首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Data obtained on melt inclusions in Cr-spinel suggest a magmatic genesis of dunite in the Konder and Inagly placer-forming platiniferous massifs in the southeastern Siberian Platform. These data make it possible to evaluate the physicochemical parameters of the magmatic processes that produced these concentrically zoned alkaline-ultrabasic complexes. The comparative analysis of the composition of the Cr-spinel with inclusions highlights remarkable differences between this mineral in the Konder and Inagli massifs, on the one hand, and in ultramafic rocks in ophiolites and the modern oceanic crust, on the other. Minute clinopyroxene crystals included in Cr-spinel from the Konder Massif have a composition and configurations of their REE patterns contrastingly different from those of clinopyroxene in basite-hyperbasite complexes of ophiolite associations but are close to those of clinopyroxene in the Kytlym and Nizhnii Tagil platiniferous massifs in the Urals. The composition of the quenched melt inclusions suggests that the chromite crystallized predominantly from picrite alkaline magmas. The concentrations of most elements in the high-Mg inclusions are close to those in biotite-pyroxene alkaline picrites, a fact testifying to the significant contribution of ultrabasic (picrite) alkaline magmatic systems to the origin of the Konder and Inagli massifs. Ion-probe analyses of the inclusions suggest that the melts were rich in water (up to 0.6 wt %). Data on the distribution of REE and other trace elements in the inclusions provide evidence of the influence of a deep plume. Our simulations with the use of the composition of the melt inclusions suggest that dunite in the Konder and Inagli massifs were produced mainly by water-bearing magmas at temperatures of 1460–1300°C. As the melts evolved to less magnesian ones, olivine continued to crystallize from them until the temperature decreased to 1230°C.  相似文献   

2.
Studies of primary multiphase silicate inclusions in accessory Cr-spinels from the fine-grained dunites of the Nizhnii Tagil Pt-bearing massif reveal their similarity to melt inclusions trapped by chromite during its growth. The analyzed Cr-spinels with multiphase silicate inclusions differ in composition from ore chromites of the same massif and from chromites (with melt inclusions) from ultramafic oceanic complexes but are similar to Cr-spinels in dunites from Pt-bearing alkaline ultramafic massifs (Konder and Inagli). According to petro- and geochemical data on heated multiphase silicate inclusions, the studied Cr-spinels crystallized with the participation of subalkalic picrobasaltic melts similar to the magmas of the Konder Pt-bearing massif and having almost the same chemical composition as tylaites. The differences between the compositions of olivines formed within the multiphase silicate inclusions and of the rock-forming minerals show that the studied Cr-spinels formed from an intercumulus liquid melt in the olivine crystal interstices during the cumulate crystallization of most of the Nizhnii Tagil massif dunites in the intrusive chamber. Numerical modeling based on the compositions of heated multiphase silicate inclusions in accessory Cr-spinels demonstrates that olivines and Cr-spinels from the studied dunites crystallized at 1430 to 1310 °C and then olivine formation continued to 1280 °C during the evolution of melts.  相似文献   

