首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
Glacier thermal regime is shown to have a significant influence on the formation of ice‐marginal moraines. Annual moraines at the margin of Midtdalsbreen are asymmetrical and contain sorted fine sediment and diamicton layers dipping gently up‐glacier. The sorted fine sediments include sands and gravels that were initially deposited fluvially directly in front of the glacier. Clast‐form data indicate that the diamictons have a mixed subglacial and fluvial origin. Winter cold is able to penetrate through the thin (<10 m) ice margin and freeze these sediments to the glacier sole. During winter, sediment becomes elevated along the wedge‐shaped advancing glacier snout before melting out and being deposited as asymmetrical ridges. These annual moraines have a limited preservation potential of ~40 years, and this is reflected in the evolution of landforms across the glacier foreland. Despite changing climatic conditions since the Little Ice Age and particularly within the last 10 years when frontal retreat has significantly speeded up, glacier dynamics have remained relatively constant with moraines deposited via basal freeze‐on, which requires stable glacier geometry. While the annual moraines on the eastern side of Midtdalsbreen indicate a slow steady retreat, the western foreland contains contrasting ice‐stagnation topography, highlighting the importance of local forcing factors such as shielding, aspect and debris cover in addition to changing climate. This study indicates that, even in temperate glacial environments, restricted or localised areas of cold‐based ice can have a significant impact on the geomorphic imprint of the glacier system and may actually be more widespread within both modern and ancient glacial environments than previously thought.  相似文献   

2.
In the Schiantala Valley of the Maritime Alps, the relationship between a till-like body and a contiguous rock glacier has been analyzed using geomorphologic, geoelectric and ice-petrographic methodologies. DC resistivity tomographies undertaken in the till and in the rock glacier show the presence of buried massive ice and ice-rich sediments, respectively. Ice samples from a massive ice outcrop show spherical gas inclusions and equidimensional ice crystals that are randomly orientated, confirming the typical petrographic characteristics of sedimentary ice. The rock glacier formation began after a phase of glacier expansion about 2550 ± 50 14C yr BP. Further ice advance during the Little Ice Age (LIA) overrode the rock glacier root and caused partial shrinkage of the pre-existing permafrost. Finally, during the 19th and 20th centuries, the glacial surface became totally debris covered. Geomorphological and geophysical methods combined with analyses of ice structure and fabric can effectively interpret the genesis of landforms in an environment where glaciers and permafrost interact. Ice petrography proved especially useful for differentiating ice of past glaciers versus ice formed under permafrost conditions. These two mechanisms of ice formation are common in the Maritime Alps where many sites of modern rock glaciers were formerly occupied by LIA glaciers.  相似文献   

3.
Ice‐cored lateral and frontal moraine complexes, formed at the margin of the small, land‐based Rieperbreen glacier, central Svalbard, have been investigated through field observations and interpretations of aerial photographs (1936, 1961 and 1990). The main focus has been on the stratigraphical and dynamic development of these moraines as well as the disintegration processes. The glacier has been wasting down since the ‘Little Ice Age’ (LIA) maximum, and between 1936 and 1990 the glacier surface was lowered by 50–60 m and the front retreated by approximately 900 m. As the glacier wasted, three moraine ridges developed at the front, mainly as melting out of sediments from debris‐rich foliation and debris‐bands formed when the glacier was polythermal, probably during the LIA maximum. The disintegration of the moraines is dominated by wastage of buried ice, sediment gravity‐flows, meltwater activity and some frost weathering. A transverse glacier profile with a northward sloping surface has developed owing to the higher insolation along the south‐facing ice margin. This asymmetric geometry also strongly affects the supraglacial drainage pattern. Lateral moraines have formed along both sides of the glacier, although the insolation aspect of the glacier has resulted in the development of a moraine 60 m high along its northern margin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Sub-bottom sediment profiles and sediment cores show that the lacustrine sediments in lake Linnevatnet are underlain by marine sediments and a basal till that mantles the bedrock. The till was probably deposited by the glacier that during the Late Weichselian glacial maximum removed all pre-existing sediments from the basin. The cores were collected in closed basins, where continuous deposition is expected. The marine sediment in the studied cores is up to 8 m thick and consists of bioturbated clay and silt. Radiocarbon dates on shells from the base of the marine sequence suggest that glacial retreat from the lake basin occurred around 12,500BP. This is more than a thousand years older than basal shell dates from raised marine sediments on the slopes above the lake. Typical ice proximal litbofacies were not identified in the cores. stratigraphic record indicates both a rapid glacial retreat and that no younger glacial re-advances occurred. During the Younger Dryas local glaciers on western Svalbard were smaller than during the Little Ice Age. This is in sharp contrast to western Europe, where Younger Dryas glaciers were much larger than those the Little Ice Age.  相似文献   

