首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The centroid-moment tensor solutions of more than 300 earthquakes that occurred in the Himalayas and its vicinity regions during the period of 1977–1996 are examined. The resultant seismic moment tensor components of these earthquakes are estimated. The Burmese arc region shows prominent east–west compression and north–south extension with very little vertical extension. Northeast India and Pamir–Hindu Kush regions show prominent vertical extension and east–west compression. The Indian plate is subducting eastward beneath the northeast India and Burmese arc regions. The overriding Burmese arc has overthrust horizontally with the underthrusting Indian plate at a depth of 20–80 km and below 80 km depth, it has merged with the Indian plate making “Y” shape structure and as a result the aseismic zone has been formed in the region lying between 26°N–28°N and 91.5°E–94°E at a depth of 10–50 km. Similarly, the Indian plate is underthrusting in the western side beneath the Pamir–Hindu Kush region and the overriding Eurasian plate has overthrust it to form a “Y” shape structure at a depth of 10–40 km and below 60 km depth, it has merged with the Indian plate and both the plates are subducting below 60–260 km depth. Further south, the overriding Eurasian plate has come in contact with the Indian plate at a depth of 20–60 km beneath northwest India and Pakistan regions with left lateral strike slip motion.  相似文献   

2.
—Rayleigh and Love waves generated by sixteen earthquakes which occurred in the Indian Ocean and were recorded at 13 WWSSN stations of Asia, Africa and Australia are used to determine the moment tensor solution of these earthquakes. A combination of thrust and strike-slip faulting is obtained for earthquakes occurring in the Bay of Bengal. Thrust, strike slip or normal faulting (or either of the combination) is obtained for earthquakes occurring in the Arabian Sea and the Indian Ocean. The resultant compressive and tensional stress directions are estimated from more than 300 centroid moment tensor (CMT) solution of earthquakes occurring in different parts of the Indian Ocean. The resultant compressive stress directions are changing from north-south to east-west and the resultant tensional stress directions from east-west to north-south in different parts of the Indian Ocean. The results infer the counterclockwise movement of the region (0°–33°S and 64°E–94°E), stretching from the Rodriguez triple junction to the intense deformation zone of the central Indian Ocean and the formation of a new subduction zone (island arc) beneath the intense deformation zone of the central Indian Ocean and another at the southern part of the central Indian basin. The compressive stress direction is along the ridge axis and the extensional stress manifests across the ridge axis. The north-south to northeast-south west compression and east-west to northwest-southeast extension in the Indian Ocean suggest the northward underthrusting of the Indian plate beneath the Eurasian plate and the subduction beneath the Sunda arc region in the eastern part. The focal depth of earthquakes is estimated to be shallow, varying from 4 to 20 km and increasing gradually in the age of the oceanic lithosphere with the focal depth of earthquakes in the Indian Ocean.  相似文献   

3.
青藏高原震源分布与板块运动   总被引:5,自引:2,他引:5       下载免费PDF全文
本文分析了青藏高原及其邻区大量近期地震的震源深度分布资料,发现中源地震不仅分布在众所周知的兴都库什和印缅山弧一带,而且在印度洋板块与欧亚板块汇聚带印度河-雅鲁藏布江以南,以及欧亚板块内部的帕米尔、西昆仑、柴达木和天山南缘一带也有中源地震分布,它们构成了这一地区三条向南倾斜的震源带。 这些中源地震震源带的存在表明,向北运动的印度次大陆与亚洲大陆碰撞以后,印度次大陆北缘本身并没有消减,而是迫使亚洲大陆通过三条向南倾斜的岩石层消减带产生了大规模的消减作用。 中源地震在平面上分布的不连续性,揭示了这一地区的许多条走滑断层的现代活动。这些走滑断层的巨大位移显示了青藏高原内部各块体之间的横向运动也是很可观的。 最后,提出了亚洲大陆多条南倾消减带的形成和发展模式。  相似文献   