3.
A great volume of original information on the formation of the ultrabasic rocks of the Siberian Platform has been accumulated owing to the study of melt inclusions in Cr-spinels. The inclusions show the general tendencies in the behavior of the magmatic systems during the formation of the ultrabasic massifs of the Siberian Platform, tracing the main evolution trend of decreasing Mg number with SiO2 increase in the melts with subsequent transition from picrites through picrobasalts to basalts. The compositions of the melt inclusions indicate that the crystallization conditions of the rocks of the concentrically zoned massifs (Konder, Inagli, Chad) sharply differ from those of the Guli massif. Numerical modeling using the PETROLOG and PLUTON softwares and data on the composition of inclusions in Cr-spinels yielded maximum crystallization temperatures of the olivines from the dunites of the Konder (1545–1430°C), Inagli (1530–1430°C), Chad (1460–1420°C), and Guli (1520–1420°C) massifs, and those of Cr-spinels from the Konder (1420–1380°C), Inagli (up to 1430°C), Chad (1430–1330°C), and Guli (1410–1370°C) massifs. Modeling of the Guli massif with the PLUTON software using the compositions of the melt inclusions revealed the possible formation of the alkaline rocks at the final reverse stage of the evolution of the picritic magmas (with decrease of SiO2 and alkali accumulation) after termination of olivine crystallization with temperature decrease from 1240–1230°C to 1200–1090°C. Modeling with the PLUTON software showed that the dunites of the Guli massif coexisted with Fe-rich (with moderate TiO2 contents) melts, the crystallization of which led (beginning from 1210°C) to the formation of pyroxenes between cumulate olivine. Further temperature decrease (from 1125°C) with decreasing FeO and TiO2 contents provided the formation of clinopyroxenes of pyroxenites. For the Konder massif, modeling with the PLUTON software indicates the possible formation of kosvites from picrobasaltic magmas beginning from 1350°C and the formation of clinopyroxenites and olivine–diopside rocks from olivine basaltic melts from 1250°C.  相似文献   

4.
We consider a hypothesis for the origin of PGE-bearing ultramafic rocks of the Inagli massif (Central Aldan) through fractional crystallization from ultrabasic high-potassium magma. We studied dunites and wehrlites of the Inagli massif and olivine lamproites of the Ryabinovy massif, which is also included into the Central Aldan high-potassium magmatic area. The research is focused on the chemistry of Cr-spinels and the phase composition of Cr-spinel-hosted crystallized melt inclusions and their daughter phases. Mainly two methods were used: SEM-EDS (Tescan Mira-3), to establish different phases and their relationships, and EPMA, to obtain precise chemical data on small (2-100 μm) phases. The obtained results show similarity in chromite composition and its evolutionary trends for the Inagli massif ultramafites and Ryabinovy massif lamproites. The same has been established for phlogopite and diopside from crystallized melt inclusions from the rocks of both objects. Based on the results of the study, the conclusion is drawn that the ultramafic core of the Inagli massif resulted from fractional crystallization of high-potassium melt with corresponding in composition to low-titanium lamproite. This conclusion is consistent with the previous hypotheses suggesting an ultrabasic high-potassium composition of primary melt for the Inagli ultramafites.  相似文献   

5.
The Sm–Nd and Rb–Sr isotope characteristics were studied in clinopyroxenes (Cpx) of ultrabasic rocks (dunite, wehrlite, pyroxenite, and kosvite) from the Konder massif, which is a source of a unique placer platinum deposit. The chemical composition of the clinopyroxenes studied provides evidence for their crystallization from a single melt in the course of magmatic differentiation. The Sm–Nd isotope characteristics of Cpx in dunite from the Konder massif correspond to the regression with an age of 128 ± 40 Ma, which provides evidence for the same age of rocks of the “dunite core,” wehrlite, pyroxenite, kosvite, and alkaline rocks of the subsequent intrusive stage in the Konder massif. Variations in the Sr and Nd isotope characteristics in dunite, wehrlite, pyroxenite, and kosvite result from contamination of the picritic melt with rocks of the continental crust in the course of its cumulative evolution, which allows us to exclude the model of diapiric intrusion of mantle dunite.  相似文献   

6.
The chrome spinellids from ores associated with basic formations differ from chromites found in ultrabasic formations by their higher content of alumina and iron, and by the presence of FeAl204. Chromites of early and late magmatic origin differ in composition. During the formation of late magmatic chromites the filtration effect is accompanied by recrystallization of primary magmatic dunites and generation of rims around the ore zones. These rims contain more magnesium, because iron was extracted by the crystallizing chrome spinellids. -- E. A. Alexandrov.  相似文献   

