首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rock glaciers are an end unit of the coarse debris system that links frost weathering and rockfall to debris transport in mountainous environments. By examining topographic and climatic controls on creep, a better understanding of rock glacier formation and evolution could be obtained. A series of statistical tests were run comparing contributing area parameters (width, length, area, slope, headwall height, etc.) and rock glacier variables (width, length, area, thickness, slope, creep and temperature) in the Front Range of Colorado. Results showed that rock glacier width had the strongest correlation with contributing area width due to an abundance of lobate rock glaciers (r = 0.78). Rock glacier area and contributing area size were also related (r = 0.74), but are also a function of talus production factors. Mean surface velocity appears to be better correlated with thickness (r = 0.58) and length (r = 0.62), rather than slope (r = 0.33). Mean annual air temperature had a stronger exponential relationship with maximum velocities (r = 0.76) compared to mean annual velocity (r = 0.60). Front Range rock glacier velocities tend to decrease with warming, suggesting that the volume of ice and debris, rates of shear in plastic layers, or melt water may have a greater influence on deformation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The morphology and surface ages of talus-derived rock glaciers are investigated to establish the timing of rock glacier formation in the central Southern Alps. Samples of rock weathering rinds show that all rock glaciers studied were formed during the Neoglacial period, but differences exist between sites in the number of new rock glacier lobes formed by Holocene climatic fluctuations. A qualitative conceptual model is proposed to explain rock glacier formation in terms of two thresholds. An external threshold relates to the presence of a cool climate capable of allowing internal ice to form within talus slopes. An internal threshold relates to the presence of sufficiently thick talus at a site to generate a shear stress capable of overcoming internal friction within the talus/ice mass. The model produces a non-steady-state response to explain why unmodified talus, single-lobed and double-lobed rock glaciers developed at adjacent sites under the same climatic regime. Individual landforms have different sensitivities to formation, which depend partly on the previous history of talus accumulation and rock glacier activity at a site. The model demonstrates how successive cool climate periods may be fully represented by rock glacier lobes at sensitive sites but under-represented at insensitive sites. Sensitivity (and therefore climatic representativeness) is favoured by high rates of debris supply. By implication, the timing of formation of rock glacier lobes in regions of prolonged cool climate and low debris production is less likely to correspond to the timing of climatic cooling and more likely to follow the ‘rules’ of deterministic chaos.  相似文献   

3.
A proposal for the classification of accumulations formed at the foot of mountain slopes and glacier snouts is presented for South Spitsbergen. Simple (talus cones) and complex (protalus ramparts, protalus rock glaciers, moraine rock glaciers) landforms are distinguished. The homogeneity of the features deposited at the foot of mountain slopes on a bedrock as well as on a glacial ice is noted, although the latter are more easily destructed due to melting of the buried ice. A significance of the ice core (interstitial or glacial ice) for a development of protalus rock glaciers and moraine rock glaciers is emphasized.  相似文献   

4.
Lobate talus slopes in the Deboullie Lakes Ecological Reserve (DLER) of northern Maine exhibit parabolic profiles characteristic of inactive and relict talus‐derived rock glaciers. Vegetated rock glacier surfaces suggest that the landforms are no longer active, and lobes comprising two DLER rock glaciers document periods of past growth. Observations of perennial subsurface ice are supported by datalogger temperature measurements, indicating that sporadic permafrost exists throughout the DLER. We compare the DLER rock glaciers, along with similar features elsewhere in New England and adjacent Québec, to the modern alpine permafrost distribution. Results indicate that a mean annual temperature cooling of ~6°C is required to promote active rock glacier growth. Ages of plant remains recovered from the basal sediments of a local pond constrain deglaciation to before 11 320 14C a BP, and core stratigraphy and organic content reveal that a periglacial environment persisted during the early postglacial era. Thus, we hypothesise that the DLER rock glaciers were active during Lateglacial time despite the lack of glacier activity in the region. We take this to suggest that north‐eastern US rock glaciers formed in response to mean annual temperatures skewed towards the frigid winters of the Younger Dryas chronozone. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Rock avalanches are common in the Mont Blanc massif, which is bordered by valleys with large resident and tourist populations and important highways. This paper combines historical data with detailed geomorphological mapping, stratigraphic observation, and absolute and relative dating, to interpret several deposits resulting from rock avalanching onto glaciers.Nineteen rock falls and rock avalanches are described, ranging in volume from 10,000 m3 to 10 × 106 m3. They occurred between 2500 BP and AD 2007 at six sites. The events at three sites (Miage and Drus Glaciers, and Tour des Grandes Jorasses) are characterised by short travel distances; those at Brenva, Triolet, and Frébouge Glaciers exhibit excessive travel distances.Interactions between rock avalanches and glaciers are of four types: (i) rock-avalanche triggering, where glacial and paraglacial controls include debuttressing of rockwalls due to glacier thinning and retreat, oversteepening of rock slopes by glacial erosion, and effects of glaciers on permafrost; (ii) rock-avalanche mobility, in which mobility and travel distance are modified by channelling of rock-avalanche debris by moraines and valleys, incorporation of ice and snow (often >50% for large events), and irregularities on the glacier surface; (iii) deposit sedimentology, where melting of incorporated ice transforms the final deposit by reducing its thickness typically to <5 m, and debris of variable thicknesses is juxtaposed in a hummocky deposit with chaotic piles of angular rock debris; and (iv) glacier dynamics where insulating debris deposited upon a glacier produces a debris-covered glacier of different dynamics, and high elevated scars can favour the formation of small glaciers.  相似文献   