4.
This paper deals with the data obtained from local networks in northern Pakistan for 251 earthquakes of magnitude ≥4.0 for October 8, 2005 to December 31, 2006 period. The study presents focal mechanism solutions (FMS) of 12 pre- (1904–2005) and 17 post- (October 8, 2005–December, 2005) Muzaffarabad Earthquake, their detailed tectonic interpretation, and correlation with surface evidence of co-seismic rupture with published synthetic aperture radar data. Distribution of landslides obtained from National Engineering Services of Pakistan and the earthquake damages are also discussed. Aftershock distribution, which is more prominent in the crystalline zone (northwest of Muzaffarabad), defines a 50-km-wide NW–SE trending zone that extends for 200 km from the main mantle thrust to the center of the Hazara–Kashmir Syntaxis. The FMS of the main shock and 16 aftershocks having magnitude ≥4.0 indicate thrusting to be the dominant mechanism with rupture planes having NW–SE trend and NE dip. In addition, 12 FMS of pre-Muzaffarabad Earthquake (1904–2004) from the same area have been determined and results are compared. This leads to the conclusion that the wedge-shaped NW–SE trending blind zone, referred to by earlier workers as the Indus Kohistan Seismic Zone (IKSZ), has been activated during the Muzaffarabad earthquake. The right-lateral component in all FMS, supported by the surface evidences, suggests the involvement of Balakot–Bagh Fault (BBF). We propose that the IKSZ is the source of the October 8, 2005 Muzaffarabad earthquake that reactivated the BBF. Furthermore, the IKSZ does not end at the nose of the syntaxis but extends further southeast of it. Tectonic complexity seems to be due to a variety of factors. Also, thrust and reverse solutions near the northern collisional boundary (main mantle thrust) have mostly NE/SW-directed P-axis orientations. From the detailed FMS analysis, three conclusions have been drawn: (1) Shallow events (depth ≤10 km) with prominent strike slip solutions (earlier earthquakes) are associated with the surface strike slip faults (e.g., Muzaffarabad Fault) and/or the Besham domal structure; (2) moderate depth events (depth 10–25 km) with thrust/reverse solutions but having minor right-lateral strike slip component (all Muzaffarabad earthquakes and two earlier) are associated with the IKSZ; (3) deeper earthquakes (depth below IKSZ) with pure thrust/reverse solutions may be related to the under-thrusting of the Indian plate beneath the IKSZ, which represents a major thrust zone. Imbricate thrusting and breaking and thickening of the crust are considered to be caused by steep bending of the under-thrusting plate at the collisional boundary. An erratum to this article can be found at  相似文献   

5.
福建街面水库将于2006年底下闸蓄水,通过收集库区的地震震源机制解资料和本次工作得到的地震震源机制解结果,以及利用中小地震求解的综合震源机制解,本文分析了街面水库库区现代构造应力场特征:最大主压应力P轴为NW—SE方向,P轴倾角为23°;主张应力T轴为NE—SW方向,T轴倾角为3°。在这样的应力场中,主要以发生走滑型断裂运动性质的地震为主,同时还具有发生正断层运动性质的地震。  相似文献   

6.
—In this paper we present results of body wave-form modeling of 19 earthquakes (generally m b 5.7) occurring from 1964 to 1983 in the vicinity and down-dip of the large asperity within the Prince William Sound region that ruptured in 1964. These data are supplemented with source parameters from studies of more recent (post-1980) events. Our results suggest that moderate earthquakes which occurred in the region between 1964 and 1984 were predominantly located in the vicinity of the Prince William Sound asperity and could be assigned to two groups. The first group consists of events occurring above the plate interface within Prince William Sound along reverse faults or low angle thrusts. The second group occurs at 35 to 60 km depth in the region north of Prince William Sound, and represents normal to normal-oblique faulting within the subducted Pacific crust or upper mantle. These earthquakes occur below the northern edge of the 1964 asperity in a region where the subducting plate undergoes a rapid change in strike and dip. A third group of events occurs in Cook Inlet well down-dip of the 1964 asperity and below the plate interface. These events exhibit a variety of mechanisms and many at depths of 50 to 70 km may be associated with complexities in the shape of the downgoing slab. Most of the Cook Inlet events occurred after 1984, whereas a few events of similar magnitude have occurred in the vicinity of the Prince William Sound asperity since 1984.  相似文献   