7.
The results of melt inclusion study are reported for chromites of the Klyuchevsky ultramafic massif, which is the most representative of all Ural ultramafic massifs localized beyond the Main Ural Fault Zone. The massif is composed of a dunite-harzburgite complex (tectonized mantle peridotite) and a dunite-wehrlite-clinopyroxenite-gabbro complex (layered portion of the ophiolitic section). The studied Kozlovsky chromite deposit is located in the southeastern part of the Klyuchevsky massif and hosted in serpentinized dunite as a series of lenticular bodies and layers up to 7–8 m thick largely composed of disseminated and locally developed massive ore. Melt inclusions have been detected in chromites of both ore types. The heated and then quenched into glass melt inclusions and host minerals were analyzed on a Camebax-Micro microprobe. The glasses of melt inclusions contain up to 1.06 wt % Na2O + K2O and correspond to melts of normal alkalinity. In SiO2 content (49–56 wt %), they fit basalt and basaltic andesite. The melt inclusions are compared with those from chromites of the Nurali massif in the southern Urals and the Karashat massif in southern Tuva. The physicochemical parameters of magmatic systems related to the formation of disseminated and massive chromite ores of the Klyuchevsky massif are different. The former are characterized by a wider temperature interval (1185–1120°C) in comparison with massive chromite ore (1160–1140°C).  相似文献   

8.
The olivine shonkinites localized among dunites and alkali gabbroids in the northern part of the alkaline ultrabasic Inagli massif (northwestern part of Central Aldan) have been studied. The obtained data on the chemical and trace-element compositions of the rocks and minerals and the results of melt inclusion study showed that the olivine shonkinites crystallized from alkaline basanite melt enriched in Cl, S, CO2, and trace elements. Clinopyroxene crystallized at 1180-1200 °C from a homogeneous silicate-salt melt, which was probably separated into immiscible silicate and carbonate-salt fractions with temperature decreasing. The composition of the silicate fraction evolved from alkaline basanite to alkaline trachyte. The carbonate-salt fraction had an alkaline carbonate composition and was enriched in S and Cl. The same trend of evolution of clinopyroxene-hosted melts and the igneous rocks of the Inagli massif suggests that the alkali gabbroids, melanocratic alkali syenites, and pulaskites formed from the same magma, which had a near-alkaline basanite composition during its crystallization differentiation. The geochemical studies showed that the olivine shonkinites and glasses of homogenized melt inclusions in clinopyroxene grains have similar contents of trace elements, one or two orders of magnitude higher than those in the primitive mantle. The high contents of LILE (K, Rb, and Sr) and LREE in the olivine shoshonites and homogenized inclusions suggest the enriched mantle source, and the negative anomalies of HFSE and Ti are a specific feature of igneous rocks formed with the participation of crustal material. The slight depletion in HREE relative to LREE and the high (La/Yb)n ratios in the rocks and inclusion glasses (10.0-11.4 and 4.7-6.2, respectively) suggest the presence of garnet in the mantle source.  相似文献   

9.
New geochemical data are discussed on the magmatic complexes of the Koksharovka alkaline ultrabasic massif of Late Jurassic age obtained by the ICP-MS method. Based on the first results on rare earth geochemistry of carbonatites and associating pyroxenites and geological observations, the magmatic origin of the Koksharovka carbonatites was substantiated, and the problems of formation of accompanying igneous rocks were considered.  相似文献   