5.
普若岗日冰原及其小冰期以来的冰川变化   总被引:39,自引:26,他引:13  
普若岗日是藏北高原最大的由数个冰帽型冰川组合成的大冰原.冰川覆盖面积422.58km2,冰储量为52.5153km3.冰川雪线海拔5620~5860m.冰原呈辐射状向周围微切割的宽浅山谷溢出50多条长短不等的冰舌,最大的可伸至山麓地带,形成宽尾状冰舌.在一些下伸较低的冰舌段,形成有许多冰塔林,以雄伟壮观的连座冰塔林和雏形冰塔林为主.在东南部一些冰舌段雏形冰塔林的上部,分布着奇特的新月型雪冰丘和链状排列有序的雪冰丘.小冰期以来,普若岗日的冰川呈退缩趋势.环绕冰舌分布的冰碛序列,在北部和东南部普遍可区分出3道.对比研究认为,分别属于小冰期3次寒冷期冰进的遗迹.而西部小冰期冰川作用的范围较小.按小冰期最盛时的规模量测当时的冰川面积,和现在相比该时段内冰川面积减少了24.20km2,当时冰川面积比现在大57%.由此引起的冰川资源的减少为3.6583km3,相当于36.583×108m3的水量.在普若岗日西侧,小冰期后期至20世纪70年代,冰川退缩了20m;70年代至90年代末,冰川退缩了40~50m;平均1.5~1.9m·a-1;1999年9月至2000年10月,退缩4~5m.明显反映出逐渐加剧的变化趋势.和其它地区相比较,普若岗日冰原变化比较小,表现出比较稳定的状。  相似文献   

6.
Bathymetric and sub-bottom acoustic data were collected in Laguna San Rafael, Chile, to determine sediment yields during the Little Ice Age advance and subsequent retreat of San Rafael Glacier. The sediment volumes and subaqueous landforms imaged are used to interpret the proglacial dynamics and estimate erosion rates from a temperate tidewater glacier over a complete advance-retreat cycle. Sediment yields from San Rafael Glacier averaged 2.7 × 107 m3/a since the end of the Little Ice Age, circa AD 1898, corresponding to average basin-wide erosion rates of 23 ± 9 mm/a; the highest erosion rates, 68 ± 23 mm/a, occurred at the start of the retreat phase, and have since been steadily decreasing. Erosion rates were much lower during glacial advance, averaging at most 7 mm/a, than during retreat. Such large glacial sediment yields over two centuries of advance and retreat suggest that the contribution of sediments stored subglacially cannot account for much of the sediment being delivered to the terminus today. The detailed sub-bottom information of a proglacial lagoon yields important clues as to the timing of erosion, deposition and transfer of glacigenic sediments from orogens to the continental shelves, and the influence of glacier dynamics on this process.  相似文献   