6.
The Cerro El Potro and nearby mountain chains belong to the Andean Frontal Cordillera (28°S). Cerro El Potro is a glaciated mountain that is surrounded by huge valleys both on its Chilean and Argentinean flanks. Its southern limit is a steep rock wall towards the trough-shaped Río Blanco valley in Argentina, with a wide valley floor. The other sides of the mountain are characterized by well-developed Pleistocene cirques. The predominant landforms in this area have been shaped in a periglacial environment superimposed on an earlier glacial landscape. It is a region with abundant rock glaciers, a noteworthy rock glacier zone, but nevertheless, it is a relatively little known area in South America. In this preliminary inventory, the landforms surveyed were mainly gravitational in origin, including valley rock glaciers, talus rock glaciers, debris cones, landforms originated by solifluction processes and talus detrital sheets on mountain sides. Ancient moraine deposits have been found on the sides of the main rivers that cross the area form west to east, including the Blanco and Bermejo rivers. Present day fluvial activity is limited, and restricted to these main rivers. In this area of glacial valleys and small cirques, there are small lakes and other water bodies, grass covered patches and zones with high mountain vegetation. Present day glacial activity is restricted to the highest part of the area, above 5500 m a.s.l., mainly in the Cerro El Potro (5879 m) where a permanent ice field exists, as well as small mountain glaciers.  相似文献   

7.
Holocene and Late Quaternary talus, lobate rock glaciers, and moraines within Audubon Cirque, Colorado Front Range, were assigned reltive ages using the following age-dependent criteria: fresh-weathered ratio, pitting, weathering rind development, angularity, and surface, oxidation of boulders, together with lichen cover and largest lichen diameter. Principal Component scores, yielding four major groups of deposits (relative age units C, R, E and V, from youngest to oldest). Tentative correlation with other Colorado Late Quaternary sequences suggests that unit C is of Gannett Peak age (100–300 years B. P.), unit R of Audubon age (950–1850 years B. P.) unit E of Early Neoglacial age (3000–5000 years B. P.), and unit V of Late Pinedale age (about 10,000 Years B. P.). Correlation is problematic due to differences in operationsl definitions of relative dating parametrs between workers, and because climatic and lithologic variations between areas may confound the date.  相似文献   

8.
Rock glaciers are distinct landforms whose wide distribution, occurrence, and significance often go unrecognised. They are deposits of poorly sorted, angular, blocky to tabular debris which are held together by an ice core or a matrix of ice-cemented fine clastics. Rock glaciers have formed in glaciated and non-glaciated areas. Many researchers have suggested that the absence of an ice core or the lack of movement indicates relict or fossil status. Active and inactive states can be viewed as the end members of a movement continuum. Movement rates, derived from world-wide locations as reported in the literature, range from less than 1 cmyr?1 to greater than 130cmyr?1. Unfortunately, lack of observed movement has been equated incorrectly with an inactive status. Rock glacier movement must be considered from a rheological point of view. Movement is controlled by the transformation of potential energy to kinetic energy as the system attempts to reach thermal equilibrium or stability. Whereas a glacier can completely disappear or redevelop, reactivation of a rock glacier requires only the re-establishment of the conditions responsible for development and maintenance of interstitial ice. Although it might not be possible to re-establish an ice core, interstitial areas can definitely be recharged with ice and thus facilitate movement. The concept of active versus inactive should be abandoned in favor of the view that a spatial and temporal continuum of form and movement exists.  相似文献   