10.
Alkaline-basic dike from the Yllymakh Massif (Central Aldan) has been studied. Its partially crystallized matrix contains corroded phenocrysts of olivine and hypidiomorphic phenocrysts of clinopyroxene and pseudo-, epileucite. It was found that phenocrysts of clinopyroxene contain abundant primary inclusions, Ti-magnetite and apatite bear only single inclusions, whereas olivine is enriched in secondary inclusions, which are confined to the cleavage of host mineral (along second and third pinacoids) and its cracks. The homogenization temperatures of the primary inclusions in clinopyroxene and secondary inclusions in olivine are approximately equal and lie within 1260–1240°C. The compositions of melt inclusions in olivine and clinopyroxene are also similar and corresponded to the malignite-pseudoleucite phonolite-monzonite pulaskites, which are developed at the Yllymakh Massif. Unheated inclusions in apatite and Ti-magnetite compositionally approach monzonites and nepheline syenites—tinguaites, respectively. It was concluded that the alkaline basaltoid magma was presumably parental magma for the entire rock complex of the Yllymakh Massif. Its crystallization and differentiation presumably provided all observed rock variety from ultrabasics (early derivatives located at depth) and malignites (later derivatives) to leucite phonolites, monzonites, and alkaline pulaskites, which were obtained during subsequent stages of the melt evolution. The parental magma, and especially its derivatives, were enriched in BaO (0.8–0.1 wt %), Cl (0.1–0.3 wt %) and trace elements (primarily, LREE and MREE), which are several times higher than mantle values. At the same time, ion microprobe (SIMS) study showed that derivative melts were dry: contained only 0.01–1.13 wt % H2O. The trend of melts conserved in the minerals and the massif rocks corresponds to the evolution of alkalinebasaltoid magma with increase in Si, Al, alkalis and decrease in Mg, Ca, and Fe, i.e. the Bowen trend. The considered alkaline-basic dike was presumably formed from the derivative of leucite-phonolite melt, which during emplacement captured olivine xenocrysts from previously fractionated ultrabasic rocks. The parental magma was presumably derived by high-degree melting of garnet-spinel-facies depleted mantle at some influence of crustal material.  相似文献   

11.
High-Cr podiform chromitites hosted by upper mantle depleted harzburgite were investigated for PGM and other solid inclusions from Faryab ophiolitic complex, southern Iran. Chemical composition of the chromian spinels, Cr#[100*Cr/(Cr+Al) = 77–85], Mg# [100*Mg/(Mg+Fe2+) = 56–73], TiO2≤0.25wt%, and the presence of abundant primary hydrosilicates included in the chromian spinels indicate that the deposits were formed from aqueous melt generated by high degree of partial melting in a suprasubduction zone setting. Solid phases hosted by chromian spinel grains from the Faryab ophiolitic chromitites can be divided into three categories: PGM, base-metal minerals and silicates. Most of the studied PGM occurred as very small (generally less than 20 μm in size) primary single or composite inclusions of IPGE-bearing phases with or without silicates and base metal minerals. The PGM were divided into the three subgroups: sulfides, alloys and sulfarsenides. Spinel-olivine geothermometry gives the temperatures 1,131–1,177 °C for the formation of the studied chromitites. At those temperatures, fS2 values ranged from 10?3 to 10?1 and provided a suitable condition for Ru-rich laurite formation in equilibrium with Os-Ir alloys. Progressive crystallization of chromian spinel was accompanied by increase of fS2 in the melt. The formation of Os-rich laurite, erlichmanite and then sulfarsenides occurred by increase of fS2 and slight decrease in temperature of the milieu. The compositional and mineralogical determinations of PGM inclusions respect to their spatial distribution in chromian spinels show that the minerals regularly distributed within the chromitites, reflecting cryptic variation consistent with magmatic evolution during host chromian spinel crystallization.  相似文献   

12.
Petrographic and isotopic-geochemical data obtained on basic and ultrabasic rocks from the Yurchik Massif in the Ganal block of crystalline rocks in Kamchatka indicate that the distribution of major and trace elements in these rocks are analogous to those in the fractionation products of high-Al tholeiites occurring in island arcs in the eastern continental margin of Eurasia. Allivalites and dunites found as nodules in gabbronorites and gabbro of the massif are thought to be early cumulates of arc basalts. Petrographic and geochemical characteristics of the Yurchik Massif make it different from Ni-bearing Paleocene-Eocene (approximately 50 Ma) norite-cortlandite intrusions in the Sredinnyi Range of Kamchatka. U-Pb zircon and 40Ar/39Ar dates for rocks from the massif definitely testify to its younger, Early Miocene (approximately 22 Ma) age.  相似文献   

