et al.,2012;Yu et al.,2011).Despite  相似文献   

13.
本文基于长江三峡东部地区——宣昌王家湾、分乡和黄花场奥陶系与志留系界线剖面生物地层学,同位素年代学,沉积岩以及古地磁的进一步研究,联系当前世界上一些有代表性的奥陶系与志留系界线剖面资料,再论了全球奥陶纪晚期到志留纪初期笔石带和有关介壳化石的对比以及奥陶系与志留系界线的划分问题,仍然主张将奥陶系与志留系界线划在pers-culptus带底部,并明确指出,就选择国际奥陶系与志留系界线层型剖面而言,宣昌王家湾剖面较之Dob’s Linn剖面更为理想。  相似文献   

14.
江苏宁镇山脉仑山灰岩的新认识   总被引:2,自引:0,他引:2       下载免费PDF全文
许汉奎 《地质科学》1976,11(3):235-245
“仑山灰岩”标准地点在江苏南部句容县的仑山。1933年,俞建章在研究“仑山灰岩”中的头足类动物群时,曾指出:“仑山灰岩”的时代应属于早、中奥陶世。1935年,李捷等在系统研究宁镇山脉地质时,对“仑山灰岩”重新进行划分,把上部含鞘角石(Vaginoceras)动物群的灰岩归入中奥陶统,称汤山灰岩。  相似文献   

15.
辽西凌源全身长有羽毛奔龙化石的再研究   总被引:8,自引:0,他引:8  
对辽西凌源发现的全身长有羽毛的奔龙化石 (NGMC91) (Ji等 ,2 0 0 1)进行了再研究。根据头颅和头后骨骼的特征 ,其应归于中国鸟龙属 (SinornithosaurusXuetal.,1999)。由于研究的材料是一块处于非成年期的标本 ,虽然其有些特征明显与千禧中国鸟龙有别 ,但仍难以确定这些差异是否受个体发育的影响。因此 ,文中仍将其作为未定种 ,置于中国鸟龙属中。此外 ,文章还简要讨论了羽毛的发生和早期演化 ,认为羽毛出现的初始功能就是为了保持体温 ,与后期的飞行功能无关  相似文献   

16.
Diamonds have been discovered in mantle peridotites and chromitites of six ophiolitic massifs along the 1300 km‐long Yarlung‐Zangbo suture (Bai et al., 1993; Yang et al., 2014; Xu et al., 2015), and in the Dongqiao and Dingqing mantle peridotites of the Bangong‐Nujiang suture in the eastern Tethyan zone (Robinson et al., 2004; Xiong et al., 2018). Recently, in‐situ diamond, coesite and other UHP mineral have also been reported in the Nidar ophiolite of the western Yarlung‐Zangbo suture (Das et al., 2015, 2017). The above‐mentioned diamond‐bearing ophiolites represent remnants of the eastern Mesozoic Tethyan oceanic lithosphere. New publications show that diamonds also occur in chromitites in the Pozanti‐Karsanti ophiolite of Turkey, and in the Mirdita ophiolite of Albania in the western Tethyan zone (Lian et al., 2017; Xiong et al., 2017; Wu et al., 2018). Similar diamonds and associated minerals have also reported from Paleozoic ophiolitic chromitites of Central Asian Orogenic Belt of China and the Ray‐Iz ophiolite in the Polar Urals, Russia (Yang et al., 2015a, b; Tian et al., 2015; Huang et al, 2015). Importantly, in‐situ diamonds have been recovered in chromitites of both the Luobusa ophiolite in Tbet and the Ray‐Iz ophiolite in Russia (Yang et al., 2014, 2015a). The extensive occurrences of such ultra‐high pressure (UHP) minerals in many ophiolites suggest formation by similar geological events in different oceans and orogenic belts of different ages. Compared to diamonds from kimberlites and UHP metamorphic belts, micro‐diamonds from ophiolites present a new occurrence of diamond that requires significantly different physical and chemical conditions of formation in Earth's mantle. The forms of chromite and qingsongites (BN) indicate that ophiolitic chromitite may form at depths of >150‐380 km or even deeper in the mantle (Yang et al., 2007; Dobrthinetskaya et al., 2009). The very light C isotope composition (δ13C ‐18 to ‐28‰) of these ophiolitic diamonds and their Mn‐bearing mineral inclusions, as well as coesite and clinopyroxene lamallae in chromite grains all indicate recycling of ancient continental or oceanic crustal materials into the deep mantle (>300 km) or down to the mantle transition zone via subduction (Yang et al., 2014, 2015a; Robinson et al., 2015; Moe et al., 2018). These new observations and new data strongly suggest that micro‐diamonds and their host podiform chromitite may have formed near the transition zone in the deep mantle, and that they were then transported upward into shallow mantle depths by convection processes. The in‐situ occurrence of micro‐diamonds has been well‐demonstrated by different groups of international researchers, along with other UHP minerals in podiform chromitites and ophiolitic peridotites clearly indicate their deep mantle origin and effectively address questions of possible contamination during sample processing and analytical work. The widespread occurrence of ophiolite‐hosted diamonds and associated UHP mineral groups suggests that they may be a common feature of in‐situ oceanic mantle. The fundamental scientific question to address here is how and where these micro‐diamonds and UHP minerals first crystallized, how they were incorporated into ophiolitic chromitites and peridotites and how they were preserved during transport to the surface. Thus, diamonds and UHP minerals in ophiolites have raised new scientific problems and opened a new window for geologists to study recycling from crust to deep mantle and back to the surface.  相似文献   