7.
帕米尔兴都库什地区板块俯冲及其应力状态   总被引:5,自引:0,他引:5       下载免费PDF全文
利用美国国家地震信息中心(NEIC)提供的1973;2006年地震目录、哈佛大学提供的1978;2005年地震机制解资料,精细地研究了帕米尔;兴都库什地区印度板块与欧亚板块的碰撞形态,分析了地震震源机制特征。研究结果认为:欧亚板块以约50;的倾角向南俯冲,地震最大深度为364km;印度板块以层间插入的方式与欧亚板块碰撞,在帕米尔;结附近碰撞强烈,地震活动明显增强,震源剖面显示字型分布形态;在帕米尔;结;两侧,随着印度板块俯冲动力减弱,地震活动也明显减弱,地震震源剖面显示,印度板块向北俯冲的剖面形态逐渐消失,欧亚板块向SE俯冲的剖面形态越加清晰,从地震震源剖面分布形态分析,印度板块没有穿过欧亚板块,印度板块向北的反复、多期的叠瓦式地震分布形态,可能反映印度板块向北俯冲;断离、再俯冲;再断离的过程。由于印度板块与欧亚板块间的强烈碰撞挤压作用,帕米尔;兴都库什地区处于以近SN向的挤压构造应力状态,逆断层数量约占70%,正断层数量约占11%,走滑断层数量约占19%。P轴优势方位显示帕米尔;兴都库什地区主压应力近SN向,倾角近水平,呈现由南向北倾斜;T轴倾角近垂直,整体接近俯冲带的倾向。帕米尔;兴都库什地区应力  相似文献   

8.
Moment tensors of eleven major earthquakes in the Tibetan Plateau and its surrounding region from 1966 to 1980 are estimated by generalized inverse technique. The seismic source time function and focal depth are immediately determined in the inversion. The results show that moment tensors of some events differ significantly from double couple, the deviation increases with decreasing plunge angle of null axis. All these events occurred in the upper crust, much shallower than those reported so far, for example, in NEIS Bulletin. Focal mechanism solution obtained from the moment tensors are consistent with the idea that the Indian plate collides northwards with the Eurasian plate and that an eastward spreading exists in the crust of the Tibetan Plateau. The stress drops for earthquakes of intraplate are systematically higher than those of earthquakes in suture zone. The source process duration becomes longer with seismic moment, but for the same seismic moment, the process duration for earthquakes in suture zone is about 1.4 times of those for intraplate event, these results suggest that the earthquakes near suture zone may be of a special characteristics in source process differently from those in intraplate. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 423 – 434, 1992.  相似文献   

9.
吴忠良  黄静  周公威 《中国地震》2002,18(4):337-345
在哈佛全球CMT目录中,震源深度与矩心深度的分布呈现出明显的规律性。从统计上说,浅源地震的震源深度大于矩心深度,而中深源地震不具有这样的特征。将地震按照震源机制进行分类之后发现,上述特征主要属于逆冲型地震和正断层型地震的贡献,而走滑型地震没有这样的特征,这一分布规律或可作为地震的“化学力学”模型的一个间接的支持。  相似文献   

10.
— The Indo-Burma (Myanmar) subduction boundary is highly oblique to the direction of relative velocity of the Indian tectonic plate with respect to the Eurasian plate. The area includes features of active subduction zones such as a Wadati-Benioff zone of earthquakes, a magmatic arc, thrust and fold belts. It also has features of oblique subduction such as: an arc-parallel strike-slip fault (Sagaing Fault) that takes up a large fraction of the northward component of motion and a buttress (the Mishmi block) that resists the motion of the fore-arc sliver. In this paper, I have examined the seismicity, slip vectors and principal axes of the focal mechanisms of the earthquakes to look for features of active subduction zones and for evidence of slip partitioning as observed in other subduction zones. The data set consists of Harvard CMT solutions of 89 earthquakes (1977–1999 with 4.8≦̸Mw≦̸7.2 and depths between 3–140 km). Most of these events are shallow and intermediate depth events occurring within the Indian plate subducting eastward beneath the Indo-Burman ranges. Some shallow events within the fore-arc region have arc-parallel Paxes, reflecting buttressing of the fore-arc sliver at its leading edge. Some of the shallowest events have nearly E-W oriented P axes which might account for recent folding and thrusting. Examination of earthquake slip vectors in this region shows that the slip vector azimuths of earthquakes in the region between 20°–26°N are rotated towards the trench normal, which is an indication of partial partitioning of the oblique convergence. It is seen that all aspects of seismicity, including the paucity of shallow underthrusting earthquakes and the orientation of P axes, are consistent with oblique convergence. The conclusions of this paper are consistent with recent geological studies and interpretations such as the coexistence of eastward subduction, volcanic activity and transcurrent movement through mid-Miocene to Quaternary period.  相似文献   