9.
薛娇  姚晓军  张聪  周苏刚  褚馨德 《冰川冻土》2022,44(5):1653-1664
表碛覆盖型冰川是山地冰川的一种特殊类型,表碛的存在使得其对气候变化呈现出不同的响应特征。基于2011—2020年Landsat TM/ETM+/OLI遥感影像和ASTER DEM数据,在综合分析表碛光谱、地形和地表温度特征基础上提出TDSI(temperature NDDI slope ice)方法,并将其用于提取中国境内托木尔冰川等6条大陆型冰川和雅弄冰川等3条海洋型冰川。结果表明:基于TDSI方法提取表碛覆盖型冰川的总体精度为91.23%,其中大陆型和海洋型表碛覆盖冰川的精度分别为91.20%和90.97%。2011—2020年6条大陆型冰川和3条海洋型冰川面积平均减少0.06%和0.11%,而表碛面积分别增加了11.92%和18.35%。大陆型冰川表碛主要分布在其中值海拔以下,而海洋型冰川表碛分布范围更广,近10年间二者均呈现向冰川上部扩张趋势。气温上升是冰川消融退缩和表碛增加的主要原因,同时冰川流速变化和终碛湖演变也对表碛变化有一定影响。  相似文献   

10.
Mature dead-ice has been overridden repeatedly by the Brúarjökull glacier, and multiple generations of ice-cored landforms occur, with ice cores originating at least from glacier surges in 1963-1964, 1890 and 1810. Ice-cores are located on the proximal slopes of end moraines and in the valleys, as ice-cored outwash and eskers, ice-cored drumlins and ice-cored moraine patches. This dictates that the sediments and internal architecture might not always match their end-products as de-icing progresses. Analysis of multi-temporal aerial photographs integrated with annual field measurements showed that the time required for a total de-icing in the forefield exceeds the duration of the quiescent phases between the surges, even in the current climate at the limit of permafrost. Quantifying melting progression suggests that complete de-icing of ice-cored landforms is not likely to occur. The mean de-icing rate is c. 9.8 cm/yr in 1890 ice-cored moraines, and c. 17.7 cm/yr in 1963-1964 ice-cored moraines. Backwasting of ice-cored slopes (c. 30 cm/yr) is the fastest melt process. Long-term downwasting rates derived from multi-temporal digital elevation models provide a superior insight into the impact of multiple glacier surges on the formation of dead-ice moraines in front of Brúarjökull.  相似文献   

11.
Chronology of cirque glaciation,Colorado front range   总被引:2,自引:0,他引:2  
Moraines and rock glaciers in Front Range cirques record at least four, and possibly five, intervals of Holocene glacier expansion. The earliest and most extensive was the Satanta Peak advance, which deposited multiple terminal moraines near present timberline shortly before 9915 ± 165 BP. By 9200 ± 135 BP, timberline had risen to at least its modern elevation; by 8460 ± 140 BP, patterned ground on Satanta Peak moraines had become inactive. Although a minor ice advance may have occurred just prior to 7900 ± 130 BP, there is no evidence that glaciers or perennial snowbanks survived in the Front Range during the “Altithermal” maximum (ca. 6000–7500 BP), or during a subsequent interval of alpine soil formation (ca. 5000–6000 BP).Glaciers were larger during the Triple Lakes advance (3000–5000 BP) than at any other time during Neoglaciation. Minimum ages of 4485 ± 100 BP, 3865 ± 100 BP, and ca. 3150 BP apply to a threefold sequence of Triple Lakes deposits in Arapaho Cirque. After an important interval of soil formation and cavernous weathering, glaciers and rock glaciers of the Audubon advance (950–1850 BP) reoccupied many cirques, and perennial snowbanks blanketed much of the area above present timberline; although the general Audubon snow cover had begun to melt from valley floors by 1505 ± 95 BP, expanded snowbanks lingered on tundra ridge crests until 1050–1150 BP, and glaciers persisted is sheltered cirques until at least 955 ± 95 BP. Following a minor interval of ice retreat, glaciers of the Arapaho Peak advance (100–300 BP) deposited multiple moraines in favorably oriented cirques.Interpretation of Holocene glacial deposits in the Southern and Central Rocky Mountains has been hampered by (1) a heavy reliance upon relative-dating criteria, many of which are influenced by factors other than age; (2) the assumption that glacial advances in high-altitude cirques can be correlated directly with alluvial deposition in far-distant lowlands; and (3) the assumption that glacial advances have necessarily been synchronous throughout the Rocky Mountain region and the world. Although Holocene glacier fluctuations in the Front Range are believed to reflect changes in regional climate, the Front Range chronology does not have particularly close analogs in other parts of North America. Better-dated local sequences are needed before the hypothesis of global synchroneity can be adequately evaluated; until synchroneity has been proven, long-distance correlations and worldwide cycles of recurring glaciation will remain unconvincing.  相似文献   

