首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
本文总结了兰州地磁台1975年到1982年期间短周期地磁变化事件的传递函数随时间的变化,分析了它们与周围所发生地震的关系。发现在1976年松潘7.2级地震和1982年4月海原5.5级地震前,传递函数的A值有着明显的下降变化,显示出地震前兆的变化。此外,兰州台传递函数A和B都有着明显的季节性变化。对于传递函数A,在扣除季节变化后,仍然显示出地震前后的异常变化。  相似文献   

2.
以2020年6月26日于田MS6.4地震为例, 采用地磁谐波振幅比法, 选用距震中370 km和360 km范围内的且末台、 狮泉河台所记录到的秒值连续波形数据, 对震前地磁异常进行了提取和回溯性分析, 发现地磁谐波振幅比反映了观测点深部电阻率变化, 2020年于田MS6.4地震前且末台和狮泉河台地磁谐波振幅比出现了较明显的异常现象。 异常特征有: ① 地磁谐波振幅比YZHxYZHy主要表现为“下降—转折—恢复”的形态, 地震发生在下降型变化恢复之后上升阶段; ② 震前约2年起, 且末台和狮泉河台谐波振幅比表现长短周期变化不同步或NS向与EW向变化不同步的现象; ③ 且末台YZHx(NS)和狮泉河台YZHy(EW)谐波振幅比异常变化中的转折上升形态具有自较长周期向较短周期的迁移现象; ④ 狮泉河台谐波振幅比趋势性异常起始时间早于且末台, 持续时间平均2年左右, 最大异常幅度达到0.04; ⑤ 且末台YZHx(NS)和狮泉河台YZHy(EW)异常相比对应其他分量更为显著, 这也许震中和台站所在位置有关系; ⑥ 地震前和田大地电场(距震中约265 km)岩体裂隙优势方位角(α)也显示异常变化, 可见该地震前多地球物理探测参量的异常响应, 呈现多地球物理量耦合, 增加了异常可信度。  相似文献   

3.
地磁脉动预报地震的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
周军成  韩克礼 《地震学报》1995,17(2):253-258
阐述了利用数字化地磁脉动观测资料预报地震的研究工作及其结果.根据感应磁效应理论,地磁脉动比起常规的地磁观测方法,更能有效地反映震前地下介质电导率的异常变化,尤其是震前的短临异常变化.我们的研究结果也表明,震前地磁脉动传递函数,有明显的短临异常,且有典型的异常形态,并取得较好的预报震例.地磁脉动预报地震是很有前途的地震预报新方法,它将会使以磁报震的研究工作取得新的进展.   相似文献   

4.
利用转换函数的方法对乾陵、泾阳、周至台1991—2002年地磁资料进行了计算处理,对关中各台地磁转换函数的变化特征进行了初步分析探讨。结果表明:不同周期的转换函数A、B以及总方差σz和△αρ在震前有明显变化;转换函数异常幅度不仅与周期有关,也和地震的震中距和震级有关。  相似文献   

5.
强震前的地磁异常现象   总被引:6,自引:0,他引:6  
肖武军  余素荣  丁鉴海 《地震》2006,26(4):52-58
震前地磁Z分量的日变化异常主要表现在幅度和相位上的变化, 文中利用我国50多个地磁台多年的资料, 重点研究了1997年11月8日玛尼7.5级地震和2005年11月26日江西九江5.7级地震。 发现玛尼地震和九江地震以及大多数中强地震前, 全国地磁台站地磁Z分量日变化幅度的极小值出现时间(低点时间)在空间分布上异常特征, 即低点位移现象。 这种少见的异常现象与强震发生有较好的相关性。 发震日期为异常日后的第27天或第41天的前后4天, 强震发生地区在低点位移突变分界线附近。 结果显示, 在玛尼7.5级地震和江西九江5.7级临震前, 震中周围出现区域性Z分量日变化幅度异常现象。  相似文献   

6.
以新疆2次5级左右地震为震例样本,选取震中附近石河子台、石场台和乌苏台记录的2013年8月以来的气枪震源信号数据,依据反射波震相,采用互相关检测技术等,研究2次5级左右地震前走时变化特征,得到如下研究结果:1根据单双层"3400走时表"速度模型,参考理论Pm P走时选取震相窗是可靠的;22次5级左右地震前3个台站记录的Pm P走时变化均出现4个月和2个月左右不同程度的低值异常过程,相对走时变化幅度约为0.1%~0.26%,距震中较近的石河子台、石场台的异常特征显著于较远的乌苏台;32次5级左右地震前走时异常变化时间和幅度均存在差异,这可能与震级和震中位置有关。  相似文献   