11.
柴达木盆地东部三湖地区四系米兰柯维奇旋回分析   总被引:6,自引:4,他引:2       下载免费PDF全文
自然伽马曲线包含丰富的地质信息,能够很好地反映由气候变化引起的地层旋回.本文采用频谱分析对柴达木盆地三湖地区第四系自然伽马测井曲线进行了系统分析.作为频谱分析方法之一的快速傅里叶变换能够将自然伽马曲线从时间(深度)域转换为频率域,然后分析每一个峰值频率的波长及其相互之间的比率关系,寻找那些波长比率与米兰柯维奇周期比率相同或相似的频率,从而捕获高频旋回信息.研究结果表明第四系地层中很好地保存了高频的米兰柯维奇旋回,这样的沉积旋回主要由地球轨道的周期性变化而导致的古气候变化引起的.偏心率周期引起的地层旋回厚度变化范围在92.00~115.00 m之间,黄赤交角引起的地层旋回厚度变化范围在24.55~63.43 m之间,岁差引起的地层旋回厚度变化范围在16.8~26.35 m之间.黄赤交角和岁差是影响该区米兰柯维奇旋回的主要因素,其中岁差的影响最大,而偏心率的影响最小.  相似文献   

12.
本文介绍了2019年4月7日北京海淀M2.9及4月14日北京怀柔M3.0地震的基本参数速报情况,并利用区域台网波形数据,采用全波形反演方法ISOLA获得了这两次地震的最佳双力偶解。反演结果显示:M2.9地震的节面Ⅰ走向29°,倾角70°,滑动角?149°,节面Ⅱ走向288°,倾角61°,滑动角?22°;矩心深度14 km,矩震级MW=3.4。M3.0地震的节面Ⅰ走向93°,倾角84°,滑动角?30°,节面Ⅱ走向186°,倾角60°,滑动角173°;矩心深度16 km,矩震级MW=3.4。震源机制反演结果表明,两次地震均为走滑型为主的地震,其与震源区域附近历史地震震源机制解具有相同性质。   相似文献   

13.
2013年8月28日和31日四川得荣县与云南德钦县、香格里拉县交界地区分别发生MS5.2和MS5.9地震.这两次主震连同截至2013年12月31日发生的589次M≥1.5余震,构成香格里拉—得荣震群序列.该序列的震区位于青藏高原东南隅横断山脉的三江构造带地区,地处川滇菱形块体西边界,当地有多组交错的活动断裂.为了了解这一震群序列的震源构造特征以及震区的构造动力环境,我们利用区域地震台网的数字波形资料以及中国地震台网中心的有关震相数据,建立了分区速度结构模型;使用Loc3D(川滇走时表定位软件)重新测定该震群序列中10次MS4.0地震的位置,利用双差法对该序列中的更小地震进行重新定位;同时,采用地震矩张量的时间域反演方法获得10次MS4.0地震震源机制的矩张量解.重新定位结果显示:香格里拉—得荣震群序列的绝大部分地震发生在NW向德钦—中甸—大具断裂中段7~15km深度的基底层,整个序列的震源分布长度约17km,横向宽度约7km;震源分布在横剖面表现为负花状构造的断裂带内,其中,NE倾向的主干活动断裂及其北东侧一条SW倾向的次级断裂分别控制该负花状构造的两个侧边.本研究反演得到的震源机制解显示:该序列所有MS4.0地震均是德钦—中甸—大具断裂中段在近S-N向—NNE-SSW向拉张作用下的正断层作用的结果,右旋走滑作用并不明显.这与该断裂晚第四纪活动的地质地貌特征—右旋走滑为主、正断倾滑为辅—并不吻合.这种不一致可能暗示震区的现今构造运动与以往有所不同,为进一步研究青藏亚板块东南隅与缅甸亚板块以及印度板块交界地区的现今构造动力学提出了问题与线索.  相似文献   