13.
The paper presents newly obtained data on the geological structure, age, and composition of the Gremyakha-Vyrmes Massif, which consists of rocks of the ultrabasic, granitoid, and foidolite series. According to the results of the Rb-Sr and Sm-Nd geochronologic research and the U-Pb dating of single zircon grains, the three rock series composing the massif were emplaced within a fairly narrow age interval of 1885 ± 20 Ma, a fact testifying to the spatiotemporal closeness of the normal ultrabasic and alkaline melts. The interaction of these magmas within the crust resulted in the complicated series of derivatives of the Gremyakha-Vyrmes Massif, whose rocks show evidence of the mixing of compositionally diverse mantle melts. Model simulations based on precise geochemical data indicate that the probable parental magmas of the ultrabasic series of this massif were ferropicritic melts, which were formed by endogenic activity in the Pechenga-Varzuga rift zone. According to the simulation data, the granitoids of the massif were produced by the fractional crystallization of melts genetically related to the gabbro-peridotites and by the accompanying assimilation of Archean crustal material with the addition of small portions of alkaline-ultrabasic melts. The isotopic geochemical characteristics of the foidolites notably differ from those of the other rocks of the massif: together with carbonatites, these rocks define a trend implying the predominance of a more depleted mantle source in their genesis. The similarities between the Sm-Nd isotopic characteristics of foidolites from the Gremyakha-Vyrmes Massif and the rocks of the Tiksheozero Massif suggest that the parental alkaline-ultrabasic melts of these rocks were derived from an autonomous mantle source and were only very weakly affected by the crust. The occurrence of ultrabasic foidolites and carbonatites in the Gremyakha-Vyrmes Massif indicates that domains of metasomatized mantle material were produced in the sublithospheric mantle beneath the northeastern part of the Fennoscandian Shield already at 1.88 Ga, and these domains were enriched in incompatible elements and able to produce alkaline and carbonatite melts. The involvement of these domains in plume-lithospheric processes at 0.4–0.36 Ga gave rise to the peralkaline melts that formed the Paleozoic Kola alkaline province.  相似文献   

14.
Based on the analysis of coexisting minerals (magnetite, ilmenite, titanite, and pyroxene), the temperature and redox conditions of rock crystallization in the Khibina alkaline massif were estimated. Under the redox conditions typical of the Khibina complex, the carbon speciation evolved as follows: CO2 in fluid and carbonate anions in melt at high temperatures; then, graphite formation; and, at lower temperatures, the appearance of significant amounts of hydrocarbons owing to fluid-graphite interaction. Abiogenic hydrocarbons in magmatic complexes can be produced by processes differing from the Fischer-Tropsch synthesis.  相似文献   