7.
广州地磁台转换函数的长期变化和季节变化   总被引:1,自引:0,他引:1       下载免费PDF全文
庄灿涛  徐速 《地震学报》1991,13(4):489-495
本文全面系统地研究了1960——1987年广州地磁台转换函数的变化.结果表明:(1)季节变化的特点是夏季幅度大,冬季幅度小,具有12和6个月的主要周期成份;长期变化则表现以每年0.0025的速率下降.转换函数 B 的长期变化和季节变化不明显;(2)由转换函数 A,B 求出的帕金森矢量的方向明显地受海洋的影响,反映了海洋效应;(3)转换函数 A,B 的逐月值与地磁活动相关,而年均值与地磁活动无关.A 的年均值无明显的11年或22年周期.长期变化可能主要受地球内部电性结构的影响.   相似文献   

8.
以四川省及其邻区31个地磁台2015年以来的垂直分量资料为研究对象,利用地磁加卸载响应比方法分析震前地磁日变化异常特征,结果显示:6组有效的地磁加卸载响应比高值异常中有5组异常对应了M5.0以上地震,异常多出现在震前6个月内;震中位于异常区边界线附近。分析认为地磁加卸载响应比高值异常是孕震区内局部地下电导率变化导致感应磁场发生改变的一种反映。  相似文献   

9.
2008年11月-2009年11月,青海省海西蒙古族自治州先后发生多次地震,嘉峪关地震台地磁转换函数A在震前存在异常.分别以都兰和大武地震台作为参考,嘉峪关和格尔木地震台空间相关系数震前存在显著的低值异常,异常台站沿北东向分布,而非断裂方向.研究结果表明,嘉峪关和格尔木地震台地磁观测对该地区的地震具有较好的前兆意义.  相似文献   

10.
选取恩施台、涪陵江东台、石柱黄水台以及武隆仙女山台2012年1月至2017年11月地磁数据进行异常分析,得到各个台站的地磁谐波振幅比和加卸载响应比计算结果,并结合2017年11月23日重庆武隆M5.0地震震中附近地质构造背景分析地震前后地磁异常现象。分析结果认为大部分地磁谐波振幅比变化特征类似于地电阻率的变化特征,表现为"下降-转折-上升"过程。本次地震大致发生在转折上升的初期阶段,其中震中距较小的台站地磁谐波振幅比变化趋势不同步,但变化幅度大致相同,而震中距较大的台站地磁谐波振幅比变化趋势较为同步,变化幅度较大。此外,研究还表明震前地磁加卸载响应比异常高值在时空分布上与震中位置具有很好的对应关系。  相似文献   

11.
Sacrower See is a eutrophic lake with annually laminated sediments extending back to A.D. 1868. Analysis of annual layers revealed multi-decadal periods of distinct diatom assemblages at A.D. 1868–1875, 1876–1940, 1941–1978, and 1979–2000. Detrended correspondence analysis performed on individual seasonal sediment layers showed decadal-scale patterns of turnover in the diatom flora. The spring–summer layers showed higher sample scores until the early 1960s, after which the differences with the autumn–winter layers became smaller. Rates-of-change analysis revealed that the seasonal variability in diatom assemblages was higher than the annual changes. Summer diatom rates of change over the period A.D. 1894–1960 was on average higher than for winter, whereas between the 1960s and 1970s the winter rates of change became higher than the summer ones. Redundancy Analyses showed that seasonal temperatures and wind strength were significant explanatory variables for diatom assemblages in both annual and seasonal layers. These results suggest that meteorological changes indirectly affected diatom assemblages via the mixing regime of the lake. A comparison of the diatom rates of change with the amplitude of inter-annual climate change shows a statistically significant correlation for the spring-summer layers in the period of A.D. 1963–2000, showing that the sensitivity of diatom assemblages to meteorological changes has varied over the past century, with a stronger effect on diatoms registered during the past 40 years.  相似文献   