14.
Over the last twenty years, Chagos Bank has a seismicity rate disproportionate to its supposed intraplate location. Earthquake relocation also shows a high seismicity rate in pre-WWSSN time (1912–1963), with seven events located off of the Central Indian Ridge, including large events in 1912 (M = 6.8) and 1944 (M = 7.2). This study uses the moment variance technique, a systematic search for the mechanism which best fits P, PP, SH, Love and Rayleigh amplitudes, to determine the focal mechanisms of two pre-WWSSN earthquakes. A test with a recent event of known mechanism demonstrates that accurate focal parameter determination is possible even when only a few good records are available. Moment variance analysis shows a thrust faulting mechanism for the 1944 event, northeast of Chagos Bank near the Chagos-Laccadive ridge, and a strike-slip focal mechanism for a smaller 1957 event west of Chagos Bank. The 1944 event, one of the largest oceanic “intraplate” earthquakes known (moment 1.4 × 1027 dyne-cm), indicates that the Chagos seismicity reflects not an isolated occurrence of normal faulting as previously thought, but rather regional tectonic deformation extending northeast of Chagos Bank and including thrust, normal and strike-slip events. This seismicity and previously studied seismicity near the Ninetyeast Ridge and Central Indian Basin suggest a broad zone of deformation stretching across the equatorial Indian Ocean. This zone contains all known magnitude seven oceanic “intraplate” earthquakes not associated with subduction zones or continental margins, suggesting that elsewhere such extensive deformation occurs only along plate boundaries. This study proposes that a slow, diffuse plate boundary extends east from the Central Indian Ridge to the Ninetyeast Ridge and north to the Sumatra Trench. A recent plate motion study confirms this boundary and suggests that it separates the Australian plate from a single Indo-Arabian plate.  相似文献   

15.
印度尼西亚巨震对华东地震形势的影响   总被引:1,自引:0,他引:1  
王行舟  陈宇卫  施行觉 《地震》2006,26(1):138-144
根据印度板块和缅甸次板块运动GPS观测资料, 分析了印度尼西亚巨震的发震构造背景, 震后印、 缅板块的正应力减小, 剪应力相对增大, 剪应力是对华东地震形势产生影响的主要动力源。 简单统计印缅板块地震后3年内华东地区发生中强震的对应组数为21组, 利用概率增益公式得出印、 缅板块地震和华东地区中强震的对应关系是有物理基础的对应, 而不是随机的对应。 通过β分布函数预测华东地区未来3年发生5级以上地震的概率为0.67, 风险经验概率为0.65。  相似文献   

16.
以中国地震台网中心地震目录中的事件为模板地震,通过滑动窗口的波形互相关方法对布设在灌县—安县断裂周边17个流动地震台的连续地震记录进行处理,识别ML0.0以上的重复地震. 然后使用结合波形互相关技术的双差算法对这些地震进行重定位,获得了243次地震的重定位结果. 结果表明: 在研究时段内,灌县—安县断裂的地震活动性呈减弱趋势; 地震震源的优势分布深度为5—15 km,震源深度剖面显示地震呈高角度向西倾斜分布; 地震震中沿NE向分布,与龙门山前山断裂的走向基本一致; 研究区内南、 北两段的地震活动性及b值存在差异,这可能与龙门山断裂带中段区域应力方向由南到北发生的WNW向到ENE向转换的构造作用密切相关.   相似文献   