12.
Active rock glaciers are periglacial landforms consisting of coarse debris with interstitial ice or ice‐core. Recent studies showed that such landforms are able to support plant and arthropod life and could act as warm‐stage refugia for cold‐adapted species due to their microclimate features and thermal inertia. However, integrated research comparing active rock glaciers with surrounding landforms to outline their ecological peculiarities is still scarce. We analysed the abiotic (ground surface temperature and humidity, soil physical and chemical parameters) and biotic (plant and arthropod communities) features of two Alpine active rock glaciers with contrasting lithology (silicate and carbonate), and compared them with the surrounding iceless landforms as reference sites (stable slopes and active scree slopes). Our data show remarkable differences between stable slopes and unstable landforms as a whole, while few differences occur between active scree slopes and active rock glaciers: such landforms show similar soil features but different ground surface temperatures (lower on active rock glaciers) and different occurrence of cold‐adapted species (more frequent/abundant on active rock glaciers). Both plant and arthropod species distributions depend mainly on the geographical context as a function of soil pH and on the contrast between stable slopes and unstable landforms as a function of the coarse debris fraction and organic matter content, while the few differences between active scree slopes and active rock glaciers can probably be attributed to microclimate. The role of active rock glaciers as potential warm‐stage refugia for cold‐adapted species is supported by our data; however, at least in the European Alps, their role in this may be less important than that of debris‐covered glaciers, which are able to host cold‐adapted species even below the climatic tree line.  相似文献   

13.
Alpine glacier retreat resulting from global warming since the close of the Little Ice Age in the 19th and 20th centuries has increased the risk and incidence of some geologic and hydrologic hazards in mountainous alpine regions of North America. Abundant loose debris in recently deglaciated areas at the toe of alpine glaciers provides a ready source of sediment during rainstorms or outburst floods. This sediment can cause debris flows and sedimentation problems in downstream areas. Moraines built during the Little Ice Age can trap and store large volumes of water. These natural dams have no controlled outlets and can fail without warning. Many glacier-dammed lakes have grown in size, while ice dams have shrunk, resulting in greater risks of ice-dam failure. The retreat and thinning of glacier ice has left oversteepened, unstable valley walls and has led to increased incidence of rock and debris avalanches.  相似文献   

14.
本区发育有十数条叶状石冰川,主要由倒石堆或岩屑锥演化而来。单个的石冰川一般宽60—150m、长35—100m、高30—40m,其顶部有反倾坡和槽脊,其前缘坡脚有挤压翘起平台。对2号石冰川上500块砾石的组构量测表明:1)此类石冰川各处AB面和A轴倾向与各自所处的沉积面坡向较为一致;2)各处AB面比A轴具有更为优势的组构倾向;3)其运动方向是自谷壁向外并垂直于表面等高线方向流动;4)其流动特征与阿尔卑斯舌状石冰川不尽相同,主要是受气候和地形因素影响所致。  相似文献   

