首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We explore the impact of future climate change on the risk of forest and grassland fires over Australia in January using a high resolution regional climate model, driven at the boundaries by data from a transitory coupled climate model. Two future emission scenarios (relatively high and relatively low) are used for 2050 and 2100 and four realizations for each time period and each emission scenario are run. Results show a consistent increase in regional-scale fire risk over Australia driven principally by warming and reductions in relative humidity in all simulations, under all emission scenarios and at all time periods. We calculate the probability density function for the fire risk for a single point in New South Wales and show that the probability of extreme fire risk increases by around 25% compared to the present day in 2050 under both relatively low and relatively high emissions, and that this increases by a further 20% under the relatively low emission scenario by 2100. The increase in the probability of extreme fire risk increases dramatically under the high emission scenario by 2100. Our results are broadly in-line with earlier analyses despite our use of a significantly different methodology and we therefore conclude that the likelihood of a significant increase in fire risk over Australia resulting from climate change is very high. While there is already substantial investment in fire-related management in Australia, our results indicate that this investment is likely to have to increase to maintain the present fire-related losses in Australia.  相似文献   

2.
This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4 °C by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at around 450 ppm CO2e and leads to a 2 °C increase in 2100. Associated changes in river runoff are simulated using a global hydrological model, for four spatial patterns of change in temperature and rainfall. There is a considerable difference in hydrological change between these four patterns, but the percentages of change avoided at the global scale are relatively robust. By the 2050s, the Mitigation scenario typically avoids between 16 and 30% of the change in runoff under the Reference scenario, and by 2100 it avoids between 43 and 65%. Two different measures of exposure to water resources stress are calculated, based on resources per capita and the ratio of withdrawals to resources. Using the first measure, the Mitigation scenario avoids 8-17% of the impact in 2050 and 20-31% in 2100; with the second measure, the avoided impacts are 5-21% and 15-47% respectively. However, at the same time, the Mitigation scenario also reduces the positive impacts of climate change on water scarcity in other areas. The absolute numbers and locations of people affected by climate change and climate policy vary considerably between the four climate model patterns.  相似文献   

3.
Using the operational model(B model)of Beijing Meteorological Center,we do some of numerical experi-ments of crossing and rounding mountains in all velocity adjustment scheme,and study dynamic effect ofQinghai-Xizang Plateau and Rocky Mountains on lee cyclones.The results show that due to air flow roundthe Qinghai-Xizang Plateau,divergence is distributed in the shape of confluence which matches cyclogenesisarea and cyclonic track in East Asia.In the downstream of the Qinghai-Xizang Plateau,convergence inthe upper troposphere restrains cyclone development in the east of China mainland.In North America,air flow primarily crosses over Rocky Mountains.Air is adiabatically cooled when it flows upward in thewest flank of Rocky Mountains,while air is warmed when it flows downward in the lee side.The fact isimportant for the lee cyclogenesis and the lee frontogenesis of Rocky Mountains.Air flow crossing over RockyMountains is also the main cause for forming dryline in the mid-west of United States.  相似文献   

4.
青藏高原和落基山对气旋的动力影响   总被引:4,自引:2,他引:4       下载免费PDF全文
盛华  陶诗言 《气象学报》1988,46(2):130-141
本文利用北京气象中心的业务预报模式(B模式),采用全风速调整方案,进行了绕流、爬坡等各种数值试验,研究青藏高原和落基山对气旋的动力影响。结果表明,气流绕青藏高原而行,产生的散度场与东亚的气旋生成区和路径匹配;在青藏高原主体下游,高层辐合,抑制了我国大陆东部的气旋发展。在北美,落基山对大气的动力影响以爬坡为主,由于气流在迎风坡上升,空气绝热冷却,在背风面大规模下沉增温,对流层低层形成暖脊,这对背风锋生和背风气旋的发生发展有着直接的影响;另外爬坡作用也是美国中西部干线形成的主要原因。  相似文献   