7.
《Quaternary Science Reviews》2007,26(3-4):479-493
Evidence from glacier forefields and lakes is used to reconstruct Holocene glacier fluctuations in the Spearhead and Fitzsimmons ranges in southwest British Columbia. Radiocarbon ages on detrital wood and trees killed by advancing ice and changes in sediment delivery to downstream proglacial lakes indicate that glaciers expanded from minimum extents in the early Holocene to their maximum extents about two to three centuries ago during the Little Ice Age. The data indicate that glaciers advanced 8630–8020, 6950–6750, 3580–2990, and probably 4530–4090 cal yr BP, and repeatedly during the past millennium. Little Ice Age moraines dated using dendrochronology and lichenometry date to early in the 18th century and in the 1830s and 1890s. Limitations inherent in lacustrine and terrestrial-based methods of documenting Holocene glacier fluctuations are minimized by using the two records together.  相似文献   

8.
This article examines the link between late Holocene fluctuations of Lambatungnajökull, an outlet glacier of the Vatnajökull ice cap in Iceland, and variations in climate. Geomorphological evidence is used to reconstruct the pattern of glacier fluctuations, while lichenometry and tephrostratigraphy are used to date glacial landforms deposited over the past ˜400 years. Moraines dated using two different lichenometric techniques indicate that the most extensive period of glacier expansion occurred shortly before c . AD 1795, probably during the 1780s. Recession over the last 200 years was punctuated by re-advances in the 1810s, 1850s, 1870s, 1890s and c . 1920, 1930 and 1965. Lambatungnajökull receded more rapidly in the 1930s and 1940s than at any other time during the last 200 years. The rate and style of glacier retreat since 1930 compare well with other similar-sized, non-surging, glaciers in southeast Iceland, suggesting that the terminus fluctuations are climatically driven. Furthermore, the pattern of glacier fluctuations over the 20th century broadly reflects the temperature oscillations recorded at nearby meteorological stations. Much of the climatic variation experienced in southern Iceland, and the glacier fluctuations that result, can be explained by secular changes in the North Atlantic Oscillation (NAO) Advances of Lambatungnajökull generally occur during prolonged periods of negative NAO index. The main implication of this work relates to the exact timing of the Little Ice Age in the Northeast Atlantic. Mounting evidence now suggests that the period between AD 1750 and 1800, rather than the late 19th century, represented the culmination of the Little Ice Age in Iceland.  相似文献   

9.
Melting glaciers and ice caps on Baffin Island contribute roughly half of the sea-level rise from all ice in Arctic Canada, although they comprise only one-fourth of the total ice in the region. The uncertain future response of arctic glaciers and ice caps to climate change motivates the use of paleodata to evaluate the sensitivity of glaciers to past warm intervals and to constrain mechanisms that drive glacier change. We review the key patterns and chronologies of latest Pleistocene and Holocene glaciation on Baffin Island. The deglaciation by the Laurentide Ice Sheet occurred generally slowly and steadily throughout the Holocene to its present margin (Barnes Ice Cap) except for two periods of rapid retreat: An early interval 12 to 10 ka when outlet glaciers retreated rapidly through deep fiords and sounds, and a later interval 7 ka when ice over Foxe Basin collapsed. In coastal settings, alpine glaciers were smaller during the Younger Dryas period than during the Little Ice Age. At least some alpine glaciers apparently survived the early Holocene thermal maximum, which was several degrees warmer than today, although data on glacier extent during the early Holocene is extremely sparse. Following the early Holocene thermal maximum, glaciers advanced during Neoglaciation, beginning in some places as early as 6 ka, although most sites do not record near-Little Ice Age positions until 3.5 to 2.5 ka. Alpine glaciers reached their largest Holocene extents during the Little Ice Age, when temperatures were 1–1.5 °C cooler than during the late 20th century. Synchronous advances across Baffin Island throughout Neoglaciation indicate sub-Milankovitch controls on glaciation that could involve major volcanic eruptions and solar variability. Future work should further elucidate the state of glaciers and ice caps during the early Holocene thermal maximum and glacier response to climate forcing mechanisms.  相似文献   