17.
根据已发布震源机制解目录(哈佛大学CMT),将青藏高原东部及邻区划分为5个构造应力场分区,并对各分区的地震逐个计算其发震断层面上的固体潮汐正应力、剪应力、库仑破裂应力及相位角,分析潮汐应力分量对不同类型发震断层的作用效果及其随深度变化特征.基于库仑破裂应力判断准则,研究潮汐应力对各种类型地震的触发作用;基于Schuster检验方法,统计分析潮汐应力对各个震级档、不同构造类型地震的影响.综合运用上述两种分析方法,探讨潮汐应力对不同震级地震以及处于不同构造块体、发震断层、震源深度地震的触发机制.结果表明,潮汐应力对印度块体和拉萨块体的正断和逆断型地震,滇缅泰块体、印支块体和松潘-甘孜块体的走滑和斜滑型地震,川滇菱形块体的斜滑型地震均存在不同程度的触发效应,且触发效应的强弱依赖于震源深度、震级大小、发震断层类型及其所处区域构造应力场.  相似文献   

18.
The Yajiang earthquake sequence in 2001, with the major events of Ms5.1 on Feb. 14 and of Ms6.0 on Feb.23, are significant events in the Sichuan region during the last 13 years. Eighty-eight earthquakes in the sequence with at least 5 distinct onset parameters for each recorded by the Sichuan Seismic Network in the period of Jan. 1 through June 30,2001 were chosen for this study. The events are relocated and the focal mechanism is derived from P-wave onsets for 13 events with relatively larger magnitudes. The focal depth of all earthquakes fall between a range of 2km to 16km, with dominant distribution between 9km to 11km. Theforeshocks, the Ms5.1 earthquake and the Ms6.0 earthquake and their aftershocks are all located close to the Zihe fault and the dominant epicentral distribution is in NW direction, identical to that of the fault. The fracture surface of the focal mechanism is determined in accordance to the mass transfer orientation in the recent earth deformation field in the Yajiang region. The P axes of the principal compressive stress in focal mechanism solutions of the 13 events show bigger vertical components, and the horizontal projection trending SE. The earthquakes are of left-lateral, strike-slip normal, and normal strike-slip types. The rupture surface of most earthquakes strike NW-SE, dipping SW. Based on the above information, we conclude that the Zihe fault that crosses the earthquake area, striking NW and dipping SW, is the seismogenic fault for the Yajiang earthquake sequence.  相似文献   

19.
帕米尔东北缘及塔里木盆地西北部弧形构造的扩展特征   总被引:15,自引:0,他引:15  
归纳了帕米尔东北缘弧形构造的基本特征 ,分析了塔里木盆地西北部EW向逆断裂背斜带与NNW向隐伏走滑断裂之间的关系。通过塔里木盆地与西南天山和帕米尔东北缘变形特征的对比 ,认为塔里木盆地西北部的变形样式与帕米尔东北缘的弧形构造类似 ,弧形构造具有由帕米尔东北缘向塔里木盆地扩展的特征 ,这种构造是帕米尔向北挤入运动所特有的变形样式  相似文献   

20.
2001年以来全球8级地震呈现新的活跃态势, 7.5级以上强震在空间上呈优势分布, 强震相对集中在西太平洋地震带和欧亚地震带, 印度—澳大利亚板块的汇聚边界带上尤为突出。 2009年全球发生20次7级以上强震, 其中有15次发生在印度—澳大利亚板块, 近期仍具有延续全球强震活动优势空间分布。 本文在以往关于印度—澳大利亚板块运动方式以及相关地震活动研究基础上, 将印度—澳大利亚板块分为印度亚板块和澳大利亚板块, 依据强震应变释放资料分析中国大陆西部、 印度板块边界和澳大利亚板块边界之间强震活动可能的相关性。 结果表明, 中国大陆西部地区与印度板块边界的强震活动有较好的相关性, 印度板块边界与澳大利亚板块边界活动也有一定的相关性。 1914—1993年时段的中国大陆西部地区5个完整强震释放时段与印度板块地震活动表现出很强的相关性, 且中国大陆西部地区强震活动相对印度板块边界地区滞后0~5年, 这对于中国大陆地区强震趋势跟踪具有一定的参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号