5.
使用UVic地球系统气候模式,在4种CO2典型浓度路径(RCP2.6、RCP4.5、RCP6.0、RCP8.5)情景下,对1800-2300年海洋环境变化及珊瑚礁周围海水环境进行模拟分析。结果表明,海洋将继续吸收大量碳,从RCP2.6到RCP8.5情景,海表温度将在21世纪末上升1.1~2.8 K,pH值将下降0.14~0.42,[CO32- ]将减少20%~51%。珊瑚礁周围环境的文石饱和度(W)下降迅速。在工业革命前,99%的浅水珊瑚处于W>3.5的外环境中,87%的深水珊瑚处于W>1的海域。在21世纪末,除了RCP2.6,其他情景下均仅剩不到1%的浅水珊瑚还能被W>3.5的水域包围。在RCP8.5情景下,21世纪末全球平均文石饱和线将从工业革命前的1138 m水深提升到308 m水深,使得73%的冷水珊瑚暴露在不饱和水域,而2300年这一比例将超过95%。  相似文献   

6.
Despite improvements in disaster risk management in the United States, a trend toward increasing economic losses from extreme weather events has been observed. This trend has been attributed to growth in socioeconomic exposure to extremes, a process characterized by strong path dependence. To understand the influence of path dependence on past and future losses, an index of potential socioeconomic exposure was developed at the U.S. county level based upon population size and inflation-adjusted wealth proxies. Since 1960, exposure has increased preferentially in the U.S. Southeast (particularly coastal and urban counties) and Southwest relative to the Great Plains and Northeast. Projected changes in exposure from 2009 to 2054 based upon scenarios of future demographic and economic change suggest a long-term commitment to increasing, but spatially heterogeneous, exposure to extremes, independent of climate change. The implications of this path dependence are examined in the context of several natural hazards. Using methods previously reported in the literature, annualized county-level losses from 1960 to 2008 for five climate-related natural hazards were normalized to 2009 values and then scaled based upon projected changes in exposure and two different estimates of the exposure elasticity of losses. Results indicate that losses from extreme events will grow by a factor of 1.3–1.7 and 1.8–3.9 by 2025 and 2050, respectively, with the exposure elasticity representing a major source of uncertainty. The implications of increasing physical vulnerability to extreme weather events for investments in disaster risk management are ultimately contingent upon the normative values of societal actors.  相似文献   

7.
Book review     
《Climate Policy》2013,13(4):395-396
In 2007 the US Congress began considering a set of bills to implement a cap-and-trade system to limit the nation's greenhouse gas (GHG) emissions. The MIT Integrated Global System Model (IGSM)—and its economic component, the Emissions Prediction and Policy Analysis (EPPA) model—were used to assess these proposals. In the absence of policy, the EPPA model projects a doubling of US greenhouse gas emissions by 2050. Global emissions, driven by growth in developing countries, are projected to increase even more. Unrestrained, these emissions would lead to an increase in global CO2 concentration from a current level of 380 ppmv to about 550 ppmv by 2050 and to near 900 ppmv by 2100, resulting in a year 2100 global temperature 3.5–4.5°C above the current level. The more ambitious of the Congressional proposals could limit this increase to around 2°C, but only if other nations, including developing countries, also strongly controlled greenhouse gas emissions. With these more aggressive reductions, the economic cost measured in terms of changes in total welfare in the United States could range from 1.5% to almost 2% by the 2040–2050 period, with 2015 CO2-equivalent prices between $30 and $55, rising to between $120 and $210 by 2050. This level of cost would not seriously affect US GDP growth but would imply large-scale changes in its energy system.  相似文献   

8.
We present projections of winter storm-induced insured losses in the German residential building sector for the 21st century. With this aim, two structurally most independent downscaling methods and one hybrid downscaling method are applied to a 3-member ensemble of ECHAM5/MPI-OM1 A1B scenario simulations. One method uses dynamical downscaling of intense winter storm events in the global model, and a transfer function to relate regional wind speeds to losses. The second method is based on a reshuffling of present day weather situations and sequences taking into account the change of their frequencies according to the linear temperature trends of the global runs. The third method uses statistical-dynamical downscaling, considering frequency changes of the occurrence of storm-prone weather patterns, and translation into loss by using empirical statistical distributions. The A1B scenario ensemble was downscaled by all three methods until 2070, and by the (statistical-) dynamical methods until 2100. Furthermore, all methods assume a constant statistical relationship between meteorology and insured losses and no developments other than climate change, such as in constructions or claims management. The study utilizes data provided by the German Insurance Association encompassing 24 years and with district-scale resolution. Compared to 1971–2000, the downscaling methods indicate an increase of 10-year return values (i.e. loss ratios per return period) of 6–35 % for 2011–2040, of 20–30 % for 2041–2070, and of 40–55 % for 2071–2100, respectively. Convolving various sources of uncertainty in one confidence statement (data-, loss model-, storm realization-, and Pareto fit-uncertainty), the return-level confidence interval for a return period of 15 years expands by more than a factor of two. Finally, we suggest how practitioners can deal with alternative scenarios or possible natural excursions of observed losses.  相似文献   