10.
Ice-divide migration may explain the pattern of Holocene glacier fluctuations around the Mýrdalsjökull ice cap in southern Iceland. On at least three occasions Sölheimajokull, the principal outlet glacier on the southwest flank of the ice cap, has exceeded the Little Ice Age limits of recent centuries that mark the maximum extent of neighbouring glaciers in the Holocene. Bedrock divides beneath the Mýrdalsjökull ice cap do not coincide with present ice divides. It is suggested that the ice divide migrated during the course of ice-cap growth. At various stages during the Holocene (7000-4500, c. 3100, 1400-1200 BP) Sólheimajokull could have drained more of the ice cap than today, so becoming more advanced than neighbouring glaciers. In the Little Ice Age ( c. AD 1600–1900) the glacier could have had a smaller catchment as a result of ice-divide migration, resulting in a more inhibited advance compared with neighbouring glaciers which reached their Holocene maximum at that time. Identification of ice-divide migration is important for palaeoclimatic reconstructions because of the need to recognize different responses of glaciers to climate if one is to use their fluctuations as indicators of change.  相似文献   

11.
Alpine glacier fluctuations provide important paleoclimate proxies where other records such as ice cores, tree rings, and speleothems are not available. About 20 years have passed since a special issue of Quaternary Science Reviews was published to review the worldwide evidence for Holocene glacier fluctuations. Since that time, numerous sites have been discovered, new dating techniques have been developed, and refined climatic hypotheses have been proposed that contribute to a better understanding of Earth's climate system. This special volume includes 12 papers on Holocene and latest Pleistocene alpine glacier fluctuations that update the seven review papers from 1988.Major findings of these 12 papers include the following: many, but certainly not all, alpine areas record glacier advances during the Younger Dryas cold interval. Most areas in the Northern Hemisphere witnessed maximum glacier recession during the early Holocene, with some glaciers disappearing, although a few sites yield possible evidence for advances during the 8.2 ka cooling event. In contrast, some alpine areas in the Southern Hemisphere saw glaciers reach their maximum post-glacial extents during the early to middle Holocene. In many parts of the globe, glaciers reformed and/or advanced during Neoglaciation, beginning as early as 6.5 ka. Neoglacial advances commonly occurred with millennial-scale oscillations, with many alpine glaciers reaching their maximum Holocene extents during the Little Ice Age of the last few centuries. Although the pattern and rhythm of these glacier fluctuations remain uncertain, improved spatial coverage coupled with tighter age control for many events will provide a means to assess forcing mechanisms for Holocene and latest Pleistocene glacial activity and perhaps predict glacier response to future impacts from human-induced climate change.  相似文献   

12.
We summarize evidence of the latest Pleistocene and Holocene glacier fluctuations in the Canadian Cordillera. Our review focuses primarily on studies completed after 1988, when the first comprehensive review of such evidence was published. The Cordilleran ice sheet reached its maximum extent about 16 ka and then rapidly decayed. Some lobes of the ice sheet, valley glaciers, and cirque glaciers advanced one or more times between 15 and 11 ka. By 11 ka, or soon thereafter, glacier cover in the Cordillera was no more extensive than at the end of the 20th century. Glaciers were least extensive between 11 and 7 ka. A general expansion of glaciers began as early as 8.4 ka when glaciers overrode forests in the southern Coast Mountains; it culminated with the climactic advances of the Little Ice Age. Holocene glacier expansion was not continuous, but rather was punctuated by advances and retreats on a variety of timescales. Radiocarbon ages of wood collected from glacier forefields reveal six major periods of glacier advance: 8.59–8.18, 7.36–6.45, 4.40–3.97, 3.54–2.77, 1.71–1.30 ka, and the past millennium. Tree-ring and lichenometric dating shows that glaciers began their Little Ice Age advances as early as the 11th century and reached their maximum Holocene positions during the early 18th or mid-19th century. Our data confirm a previously suggested pattern of episodic but successively greater Holocene glacier expansion from the early Holocene to the climactic advances of the Little Ice Age, presumably driven by decreasing summer insolation throughout the Holocene. Proxy climate records indicate that glaciers advanced during the Little Ice Age in response to cold conditions that coincided with times of sunspot minima. Priority research required to further advance our understanding of late Pleistocene and Holocene glaciation in western Canada includes constraining the age of late Pleistocene moraines in northern British Columbia and Yukon Territory, expanding the use of cosmogenic surface exposure dating techniques, using multi-proxy paleoclimate approaches, and directing more of the research effort to the northern Canadian Cordillera.  相似文献   