12.
This paper deals with the diurnal and seasonal variations of height of the peak electron density of the F2-layer (hmF2) derived from digital ionosonde measurements at a low–middle-latitude station, New Delhi (28.6°N, 77.2°E, dip 42.4°N). Diurnal and seasonal variations of hmF2 are examined and comparisons of the observations are made with the predictions of the International Reference Ionosphere (IRI-2001) model. Our study shows that during both the moderate and low solar activity periods, the diurnal pattern of median hmF2 reveals a more or less similar trend during all the seasons with pre-sunrise and daytime peaks during winter and equinox except during summer, where the pre-sunrise peak is absent. Comparison of observed median hmF2 values with the IRI during moderate and low solar activity periods, in general, reveals an IRI overestimation in hmF2 during all the seasons for local times from about 06 LT till midnight hours except during summer for low solar activity, while outside this time period, the observed hmF2 values are close to the IRI predictions. The hmF2 representation in the IRI model does not reproduce pre-sunrise peaks occurring at about 05 LT during winter and equinox as seen in the observations during both the solar activity periods. The noontime observed median hmF2 values increase by about 10–25% from low (2004–2005) to high solar activity (2001–2002) during winter and equinox, while the IRI in the same time period and seasons shows an increase of about 10–20%. During summer, however, the observed noontime median hmF2 values show a little increase with the solar activity, as compared to the IRI with an increase of about 12%.  相似文献   

13.
The data of the DMSP F7 spacecraft are used for studying the influence of the geomagnetic dipole tilt angle on the latitudinal position of auroral precipitation boundaries in the nighttime (2100–2400 MLT) and daytime (0900–1200 MLT) sectors. It is shown that, in the nighttime sector, the high-latitude zone of soft diffuse precipitation (SDP) and the boundary of the polar cap (PC) at all levels of geomagnetic activity are located at higher and lower latitudes relative to the equinox period in winter and summer, respectively. The position of boundaries of the diffuse auroral precipitation zone (DAZ) located equatorward from the auroral oval does not depend on the season. In the daytime sector, the inverse picture is observed: the SDP precipitation zone takes the most low-latitude and high-latitude positions in the winter and summer periods, respectively. The total value of the displacements from winter to summer of both the nighttime and daytime boundaries of the PC is ∼2.5°. A diurnal wave in the latitudinal position of the nighttime precipitation boundaries is detected. The wave is most pronounced in the periods of the winter and fall seasons, is much weaker in the spring period, and is almost absent in summer. The diurnal variations of the position of the boundaries are quasi-sinusoidal oscillations with the latitude maximum and minimum at 0300–0500 and 1700–2100 UT, respectively. The total value of the diurnal displacement of the boundaries is ∼2.5° of latitude. The results obtained show that, undergoing seasonal and diurnal variations, the polar cap is shifted as a whole in the direction opposite to the changes in the tilt angle of the geomagnetic dipole. The seasonal displacements of the polar cap and its diurnal variations in the winter period occur without any substantial changes in its area.  相似文献   

14.
Infrasound environments in the Czech microbarograph network were studied. Reference Fourier amplitude spectra were calculated from data measured at three microbarograph sites of the network in May 2011-April 2012; directional analysis of infrasound arrivals in the frequency band 0.15-0.4 Hz was performed for the microbarograph array at Panská Ves in May 2014-April 2015. Diurnal, seasonal and site-to-site variability of the reference spectra was evaluated. Site-to-site variability is influenced by the location of the respective sensors in the open air and inside the observatory buildings and by local noise phenomena like wind turbines. Diurnal variability is well developed in summer with maximum ambient noise levels during the daytime and minima at night. Seasonal variability is observed at night with maxima in winter and minima in summer. Wind and wind eddies seem to be an important source of ambient noise in measurements in the Czech microbarograph network. A distinct spectral peak occurs near 0.2 Hz with amplitudes by about one order of magnitude higher in winter than in summer. Its seasonal variability is related to seasonal propagation of microbaroms from the source region in the Northern Atlantic.  相似文献   

15.
An analysis of the climate change signal for seasonal temperature and precipitation over the Northern Adriatic region is presented here. We collected 43 regional climate simulations covering the target area, including experiments produced in the context of the PRUDENCE and ENSEMBLES projects, and additional experiments produced by the Swedish Meteorological and Hydrological Institute. The ability of the models to simulate the present climate in terms of mean and interannual variability is discussed and the insufficient reproduction of some features, such as the intensity of summer precipitation, are shown. The contribution to the variance associated with the intermodel spread is computed. The changes of mean and interannual variability are analyzed for the period 2071–2100 in the PRUDENCE runs (A2 scenario) and the periods 2021–2050 and 2071–2100 (A1B scenario) for the other runs. Ensemble results show a major warming at the end of the 21st century. Warming will be larger in the A2 scenario (about 5.5 K in summer and 4 K in winter) than in the A1B. Precipitation is projected to increase in winter and decrease in summer by 20% (+0.5 mm/day and −1 mm/day over the Alps, respectively). The climate change signal for scenario A1B in the period 2021–2050 is significant for temperature, but not yet for precipitation. In summer, interannual variability is projected to increase for temperature and for precipitation. Winter interannual variability change is different among scenarios. A reduction of precipitation is found for A2, while for A1B a reduction of temperature interannual variability is observed.  相似文献   