9.
Sevinc Ozkul 《Climatic change》2009,97(1-2):253-283
IPCC Fourth Assessment Report (AR4) discloses that the global climate system is undoubtedly warming. Observations have shown that many natural systems, including hydrologic systems and water resources, are being affected by regional climate changes, particularly temperature increases. Eventually, these effects will have to be considered in water resources planning and management. Accordingly, need is indicated to evaluate the impact of expected climate change on hydrology and water resources at regional and local levels. The presented paper summarizes the results of the sub-project studies under the United Nations Development Program-Global Environment Facility (UNDP-GEF) Project. The studies cover the generation of climate change scenarios, modeling of basin hydrology, and testing the sensitivity of runoff to changes in precipitation and temperature. Simulation results of the water budget model have shown that nearly 20% of the surface waters in the studied basins will be reduced by the year of 2030. By the years 2050 and 2100, this percentage will increase up to 35% and more than 50%, respectively. The decreasing surface water potential of the basins will cause serious water stress problems among water users, mainly being agricultural, domestic and industrial water users.  相似文献   

10.
构建了具有7个国家集团的全球多国家集团气候博弈集成评估模拟系统,针对《巴黎协定》背景下各国至2050年以及2100年的减排目标,分别对减排博弈的纳什均衡、博弈不确定性以及外部政策对减排博弈的影响展开了模拟分析。研究发现:在基准情景下,全球各国将在2030年后均选择不减排策略,全球至2100年升温达到2.62℃;而模型参数的不确定性也未能突破全球零减排的纳什均衡;而仅当在全球范围内对不减排采取惩罚措施时,全球零减排的纳什均衡点被打破。但在当前《巴黎协定》减排承诺下,为达到2℃的温控目标,加大2030—2050年的减排幅度至关重要,否则全球将在2040年左右突破2℃阈值。  相似文献   

11.
温琴  何国瑞  杨海军 《大气科学》2022,46(5):1209-1224
本文利用耦合气候模式研究了“有/无”青藏高原和落基山脉对厄尔尼诺—南方涛动(ENSO)的影响,并从温度变率方程的角度详细分析了ENSO变化的成因,结果表明:移除青藏高原或落基山脉均会造成ENSO变率增强;ENSO变率在无青藏高原试验中增强的幅度比在无落基山脉试验中更大。ENSO变率在地形敏感性试验中的变化与热带太平洋平均气候态的改变密切相关。移除青藏高原后热带太平洋信风减弱,大气对流中心东移,混合层变浅,温跃层变平,呈现出El Ni?o型海温分布,这些平均态的变化使海表风应力敏感性,Ekman抽吸敏感性以及温跃层敏感性幅度增强,最终导致ENSO振幅增大60%。然而,在移除落基山脉的情景下,热带太平洋信风变化更加复杂,大气对流中心稍有东移,混合层加深,温跃层变平,呈现出类La Ni?a型海温分布。这些变化增强了风应力敏感性和温跃层敏感性,最终导致ENSO振幅仅增大15%左右。本文研究表明,在地质时间尺度上青藏高原和落基山脉的抬升均抑制了ENSO变率。  相似文献   