13.
Burki, V., Hansen, L., Fredin, O., Andersen, T. A., Beylich, A. A., Jaboyedoff, M., Larsen, E. & Tønnesen, J.‐ F. 2009: Little Ice Age advance and retreat sediment budgets for an outlet glacier in western Norway. Boreas, Vol. 39, pp. 551–566. 10.1111/j.1502‐3885.2009.00133.x. ISSN 0300‐9483 Bødalsbreen is an outlet glacier of the Jostedalsbreen Ice Field in western Norway. Nine moraine ridges formed during and after the maximum extent of the Little Ice Age (LIA). The stratigraphy of proglacial sediments in the Bødalen basin inside the LIA moraines is examined, and corresponding sediment volumes are calculated based on georadar surveys and seismic profiling. The total erosion rates (etot) by the glacier are determined for the periods AD 1650–1930 and AD 1930–2005 as 0.8 ± 0.4 mm/yr and 0.7 ± 0.3 mm/yr, respectively. These rates are based on the total amount of sediment delivered to the glacier margin. The values are almost one order of magnitude higher than total erosion rates previously calculated for Norwegian glaciers. This is explained by the large amount of pre‐existing sediment that was recycled by Bødalsbreen. Thus, the total erosion rate must be considered as a composite of eroded bedrock and of removed pre‐existing sediments. The total erosion rate is likely to vary with time owing to a decreasing volume of easily erodible, unconsolidated sediment and till under the glacier. A slight increase in the subglacial bedrock erosion is expected owing to the gradually increasing bedrock surface area exposed to subglacial erosion.  相似文献   

14.
Understanding Arctic glacier sensitivity is key to predicting future response to air temperature rise. Previous studies have used proglacial lake sediment records to reconstruct Holocene glacier advance–retreat patterns in South and West Greenland, but high‐resolution glacier records from High Arctic Greenland are scarce, despite the sensitivity of this region to future climate change. Detailed geochemical analysis of proglacial lake sediments close to Zackenberg, northeast Greenland, provides the first high‐resolution record of Late Holocene High Arctic glacier behaviour. Three phases of glacier advance have occurred in the last 2000 years. The first two phases (c. 1320–800 cal. a BP) occurred prior to the Little Ice Age (LIA), and correspond to the Dark Ages Cold Period and the Medieval Climate Anomaly. The third phase (c. 700 cal. a BP), representing a smaller scale glacier oscillation, is associated with the onset of the LIA. Our results are consistent with recent evidence of pre‐LIA glacier advance in other parts of the Arctic, including South and West Greenland, Svalbard, and Canada. The sub‐millennial glacier fluctuations identified in the Madsen Lake succession are not preserved in the moraine record. Importantly, coupled XRF and XRD analysis has effectively identified a phase of ice advance that is not visible by sedimentology alone. This highlights the value of high‐resolution geochemical analysis of lake sediments to establish rapid glacier advance–retreat patterns in regions where chronological and morphostratigraphical control is limited.  相似文献   

15.
We use the radiocarbon ages of marine shells and terrestrial vegetation to reconstruct relative sea level (RSL) history in northern Southeast Alaska. RSL fell below its present level around 13,900 cal yr BP, suggesting regional deglaciation was complete by then. RSL stayed at least several meters below modern levels until the mid-Holocene, when it began a fluctuating rise that probably tracked isostatic depression and rebound caused by varying ice loads in nearby Glacier Bay. This fluctuating RSL rise likely reflects the episodic but progressive advance of ice in Glacier Bay that started around 6000 cal yr BP. After that time, RSL low stands probably signaled minor episodes of glacier retreat/thinning that triggered isostatic rebound and land uplift. Progressive, down-fjord advance of the Glacier Bay glacier during the late Holocene is consistent with the main driver of this glacial system being the dynamics of its terminus rather than climate change directly. Only after the glacier reached an exposed position protruding into Icy Strait ca. AD 1750, did its terminus succumb - a century before the climate changes that marked the end of the Little Ice Age - to the catastrophic retreat that triggered the rapid isostatic rebound and RSL fall occurring today in Icy Strait.  相似文献   