16.
Annual and seasonal variations in the low-latitude topside ionosphere are investigated using observations made by the Hinotori satellite and the Sheffield University Plasmasphere Ionosphere Model (SUPIM). The observed electron densities at 600 km altitude show a strong annual anomaly at all longitudes. The average electron densities of conjugate latitudes within the latitude range ±25° are higher at the December solstice than at the June solstice by about 100% during daytime and 30% during night-time. Model calculations show that the annual variations in the neutral gas densities play important roles. The model values obtained from calculations with inputs for the neutral densities obtained from MSIS86 reproduce the general behaviour of the observed annual anomaly. However, the differences in the modelled electron densities at the two solstices are only about 30% of that seen in the observed values. The model calculations suggest that while the differences between the solstice values of neutral wind, resulting from the coupling of the neutral gas and plasma, may also make a significant contribution to the daytime annual anomaly, the E × B drift velocity may slightly weaken the annual anomaly during daytime and strengthen the anomaly during the post-sunset period. It is suggested that energy sources, other than those arising from the 6% difference in the solar EUV fluxes at the two solstices due to the change in the Sun-Earth distance, may contribute to the annual anomaly. Observations show strong seasonal variations at the solstices, with the electron density at 600 km altitude being higher in the summer hemisphere than in the winter hemisphere, contrary to the behaviour in NmF2. Model calculations confirm that the seasonal behaviour results from effects caused by transequatorial component of the neutral wind in the direction summer hemisphere to winter hemisphere.  相似文献   

17.
SST variability on seasonal to sub-annual scales in the coastal region of South America between 30° and 39°S, largely influenced by the Rio de la Plata estuary’s plume, and its relation to wind variability are explored. Data are six years of daily ensembles of gridded satellite SST and sea surface winds with spatial resolutions of about 11 and 25 km, respectively. Observations from oceanographic cruises are used to validate the results. It is found that the seasonal cycle can be explained in terms of two modes. The first one, characterizing fall-early winter/spring-early summer, is related to the radiative cycle. The second one, corresponding to late summer and winter, displays warm/cold anomalies along the Uruguayan coast forced by the prevailing winds during those seasons. In the upper estuary and the northern part of the area of influence of the freshwater plume, variability in sub-annual scales is significant. A large portion of this variance is related to zonal wind anomalies that force warm/cold SSTs along that coast. Cold anomalies of up to −5 °C occur under anomalously intense easterly winds, indicating upwelling. These events are very frequent and show large persistence, occurring up to one and a half months. They also display a marked seasonal cycle – being more frequent in late spring and summer – large inter-annual variability and seem to be modulated by the continental runoff. When discharge is low, the freshwater plume retracts to the west, reducing the inner-shelf stratification and increasing the likelihood of a full upwelling to the surface. In winter, short time-scale SST variability is mostly due to variability in the atmospheric cold fronts crossing the region. Weaker or less frequent (stronger or more frequent) fronts produce a generalized warming (cooling) over the region. As the estuary heats (colds) faster than the shelf, a warm (cold) anomaly develops in the upper Río de la Plata. On inter-annual time scales, probably because ENSO activity was weak during the studied period, SST variability was not important.  相似文献   

18.
The drought of summer 2018, which affected much of Northern Europe, resulted in low river flows, biodiversity loss and threats to water supplies. In some regions, like the Scottish Highlands, the summer drought followed two consecutive, anomalously dry, winter periods. Here, we examine how the drought, and its antecedent conditions, affected soil moisture, groundwater storage, and low flows in the Bruntland Burn; a sub-catchment of the Girnock Burn long-term observatory in the Scottish Cairngorm Mountains. Fifty years of rainfall-runoff observations and long-term modelling studies in the Girnock provided unique contextualisation of this extreme event in relation to more usual summer storage dynamics. Whilst summer precipitation in 2018 was only 63% of the long-term mean, soil moisture storage across much of the catchment were less than half of their summer average and seasonal groundwater levels were 0.5 m lower than normal. Hydrometric and isotopic observations showed that ~100 mm of river flows during the summer (May-Sept) were sustained almost entirely by groundwater drainage, representing ~30% of evapotranspiration that occurred over the same period. A key reason that the summer drought was so severe was because the preceding two winters were also dry and failed to adequately replenish catchment soil moisture and groundwater stores. As a result, the drought had the biggest catchment storage deficits for over a decade, and likely since 1975–1976. Despite this, recovery was rapid in autumn/winter 2018, with soil and groundwater stores returning to normal winter values, along with stream flows. The study emphasizes how long-term data from experimental sites are key to understanding the non-linear flux-storage interactions in catchments and the “memory effects” that govern the evolution of, and recovery from, droughts. This is invaluable both in terms of (a) giving insights into hydrological behaviours that will become more common water resource management problems in the future under climate change and (b) providing extreme data to challenge hydrological models.  相似文献   