12.
Summary Using a high resolution regional climate model we perform multiple January simulations of the impact of land cover change over western Australia. We focus on the potential of reforestation to ameliorate the projected warming over western Australia under two emission scenarios (A2, B2) for 2050 and 2100. Our simulations include the structural and physiological responses of the biosphere to changes in climate and changes in carbon dioxide. We find that reforestation has the potential to reduce the warming caused by the enhanced greenhouse effect by as much as 30% under the A2 and B2 scenarios by 2050 but the cooling effect declines to 10% by 2100 as CO2-induced warming intensifies. The cooling effect of reforestation over western Australia is caused primarily by the increase in leaf area index that leads to a corresponding increase in the latent heat flux. This cooling effect is localized and there were no simulated changes in temperature over regions remote from land cover change. We also show that the more extreme emission scenario (A2) appears to lead to a more intense response in photosynthesis by 2100. Overall, our results are not encouraging in terms of the potential to offset future warming by large scale reforestation. However, at regional scales the impact of land cover change is reasonably large relative to the impact of increasing carbon dioxide (up to 2050) suggesting that future projections of the Australian climate would benefit from the inclusion of projections of future land cover change. We suggest that this would add realism and regional detail to future projections and perhaps aid detection and attribution studies.  相似文献   

13.
The MAGICC (Model for the Assessment of Greenhouse gas Induced Climate Change) model simulation has been carried out for the 2000–2100 period to investigate the impacts of future Indian greenhouse gas emission scenarios on the atmospheric concentrations of carbon dioxide, methane and nitrous oxide besides other parameters like radiative forcing and temperature. For this purpose, the default global GHG (Greenhouse Gases) inventory was modified by incorporation of Indian GHG emission inventories which have been developed using three different approaches namely (a) Business-As-Usual (BAU) approach, (b) Best Case Scenario (BCS) approach and (c) Economy approach (involving the country’s GDP). The model outputs obtained using these modified GHG inventories are compared with various default model scenarios such as A1B, A2, B1, B2 scenarios of AIM (Asia-Pacific Integrated Model) and P50 scenario (median of 35 scenarios given in MAGICC). The differences in the range of output values for the default case scenarios (i.e., using the GHG inventories built into the model) vis-à-vis modified approach which incorporated India-specific emission inventories for AIM and P50 are quite appreciable for most of the modeled parameters. A reduction of 7% and 9% in global carbon dioxide (CO2) emissions has been observed respectively for the years 2050 and 2100. Global methane (CH4) and global nitrous oxide (N2O) emissions indicate a reduction of 13% and 15% respectively for 2100. Correspondingly, global concentrations of CO2, CH4 and N2O are estimated to reduce by about 4%, 4% and 1% respectively. Radiative forcing of CO2, CH4 and N2O indicate reductions of 6%, 14% and 4% respectively for the year 2100. Global annual mean temperature change (incorporating aerosol effects) gets reduced by 4% in 2100. Global annual mean temperature change reduces by 5% in 2100 when aerosol effects have been excluded. In addition to the above, the Indian contributions in global CO2, CH4 and N2O emissions have also been assessed by India Excluded (IE) scenario. Indian contribution in global CO2 emissions was observed in the range of 10%–26%, 6%–36% and 10%–38% respectively for BCS, Economy and BAU approaches, for the years 2020, 2050 and 2100 for P50, A1B-AIM, A2-AIM, B1-AIM & B2-AIM scenarios. CH4 and N2O emissions indicate about 4%–10% and 2%–3% contributions respectively in the global CH4 and N2O emissions for the years 2020, 2050 and 2100. These Indian GHG emissions have significant influence on global GHG concentrations and consequently on climate parameters like RF and ∆T. The study reflects not only the importance of Indian emissions in the global context but also underlines the need of incorporation of country specific GHG emissions in modeling to reduce uncertainties in simulation of climate change parameters.  相似文献   