16.
This paper presents the first detailed sedimentological study of annual moraines formed by an alpine valley glacier. The moraines have been forming since at least AD 1980 by a subsidiary lobe of Gornergletscher, Switzerland that advances up a reverse bedrock slope. They reach heights of 0.5–1.5 m, widths of up to 6 m and lengths of up to several hundreds of metres. Sediments in these moraines are composed of proglacial outwash and debris flow units; subglacial traction till is absent entirely. Based on four representative sections, three genetic process combinations have been identified: (i) inefficient bulldozing of a gently sloping ice margin transfers proglacial sediments onto the ice, causing differential ablation and dead‐ice incorporation upon retreat; (ii) terrestrial ice‐contact fans are formed by the dumping of englacial and supraglacial material from point sources such as englacial conduit fills; debris flows and associated fluvial sediments are stacked against a temporarily stationary margin at the start, and deformed during glacier advance in the remainder, of the accumulation season; (iii) a steep ice margin without supraglacial input leads to efficient bulldozing and deformation of pre‐existing foreland sediments by wholesale folding. Ice‐surface slope appears to be a key control on the type of process responsible for moraine formation in any given place and year. The second and third modes result in stable and higher moraines that have a higher preservation potential than those containing dead ice. Analysis of the spacing and climatic records at Gornergletscher reveals that winter temperature controls marginal retreat and hence moraine formation. However, any climatic signal is complicated by other factors, most notably the presence of a reverse bedrock slope, so that the extraction of a clear climatic signal is not straightforward. This study highlights the complexity of annual moraine formation in high‐mountain environments and suggests avenues for further research.  相似文献   

17.
The rock glacier Innere Ölgrube, located in a small side valley of the Kauner Valley (Ötztal Alps, Austria), consists of two separate, tongue-shaped rock glaciers lying next to each other. Investigations indicate that both rock glaciers contain a core of massive ice. During winter, the temperature at the base of the snow cover (BTS) is significantly lower at the active rock glacier than on permafrost-free ground adjacent to the rock glacier. Discharge is characterized by strong seasonal and diurnal variations, and is strongly controlled by the local weather conditions. Water temperature of the rock glacier springs remains constantly low, mostly below 1°C during the whole melt season. The morphology of the rock glaciers and the presence of meltwater lakes in their rooting zones as well as the high surface flow velocities of >1 m/yr point to a glacial origin. The northern rock glacier, which is bounded by lateral moraines, evolved from the debris-covered tongue of a small glacier of the Little Ice Age with its last highstand around A.D. 1850. Due to the global warming in the following decades, the upper parts of the steep and debris-free ice glacier melted, whereas the debris-covered glacier tongue transformed into an active rock glacier. Due to this evolution and due to the downslope movement, the northern rock glacier, although still active, at present is cut off from its ice and debris supply. The southern rock glacier has developed approximately during the same period from a debris-covered cirque glacier at the foot of the Wannetspitze massif.  相似文献   