15.
The existence of a small population of ‘relict rock glaciers’ scattered across the main British mountain areas has previously been inferred from published cases of individual sites or local clusters. Discrete debris accumulations (DDAs) of widely differing character have been identified as ice‐debris landforms (whether ‘rock glaciers’ or ‘protalus lobes’) partly from morphological, sedimentological and topo‐locational evidence, but principally by analogy with both active and relict examples in present‐day arctic/alpine environments, with consequent palaeoclimate inferences. However, re‐interpretation of several supposed rock glaciers as rock slope failures has cast doubt on both the palaeoclimatic reconstructions and the origin of the remaining features. Issues of polygenesis and mimicry/equifinality have contributed to some previous misidentifications. We re‐evaluate the 28 candidate cases based on new field and image‐analysis evidence and place them on a continuum from no ice presence through passive ice presence and glacial shaping to emplacement onto glacier ice with consequent melt‐out topography. A null hypothesis approach (that there are no relict rock glaciers in the British mountains) is pursued, and the evidence indicates that none of the 28 cases clearly warrants classification as a relict rock glacier; their characteristics can be explained without recourse to any significant forward debris movement controlled or facilitated by incorporated or underlying ice as it deforms and melts out. However, only one‐third of the candidate DDAs are attributed in whole or part to rock slope failure (sensu stricto), with other debris sources including incremental rockfall, bedrock knolls with coarse debris veneer, protalus rampart and moraine. A few cases deserve more detailed investigation of their structure, morphology and sediments within a broader local glaciological/topographical context, with multitemporal/polygenetic evolution in mind. But it is for future researchers to demonstrate that deforming ice played an incontestable part in shaping these often enigmatic DDAs, given that other causes are simpler and commoner. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In the Schiantala Valley of the Maritime Alps, the relationship between a till-like body and a contiguous rock glacier has been analyzed using geomorphologic, geoelectric and ice-petrographic methodologies. DC resistivity tomographies undertaken in the till and in the rock glacier show the presence of buried massive ice and ice-rich sediments, respectively. Ice samples from a massive ice outcrop show spherical gas inclusions and equidimensional ice crystals that are randomly orientated, confirming the typical petrographic characteristics of sedimentary ice. The rock glacier formation began after a phase of glacier expansion about 2550 ± 50 14C yr BP. Further ice advance during the Little Ice Age (LIA) overrode the rock glacier root and caused partial shrinkage of the pre-existing permafrost. Finally, during the 19th and 20th centuries, the glacial surface became totally debris covered. Geomorphological and geophysical methods combined with analyses of ice structure and fabric can effectively interpret the genesis of landforms in an environment where glaciers and permafrost interact. Ice petrography proved especially useful for differentiating ice of past glaciers versus ice formed under permafrost conditions. These two mechanisms of ice formation are common in the Maritime Alps where many sites of modern rock glaciers were formerly occupied by LIA glaciers.  相似文献   

17.
Many relict rock glaciers and protalus lobes have been described in mountainous areas of the British Isles. This paper reviews their distribution, chronology, supposed origin and development, and places the research within current investigations and knowledge. Rock glaciers and protalus lobes are located in a number of different topographic locations and settings. They developed at the base of steep cliffs following the catastrophic failure of rock faces, at the base of scree slopes following the gradual accumulation of rock debris and in association with glaciers. Protalus lobes probably developed in response to the permafrost creep of talus material while rock glaciers formed through the deformation and sliding of large bodies of buried ice. Rock glaciers probably developed, or were last active, during the Younger Dryas, although the possibility exists that some of these landforms are Dimlington Stadial in age. The development of protalus lobes during the Younger Dryas suggests that precipitation levels were low and permafrost was widespread during this time. The lack of rock glaciers (sensu stricto) in the British Isles compared with other mountain areas is believed to be a consequence of the rock type and relative scarcity of weathered debris for their formation rather than a lack of suitable sites or appropriate environmental conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Late Palaeozoic glaciation in Australia, discovered over a century ago, is now known to have covered a large part of the continent. In South Australia, tillite and outwash debris lie upon clearly striated pavements within glacial valleys, and show that ice sheets with valley tongues moved northward from sources now occupied by deep ocean south of the continent. These glaciers reached into the Cooper, Arckaringa, and Pedirka Basins at the end of the Carboniferous and laid down patches of till in the Early Permian, now preserved largely in the subsurface. In Tasmania, an ice sheet waxed in the latest Carboniferous from sources to the west of the island, and deposited till and “drop‐stones” into fossiliferous marine strata until well into the Late Permian. In Victoria, the ice cap laid down till on a striated floor, and here and there sequences of outwash, including boulder pavements. In New South Wales, continental glaciation expanded eastward to the sea early in the Permian, and left a record intercalated with volcanics and coal beds into the Late Permian. Bordering the Tamworth Trough of northern New South Wales, and occurring also in the highlands of New England, alpine glaciers left a record in the form of striated stones and dropstones, in very thick sequences of fluviatile, lacustrine, and marine clastic sediments. The mountains existed in Middle and early Late Carboniferous times, and were largely worn down to gentle relief when continental glaciers expanded northward in the Early Permian. A non‐glacial interval at the end of the Carboniferous therefore probably occurred in New South Wales. In Queensland, alpine glaciers occupied mountains at the western rim of the Bowen Basin at the end of the Carboniferous. Large blocks carried by icebergs from glaciers of unknown locations were dropped into Lower and Upper Permian strata of the Bowen Basin as well. In Western Australia Early Permian ice centres were located on the Yilgarn Block, east of the Perth Basin, on the Pilbara Block southwest of the Canning Basin, and on the Kimberley Block. Evidence for this glaciation consists mostly of ice‐rafted debris and fluvial‐glacial and glacial‐marine strata that reached as far north as the Bonaparte Gulf Basin.