17.
Pterosaur diversity in China has increased tremendously in the last two decades particularly due to discoveries made in deposits of western Liaoning. Most species belong to the Pterodactyloidea, a clade that groups the more derived members of the Pterosauria, but recently the number of non-pterodactyloid taxa has grown (e.g., Czerkas & Ji 2002, Lü, 2009).  相似文献   

18.
Presented in this paper are the newly obtained grain zircon U-Pb ages of volcanic rocks of the Lueliang Goup and associated Kuanping granitic migmatitic gneiss in Shanxi Province.The zircon U-Pb ages of bimodal volcanic rocks(basalt and rhyolite)of the Upper Lueliang Group indicate that the rocks erupted at about 2100 Ma.So the Lueliang Group was formed during the Early Proterozoic.In the area studied the second-stage metamorphism experienced by the Lueliang Group is the dominant one which took place at about 1806 Ma.i.e.,during the late Early Proterozoic.  相似文献   

19.
Eclogites were relatively recently found in the Belomorian Mobile Belt (BMB) (Volodichev et al., 2004; Shchipanskii et al., 2005; Konilov et al., 2004). The very first isotopic dates (Volodichev et al., 2004; Mints et al., 2010) were obtained for these rocks in the northwestern (in the Salma and Kuru-Vaara areas) and central (Gridino area) portions of BMB and corresponded to the Archean: approximately 2.72–2.87 Ga. Because no crustal eclogites older that 2.0 Ga (Möller et al., 1995) had been known before these dates were obtained, these eclogites were regarded as unique. It is commonly believed that no crustal eclogites could be formed in the Archean because the crust was then relatively thin (Kröner, 2010), and hence, the find of crustal eclogites of Archean age in BMB called for a fundamental revision of geodynamic reconstructions of the crustal evolution and was one of the main arguments invoked to support the hypothesis that currently operating geodynamic mechanisms of plate tectonic can be extrapolated to the Early Precambrian (Rozen et al., 2008). However, these finds were practically immediately followed by serious doubts that the primary estimates of the timing of the eclogite metamorphism in the Belomorian Belt may be incorrect (Mitrofanov et al., 2009; and others).  相似文献   

20.
Since the discovery of high‐pressure metamorphic minerals such as coesite and diamond (Xu et al., 1992), the exhumation mode and process of the Dabie ultrahigh‐high pressure (UHP) rocks had become hot topics. For the exhumation process of UHP rocks, several explanation models had been proposed, and the subduction tunnel mode (Warren et al., 2008) seemed to be recognized by most scholars. A low rheological zone formed along the subduction, and the deep subduction material was rapidly exhumated by buoyancy or tectonic stress. In the tunnel, the exhuming rock moved at the opposite direction of the subduction. Following this model, the Dabie UHP rock exhumation structure would generally tend to NW, and show a top to SE shear sense (Fig 1a, b). However, the existing structural observations indicate that the UHP rocks tend to be S‐SE with the top to NW shear sense (Faure et al., 2003). Therefore, the more detailly analysis of the exhumation structure in the UHP rocks, especially in the exhuming shear zone is very necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号