14.
15.
Severe wind storms are one of the major natural hazards in the extratropics and inflict substantial economic damages and even casualties. Insured storm-related losses depend on (i) the frequency, nature and dynamics of storms, (ii) the vulnerability of the values at risk, (iii) the geographical distribution of these values, and (iv) the particular conditions of the risk transfer. It is thus of great importance to assess the impact of climate change on future storm losses. To this end, the current study employs—to our knowledge for the first time—a coupled approach, using output from high-resolution regional climate model scenarios for the European sector to drive an operational insurance loss model. An ensemble of coupled climate-damage scenarios is used to provide an estimate of the inherent uncertainties. Output of two state-of-the-art global climate models (HadAM3, ECHAM5) is used for present (1961–1990) and future climates (2071–2100, SRES A2 scenario). These serve as boundary data for two nested regional climate models with a sophisticated gust parametrizations (CLM, CHRM). For validation and calibration purposes, an additional simulation is undertaken with the CHRM driven by the ERA40 reanalysis. The operational insurance model (Swiss Re) uses a European-wide damage function, an average vulnerability curve for all risk types, and contains the actual value distribution of a complete European market portfolio. The coupling between climate and damage models is based on daily maxima of 10 m gust winds, and the strategy adopted consists of three main steps: (i) development and application of a pragmatic selection criterion to retrieve significant storm events, (ii) generation of a probabilistic event set using a Monte-Carlo approach in the hazard module of the insurance model, and (iii) calibration of the simulated annual expected losses with a historic loss data base. The climate models considered agree regarding an increase in the intensity of extreme storms in a band across central Europe (stretching from southern UK and northern France to Denmark, northern Germany into eastern Europe). This effect increases with event strength, and rare storms show the largest climate change sensitivity, but are also beset with the largest uncertainties. Wind gusts decrease over northern Scandinavia and Southern Europe. Highest intra-ensemble variability is simulated for Ireland, the UK, the Mediterranean, and parts of Eastern Europe. The resulting changes on European-wide losses over the 110-year period are positive for all layers and all model runs considered and amount to 44% (annual expected loss), 23% (10 years loss), 50% (30 years loss), and 104% (100 years loss). There is a disproportionate increase in losses for rare high-impact events. The changes result from increases in both severity and frequency of wind gusts. Considerable geographical variability of the expected losses exists, with Denmark and Germany experiencing the largest loss increases (116% and 114%, respectively). All countries considered except for Ireland (?22%) experience some loss increases. Some ramifications of these results for the socio-economic sector are discussed, and future avenues for research are highlighted. The technique introduced in this study and its application to realistic market portfolios offer exciting prospects for future research on the impact of climate change that is relevant for policy makers, scientists and economists.  相似文献   

16.
An important criticism of bioclimate envelope models is that many wide-ranging species consist of locally adapted populations that may all lag behind their optimal climate habitat under climate change, and thus should be modeled separately. Here, we apply a bioclimate envelope model that tracks habitat of individual populations to estimate adaptational lags for 15 wide-ranging forest tree species in western North America. An ensemble classifier modeling approach (RandomForest) was used to spatially project the climate space of tree populations under observed climate trends (1970s to 2000s) and multi-model projections for the 2020s, 2050s and 2080s. We find that, on average, populations already lag behind their optimal climate niche by approximately 130 km in latitude, or 60 m in elevation. For the 2020s we expect an average lag of approximately 310 km in latitude or 140 m in elevation, with the most pronounced geographic lags in the Rocky Mountains and the boreal forest. We show that our results could in principle be applied to guide assisted migration of planting stock in reforestation programs using a general formula where 100 km north shift is equivalent to approximately 44 m upward shift in elevation. However, additional non-climatic factors should be considered when matching reforestation stock to suitable planting environments.  相似文献   

17.
Summary The crop model CERES-Wheat in combination with the stochastic weather generator were used to quantify the effect of uncertainties in selected climate change scenarios on the yields of winter wheat, which is the most important European cereal crop. Seven experimental sites with the high quality experimental data were selected in order to evaluate the crop model and to carry out the climate change impact analysis. The analysis was based on the multi-year crop model simulations run with the daily weather series prepared by the stochastic weather generator. Seven global circulation models (GCMs) were used to derive the climate change scenarios. In addition, seven GCM-based scenarios were averaged in order to derive the average scenario (AVG). The scenarios were constructed for three time periods (2025, 2050 and 2100) and two SRES emission scenarios (A2 and B1). The simulated results showed that: (1) Wheat yields tend to increase (40 out of 42 applied scenarios) in most locations in the range of 7.5–25.3% in all three time periods. In case of the CCSR scenario that predicts the most severe increase of air temperature, the yields would be reduced by 9.6% in 2050 and by 25.8% in 2100 if the A2 emission scenario would become reality. Differences between individual scenarios are large and statistically significant. Particularly for the time periods 2050 and 2100 there are doubts about the trend of the yield shifts. (2) The site effect was caused by the site-specific soil and climatic conditions. Importance of the site influence increases with increasing severity of imposed climatic changes and culminates for the emission scenario A2 and the time period 2100. The sustained tendency benefiting two warmest sites has been found as well as more positive response to the changed climatic conditions of the sites with deeper soil profiles. (3) Temperature variability proved to be an important factor and influenced both mean and standard deviation of the yields. Change of temperature variability by more than 25% leads to statistically significant changes in yield distribution. The effect of temperature variability decreases with increased values of mean temperature. (4) The study proved that the application of the AVG scenarios – despite possible objections of physical inconsistency – might be justifiable and convenient in some cases. It might bring results comparable to those derived from averaging outputs based on number of scenarios and provide more robust estimate than the application of only one selected GCM scenario.  相似文献   