15.
Based on the investigation of melt inclusions using electron and ion microprobe analysis, we estimated the composition, evolution, and formation conditions of magmas responsible for the calcite-bearing ijolites and carbonatites of the Belaya Zima alkaline carbonatite complex (eastern Sayan, Russia). Primary melt and coexisting crystalline inclusions were found in the nepheline and calcite of these rocks. Diopside, amphibole (?), perovskite, potassium feldspar, apatite, calcite, pyrrhotite, and titanomagnetite were identified among the crystalline inclusions. The melt inclusions in nepheline from the ijolites are completely crystallized. The crystalline daughter phases of these inclusions are diopside, phlogopite, apatite, calcite, magnetite, and cuspidine. During thermometric experiments with melt inclusions in nepheline, the complete homogenization of the inclusions was attained through the dissolution of a gas bubble at temperatures of 1120–1130°C. The chemical analysis of glasses from the homogenized melt inclusions in nepheline of the ijolites revealed significant variations in the content of components: from 36 to 48 wt % SiO2, from 9 to 21 wt % Al2O3, from 8 to 25 wt % CaO, and from 0.6 to 7 wt % MgO. All the melts show very high contents of alkalis, especially sodium. According to the results of ion microprobe analysis, the average content of water in the melts is no higher than a few tenths of a percent. The most salient feature of the melt inclusions is the extremely high content of Nb and Zr. The glasses of melt inclusions are also enriched in Ta, Th, and light rare earth elements but depleted in Ti and Hf. Primary melt inclusions in calcite from the carbonatites contain a colorless glass and daughter phlogopite, garnet, and diopside. The silicate glass from the melt inclusions in calcite of the carbonatite is chemically similar to the glasses of homogenized melt inclusions in nepheline from the ijolites. An important feature of melt inclusions in calcite of the carbonatites is the presence in the glass of carbonate globules corresponding to calcite in composition. The investigation of melt inclusions in minerals of the ijolites and carbonatites and the analysis of the alkaline and ore-bearing rocks of the Belaya Zima Massif provided evidence for the contribution of crystallization differentiation and silicate-carbonate liquid immiscibility to the formation of these rocks. Using the obtained trace-element compositions of glasses of homogenized melt inclusions and various alkaline rocks and carbonatites, we determined to a first approximation the compositions of mantle sources responsible for the formation of the rock association of the Belaya Zima alkaline-carbonatite complex. The alkaline rocks and carbonatites were derived from the depleted mantle affected by extensive metasomatism. It is supposed that carbonate melts enriched in sodium and calcium were the main agents of mantle metasomatism.  相似文献   

16.
The first data on the composition and inner structure of zircon, one of the main ore minerals of the rare-metal metasomatites of the Gremyakha–Vyrmes alkaline-ultramafic massif, are reported. Early zircon generations are enriched in Y and REE and contain numerous inclusions of rock-forming and accessory minerals of metasomatites, as well as syngenetic fluid inclusions of calcite, thorite and thorianite. Late generations differ in the elevated Hf content and contain no inclusions. The elevated concentrations of Ca and Th in the central zones of crystals are related to the presence of numerous micron-sized inclusions of calcite and thorium phases. All zircon varieties have extremely low U and Pb contents. Concentrations and distribution patterns of incompatible and rare-earth elements in zircon from the metasomatites of the Gremyakha–Vyrmes Massif are similar to those of syenite pegmatites and magmatic carbonatites around the world. Mineral from these associations shows a positive Ce anomaly and elevated HREE contents. According to the compositions of zircon and thorite inclusion in it and experimental data on the simultaneous synthesis of these minerals, the crystallization temperature of zircon was 700–750°С. Using Ti-in-zircon temperature dependence, late zurcon was formed at temperature of 700–750°С. The rare-metal metasomatites are formed at the final stages of the massif formation, presumably after foidolites. Carbonatites could initiate metasomatic reworking of foidolites and accumulation of trace metals in them. The evolution of the primary alkaline–ultramafic melt toward the enrichment in trace elements was mainly controlled by crystallization differentiation.  相似文献   

17.
The Dukuk intrusive massif is considered as petrotype of the Ni-bearing gabbro-norite-cortlandite complex of Kamchatka. This paper advances a new concept of the structure of the Dukuk Massif and relations between its gabbroid and ultrabasic rocks. The study of the trace element distribution sheds light on the origin of the parental melt of the norite-cortlandite complex and on the prospects for the discovery of economic sulfide mineralization in it. New U-Pb data on the Dukuk intrusion specified the age of this massif and the entire complex.  相似文献   