18.
天山玛纳斯河源鹿角湾冰川地貌与冰期序列   总被引:1,自引:0,他引:1  
鞠远江  刘耕年 《冰川冻土》2005,27(6):907-912
在鹿角湾冰川区40 km2的考察范围内,共发育了18个冰斗.按斗底高度的不同,可以将18个冰斗分成3个高度等级,分别代表了3次雪线高度不同的冰进.冰斗朝向以偏北为主,说明水热条件对冰斗发育是限制因素.18号冰斗和2号冰斗朝向偏南,说明其所代表的冰进阶段水热条件组合有利于冰川的长期存在,从而发育了大规模的向阳冰斗.鹿角湾冰川共发育了10道保存比较完整的冰碛垄,按冰碛垄表面特征和产出位置,结合测年资料,将10道冰碛垄划分为5套冰碛地层.对冰碛垄上所采冰碛土样品进行年代测试的结果是:冰碛丘陵上组地层属于小冰期沉积,较早的两次冰进结束时间为(680±60)a BP和(250±60)a BP;冰碛丘陵组地层属于新冰期沉积,3次冰进结束年代分别为:(4.2±0.4)ka BP,(2.9±0.3)ka BP,(1720±60)a BP;末次冰期晚期结束年代为1.1~1.2 ka BP.其它几次冰进阶段未能取得可信的测年数据.  相似文献   

19.
Sharp-crested moraines, up to 120 m high and 9 km beyond Little Ice Age glacier limits, record a late Pleistocene advance of alpine glaciers in the Finlay River area in northern British Columbia. The moraines are regional in extent and record climatic deterioration near the end of the last glaciation. Several lateral moraines are crosscut by meltwater channels that record downwasting of trunk valley ice of the northern Cordilleran ice sheet. Other lateral moraines merge with ice-stagnation deposits in trunk valleys. These relationships confirm the interaction of advancing alpine glaciers with the regionally decaying Cordilleran ice sheet and verify a late-glacial age for the moraines. Sediment cores were collected from eight lakes dammed by the moraines. Two tephras occur in basal sediments of five lakes, demonstrating that the moraines are the same age. Plant macrofossils from sediment cores provide a minimum limiting age of 10,550-10,250 cal yr BP (9230 ± 50 14C yr BP) for abandonment of the moraines. The advance that left the moraines may date to the Younger Dryas period. The Finlay moraines demonstrate that the timing and style of regional deglaciation was important in determining the magnitude of late-glacial glacier advances.  相似文献   

20.
《Quaternary Science Reviews》2007,26(7-8):1067-1090
OverallThis work is presented in two parts. Part I presents observations on the coupling between subglacial channel flow and groundwater flow in determining subglacial hydraulic regime and creating eskers from an Icelandic glacier that is suggested as an analogue for many parts of Pleistocene ice sheets. Part II develops a theory of perennial subglacial stream flow and the origin of esker systems, and models the evolution of the subglacial stream system and associated groundwater flow in a glacier of the type described in Part I. It is suggested that groundwater flow may be the predominant mechanism whereby meltwater at the glacier bed finds its way to the major subglacial streams that discharge water to glacier margins.Part IBoreholes drilled through an Icelandic glacier into an underlying till and aquifer system have been used to measure variations in head in the vicinity of a perennial subglacial stream tunnel during late summer and early winter. They reveal a subglacial groundwater catchment that is drained by a subglacial stream along its axis. The stream tunnel is characterised by low water pressures, and acts as a drain for the groundwater catchment, so that groundwater flow is predominantly transverse to ice flow, towards the channel.These perennial streams flow both in summer and winter. Their portals have lain along the same axes for the 5 km of retreat that has occurred since the end of the Little Ice Age, 100 years ago, suggesting that the groundwater catchments have been relatively stable for at least this period. In the winter season, stream discharges are largely derived from basal melting, but during summer, water derived from the glacier surface finds its way, via fractures and moulins, to the glacier bed, where it dominates the meltwater flux. Additional subglacial streams are created in summer to help drain this greater flux from beneath the glacier, through poorly integrated and unstable networks. Summer streams cease to flow during winter and tend not to form in the same places in the following summer. Perennial streams are the stable component of the system and are the main sources of extensive esker systems.Strong flow of groundwater towards low-pressure areas along channels and the ice margin is a source of major upwelling that can produce sediment liquefaction and instability. A theory is developed to show how this could have a major effect on subglacial sedimentary processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号