18.
To project potential habitat changes of 57 fish species under global warming, their suitable thermal habitat at 764 stream gaging stations in the contiguous United States was studied. Global warming was specified by air temperature increases projected by the Canadian Centre of Climate Modelling General Circulation Model for a doubling of atmospheric CO2. The aquatic thermal regime at each gaging station was related to air temperature using a nonlinear stream temperature/air temperature relationship.Suitable fish thermal habitat was assumed to be constrained by both maximum temperature and minimum temperature tolerances. For cold water fishes with a 0 °C lower temperature constraint, the number of stations with suitable thermal habitat under a 2×CO2 climate scenario is projected to decrease by 36%, and for cool water fishes by 15%. These changes are associated with a northward shift of the range. For warm water fishes with a 2 °C lower temperature constraint, the potential number of stations with suitable thermal habitat is projected to increase by 31%.  相似文献   

19.
A combination of linear response models is used to estimate the transient changes in the global means of carbon dioxide (CO2) concentration, surface temperature, and sea level due to aviation. Apart from CO2, the forcing caused by ozone (O3) changes due to nitrogen oxide (NOx) emissions from aircraft is also considered. The model is applied to aviation using several CO2 emissions scenarios, based on reported fuel consumption in the past and scenarios for the future, and corresponding NOx emissions. Aviation CO2 emissions from the past until 1995 enlarged the atmospheric CO2 concentration by 1.4 ppmv (1.7% of the anthropogenic CO2 increase since 1800). By 1995, the global mean surface temperature had increased by about 0.004 K, and the sea level had risen by 0.045 cm. In one scenario (Fa1), which assumes a threefold increase in aviation fuel consumption until 2050 and an annual increase rate of 1% thereafter until 2100, the model predicts a CO2 concentration change of 13 ppmv by 2100, causing temperature increases of 0.01, 0.025, 0.05 K and sea level increases of 0.1, 0.3, and 0.5 cm in the years 2015, 2050, and 2100, respectively. For other recently published scenarios, the results range from 5 to 17 ppmv for CO2 concentration increase in the year 2050, and 0.02 to 0.05 K for temperature increase. Under the assumption that present-day aircraft-induced O3 changes cause an equilibrium surface warming of 0.05 K, the transient responses amount to 0.03 K in surface temperature for scenario Fa1 in 1995. The radiative forcing due to an aircraft-induced O3 increase causes a larger temperature change than aircraft CO2 forcing. Also, climate reacts more promptly to changes in O3 than to changes in CO2 emissions from aviation. Finally, even under the assumption of a rather small equilibrium temperature change from aircraft-induced O3 (0.01 K for the 1992 NOx emissions), a proposed new combustor technology which reduces specific NOx emissions will cause a smaller temperature change during the next century than the standard technology does, despite a slightly enhanced fuel consumption. Regional effects are not considered here, but may be larger than the global mean responses.  相似文献   

20.
根据内蒙古黄河流域内72个国家气象站观测的1961—2005年和区域气候模式CCLM模拟的1961—2100年的气温和降水数据,采用BP人工神经网络模型,预估分析3种RCP情景下头道拐水文站2011—2100年流量变化,评估未来气候变化对流域水资源的可能影响。结果表明:①2011—2100年内蒙古黄河流域气温升高,降水变化不明显,年平均流量呈减少趋势,RCP2.6、RCP4.5和RCP8.5情景分别减少3.6%、2.7%和23.4%。②未来春季流量以增加为主;夏季在不同情景的变化趋势不一致;秋季在21世纪50年代前以增加为主,之后以减少为主;冬季则以减少为主。③未来流域可利用水资源呈减少趋势,尤其夏季水资源的供需矛盾加剧,以及径流季节分配发生变化,可能产生更大的春季径流。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号