18.
The Piaoak tin-bearing granite-leucogranites located in the Caobang Province of Northern Vietnam compose a stock-like hypabyssal body. Host rocks are represented by Early Devonian carbonate sequences and Early Triassic ??black?? shales. The geochronological age of the Piaoak granite-leucogranites corresponds to the Late Cretaceous: T = 83.5 ± 6.2 Ma, 87Rb/86Sr method; T = 89.7 ± 1.0 Ma, 39Ar/40Ar method. The massif has a simple basic to acid order: two-mica and muscovite granite-leucogranite ?? raremetal aplites, pegmatites ?? tin-bearing greisens and hydrothermal veins. The petrographic and microstructural studies revealed a sharp change in crystallization conditions of the granite-leucogranite magma at the late magmatic stage and formation of muscovite via incongruent melting of protolithionite. The study of melt and coexisting fluid inclusions showed that solidus crystallization occurred under fluid-saturated conditions at 635?C600°C. In composition, the granite-leucogranites of the Piaoak Massif correspond to the raremetal-plumasite geochemical type (according to L.V. Tauson), and reach Li-F facies in terms of their rare-element composition. The composition of aplites and pegmatites demonstrates that granite-leucogranite magma did not accumulate lithophile and volatile components in the residual melt during differentiation, but was initially enriched in rare-metals. It is most probable that the melt was generated from Proterozoic lithotectonic complexes and overlaying Lower Triassic ??black?? shales.  相似文献   

19.
刘建国  王建 《地质学报》2016,90(6):1182-1194
西昆仑库地蛇绿岩发育小规模的铬铁矿床,矿体呈豆荚状和层状、似层状,均与纯橄岩紧密伴生。这些纯橄岩主要由橄榄石和副矿物尖晶石组成,与方辉橄榄岩相比,橄榄岩中的橄榄石粒径粗(平均2.5mm),Mg#(88~90)低,这与它们全岩低Mg#(90)值,富Al_2O_3、TiO_2、Cr_2O_3、Fe_2O_3相吻合,与熔融残余成因的纯橄岩明显不同,反映了其很可能是由熔体与方辉橄榄岩反应而成。矿体主要由块状、浸染状及脉状铬铁矿石组成;铬铁矿石中的尖晶石具有低而相对稳定的Cr#(43~56),低于富铬型铬铁矿矿床中的铬铁矿(Cr#60)。块状矿石与纯橄岩呈突变接触,矿石中的尖晶石呈浑圆状,包裹有较多橄榄石、辉石等硅酸盐矿物及角闪石等含水硅酸盐矿物;浸染状铬铁矿石中的尖晶石与橄榄石颗粒构成交织结构,或呈云朵状,沿橄榄石颗粒边界相互连接,矿石的结构构造显示了熔/岩反应成因特征。通过计算分析,我们认为该区富铝型铬铁矿石是由拉斑玄武质熔体与地幔橄榄岩反应而成,由于熔体中含有较高的H_2O,参与反应的熔体可能源于弧后扩张脊环境。  相似文献   

20.
Melilite and wollastonite from the Colle Fabbri stock contain silicate melt and silicate-carbonate inclusions. The homogenization temperatures of silicate inclusions are within the magmatic temperature range of mantle ultrabasic melts: about 1,320?±?15 °С. Their composition is melilititic and evolves to the composition of leucite tephrite and phonolite. The composition of silicate-carbonate inclusions are high SiO2, Ca-rich, enriched in alkalies and are similar to that of inclusions of carbonatite melts in the minerals of melilitolites of other intrusive ultramafic complexes. They are also similar to the compositions of metasomatized travertine covering the melilitolite stock. The presence of primary silicate and silicate-carbonate inclusions evidences that the melilitite magma from which melilitolites of Colle Fabbri crystallized was associated with carbonatite liquid. This liquid was highly fluidized, mobile and aggressive. Actively interacting with overlying travertine, the liquid enriched them with alkalies, aluminosilicates and incompatible elements, which resulted in the equalization of their compositions. Heterogeneous compositional dominions were formed at the contact between melilitolite and wall pelites. In the minerals of these contact facies high-Si melt inclusions of varying composition have been observed. Their occurrence is related to the local assimilation by the high-temperature melilitite magma of pelitic country rocks. The content of incompatible elements in melilitite melts and melilitolites is higher than the mantle norm and they have peculiar indicator ratios, spectra, Eu/Eu* ratio, which suggest a peculiar mantle source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号