The rapid growth northward of continental glaciers in Australia near the end of the Carboniferous corresponds with a rapid shift of palaeolatitude as judged from Irving's palaeomagnetic studies. The ice sheet grew quickly upon upland areas when Gondwanaland moved to a near polar position and the unfrozen Palaeo‐Pacific lay near at hand to provide an abundant source of moisture.  相似文献   

19.
西天山托木尔峰南麓大型山谷冰川冰舌区消融特征分析   总被引:4,自引:3,他引:1  
基于对托木尔峰南麓托木尔型山谷冰川的野外考察和典型冰川的定位观测,对冰面被表碛广泛覆盖的所谓“托木尔型”冰川冰舌区表碛与冰面消融的关系进行了研究. 结果表明:表碛对冰面消融、冰川水文过程、冰川变化等均具有重要影响,当表碛厚度超过3 cm时,表碛对冰面消融就产生明显抑制作用,且随着厚度增加,冰面消融显明减弱. 科其喀尔冰川表面的观测表明,由末端向上,表碛厚度逐渐减薄. 受表碛影响,科其喀尔冰川区最大的消融量出现在海拔3 800~3 900 m之间、表碛物厚度小于10 cm的区域内;冰川消融强度由此向上随着海拔的升高而下降,向下随表碛厚度的增大而减弱. 冰面湖的发育是表碛覆盖冰川的又一主要特征,湖水对冰面的融蚀和快速排泄成为冰面产汇流的主要过程. 科其喀尔冰川研究表明,两三个冰面湖排泄形成的融蚀冰量就相当于冰川末端退缩造成的冰量损失. 因此,冰面湖等热喀斯特地形的形成、扩张融蚀、融穿排泄、形成湖区低地,这一周而复始的过程不仅是其主要消融方式之一,而且也强烈的影响着冰川水文及冰川变化. 托木尔峰南麓地区大型冰川变化主要以厚度减薄为主,而不是像大多数冰川显著的变化主要表现在末端和面积减少方面.  相似文献   

20.
The rock glacier Innere Ölgrube, located in a small side valley of the Kauner Valley (Ötztal Alps, Austria), consists of two separate, tongue-shaped rock glaciers lying next to each other. Investigations indicate that both rock glaciers contain a core of massive ice. During winter, the temperature at the base of the snow cover (BTS) is significantly lower at the active rock glacier than on permafrost-free ground adjacent to the rock glacier. Discharge is characterized by strong seasonal and diurnal variations, and is strongly controlled by the local weather conditions. Water temperature of the rock glacier springs remains constantly low, mostly below 1°C during the whole melt season. The morphology of the rock glaciers and the presence of meltwater lakes in their rooting zones as well as the high surface flow velocities of >1 m/yr point to a glacial origin. The northern rock glacier, which is bounded by lateral moraines, evolved from the debris-covered tongue of a small glacier of the Little Ice Age with its last highstand around A.D. 1850. Due to the global warming in the following decades, the upper parts of the steep and debris-free ice glacier melted, whereas the debris-covered glacier tongue transformed into an active rock glacier. Due to this evolution and due to the downslope movement, the northern rock glacier, although still active, at present is cut off from its ice and debris supply. The southern rock glacier has developed approximately during the same period from a debris-covered cirque glacier at the foot of the Wannetspitze massif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号