19.
The results for three-dimensional (3D) winter and summer tidal flows in the homogeneous Arctic Ocean, obtained with the use of a modified version of the 3D finite-element hydrothermodynamic model QUODDY-4, are presented. It is shown that seasonal variability of the M2 tidal constants (amplitudes and phases of tidal sea surface level elevations) in the Central and Canadian parts of the Arctic Ocean is less than the error in the predicted tidal sea surface level elevations. This means that the seasonal variability can be neglected at least as a first approximation. A different situation is encountered in the Siberian continental shelf, where seasonal changes of tidal amplitude are ±5 cm, while those of tidal phase vary from 15° to several tens of degrees.  相似文献   

20.
The spatial/temporal variation information of atmospheric dynamic-chemical processes at observation site points of the "canopy" boundary of Beijing urban building ensemble and over urban area "surface", as well as the seasonal correlation structure of the gaseous and particulate states of urban atmospheric pollution (UAP) and its seasonal conversion feature at observation points are investigated, using the comprehensive observation data of the Beijing City Air Pollution Observation Experiment (BECAPEX) in winter and summer 2003 with a "point-surface" combined research approach. By using "one dimension spatial empirical orthogonal function (EOF)" principal component analysis (PCA) mode, the seasonal change of gaseous and particulate states of atmospheric aerosols and the association feature of pollutant species under the background of the complicated structure of urban boundary layer (UBL) are analyzed. The comprehensive analyses of the principal components of particle concentrations,gaseous pollutant species, and meteorological conditions reveal the seasonal changes of the complex constituent and structure features of the gaseous and particulate states of UAP to further trace the impact feature of urban aerosol pollution surface sources and the seasonal difference of the component structure of UAP. Research results suggest that in the temporal evolution of the gaseous and particulate states of winter/summer UAP, NOx, CO, and SO2 showed an "in-phase" evolution feature, however, O3 showed an "inverse-phase" relation with other species,all possessing distinctive dependent feature. On the whole, summer concentrations of gaseous pollutants CO, SO2, and NOx were obviously lower than winter ones, especially, the reduction in CO concentration was most distinctive, and ones in SO2 and NOx were next. However, the summer O3 concentration was more than twice winter one. Winter/summer differences in PM10and PM2.5 particle concentrations were relatively not obvious, which indicates that responses of PM10 and PM2.5 particle concentrations to the difference of winter/summer heating period emission sources are far less distinctive than those of NOx, SO2, and CO. The correlation feature of winter/summer gaseous and particulate states depicts that both PM10 and PM2.5 particles were significantly correlated with NOx, and their correlations with NOx are more significant than those with other pollutants. Through PCA, it is found that there was a distinctive difference in the principal component combination structure of winter/summer PM10 and PM2.5 particles: SO2 and NOx dominated in the principal component of winter PM10 and PM2.5 particles; while CO and NOx played the major role in the principal component of summer PM10 and PM2.5 particles. For winter/summer PM10 and PM2.5 particles, there might exist the gaseous and particulate states correlation structures of different "combinations" of such dependent pollutant species. Research results also uncover that the interaction processes of gaseous and particulate states were also related with the vertical structure of UBL, that is to say, the low value layer of UBL O3 concentration was associated with the collocation of atmospheric vertical structures of the low level inversion,inverse humidity, and small wind, which depicts summer boundary layer atmospheric character, i.e.the compound impact of the dependent factor "combination" of wind, temperature, and humidity elements and their collocation structure on the variations of different gaseous pollutant concentrations. Such a depth structure of the extremely low value of O3 concentration in the UBL accords with its "inverse-phase" relation with other gaseous pollutant species. The PCA of meteorological factors associated with PM10 and PM2.5 concentrations also reveals the sensitivity of PM10 and PM2.5 concentration to the combinatory feature of local meteorological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号