首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few methods exist for measuring rapidly changing fluid contents at the pore scale that simultaneously allow whole flow field visualization. We present a method for using real-time neutron radiography to measure rapidly changing moisture profiles in porous media. The imaging technique monitors the attenuation of a thermal neutron beam as it traverses a flow field and provides measurements every 30 ms with an image area >410 cm2 and a spatial resolution 0.05 cm. The technique is illustrated by measuring the variation in moisture content across a wetting front moving at constant velocity through SiO2 sand. The relative contributions of the hydraulic conductivity and diffusivity terms in Richards' equation to the total fluid flux within the wetting front region were also measured. The diffusivity was found to rise from zero to a peak value within the wetting front region before falling off while the conductivity was found to rise monotonically. The reliability of the technique was checked via mass balance.  相似文献   

2.
Different theoretical and laboratory studies on the propagation of elastic waves in layered hydrocarbon reservoir have shown characteristic velocity dispersion and attenuation of seismic waves. The wave‐induced fluid flow between mesoscopic‐scale heterogeneities (larger than the pore size but smaller than the predominant wavelengths) is the most important cause of attenuation for frequencies below 1 kHz. Most studies on mesoscopic wave‐induced fluid flow in the seismic frequency band are based on the representative elementary volume, which does not consider interaction of fluid flow due to the symmetrical structure of representative elementary volume. However, in strongly heterogeneous media with unsymmetrical structures, different courses of wave‐induced fluid flow may lead to the interaction of the fluid flux in the seismic band; this has not yet been explored. This paper analyses the interaction of different courses of wave‐induced fluid flow in layered porous media. We apply a one‐dimensional finite‐element numerical creep test based on Biot's theory of consolidation to obtain the fluid flux in the frequency domain. The characteristic frequency of the fluid flux and the strain rate tensor are introduced to characterise the interaction of different courses of fluid flux. We also compare the behaviours of characteristic frequencies and the strain rate tensor on two scales: the local scale and the global scale. It is shown that, at the local scale, the interaction between different courses of fluid flux is a dynamic process, and the weak fluid flux and corresponding characteristic frequencies contain detailed information about the interaction of the fluid flux. At the global scale, the averaged strain rate tensor can facilitate the identification of the interaction degree of the fluid flux for the porous medium with a random distribution of mesoscopic heterogeneities, and the characteristic frequency of the fluid flux is potentially related to that of the peak attenuation. The results are helpful for the prediction of the distribution of oil–gas patches based on the statistical properties of phase velocities and attenuation in layered porous media with random disorder.  相似文献   

3.
The aim of this study was to obtain the diurnal and seasonal changes of trunk sap flow in desert‐living Caragana korshinskii so as to understand its water requirement and ecological significance. The experiment was carried out with 15‐year old Caragana korshinskii grown in north‐west China under natural conditions. Heat pulse sensors based on the heat compensation theory were applied to measure the trunk sap flow, and soil moisture content at 0–300 cm layer, using tube‐type time domain reflectometry (Tube‐TDR). The solar radiation, the maximum and minimum air temperatures, relative humidity, wind speed, wind direction and precipitation were measured at a standard automatic weather station. The diurnal and seasonal variations of sap flow rate, the sap velocity at different positions in the trunk and the sap flow rate under different weather conditions were analysed. And the correlation between the sap flow rate and the meteorological factors was also analysed. Results showed that the trunk sap flow varied regularly in the diurnal term and the sap flow velocity decreased with the probe‐inserted depth into the sapwood. Magnitude of sap flow changed considerably between sunny and rainy days. The order of the main meteorological factors affecting the sap flow rate of Caragana korshinskii shrubs were: vapour pressure deficit > solar radiation > air temperature > wind speed. The close correlation between daily sap flow rate and meteorological factors in the whole growing season can be used to estimate the transpiration of Caragana korshinskii. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

Laboratory experiments and analysis of shallow water equations in a rotating fluid show that channel flow is governed by the ratio of the width of the channel to the Rossby radius of deformation R= √[g&Delta;ρHf 2]. Flows through narrow ocean openings exhibit blocking and clear evidence of hydraulic control. These imply that formulae can be derived for width, volume flux, and velocity scales of the currents. A new version of the constant potential vorticity problem is solved, and it is shown to predict volume flux within 22% of the zero potential vorticity results. Next a systematic method of predicting volume flux through ocean passages is described. Some examples are given from the Denmark Straits overflow and the flow of Antarctic Bottom Water into the western Atlantic Ocean. Two-layer flows and counter-flows with rotation in a narrow passage, the so-called lock exchange flow problem, duplicate flows at a number of important straits and openings to bays. A potential vorticity formulation is reviewed. The flows in the mouths of various bays such as Funka Bay in Hokkaido, Japan, Spencer Gulf in South Australia, and Chesapeake Bay in the United States has R < width of the mouth, and the two currents are separated by a front. The width of the front and the density difference can be predicted with good results.  相似文献   

5.
Draining soil water is an important runoff generator. This study aims to describe runoff‐generating processes on a plot scale (1 m2) in hydromorphic soils with different initial soil water contents. We irrigated 16 hydromorphic soils in the northern Pre‐Alps in Switzerland and recorded the variations in water content with time domain reflectometry (TDR) at five different depths per plot. Sprinkling was repeated three times at approximately 23‐h intervals and lasted for 1 h with a volume flux density of 70 mm h?1. The comparison between the measured water content of the drainages with two physically based models revealed which of the flow processes dominated during water recessions. We distinguished between vertical drainage, lateral outflow and infiltration without drainage. Approximately 45% of all recorded time series of soil water content did not drain within approximately 20 h after the end of irrigation, about 25% drained laterally and 10% of the outflow was vertical. The drainage of the remaining 20% was the result of both lateral and vertical water flow (≈12%), or was not interpretable with the approaches applied (≈8%). Vertical flow was only observed in layers without any or with just a few hydromorphic features. Lateral draining horizons had approximately half the storage capacity and amplitude of water recession of those with vertical flow. Vertical flow was only observed in the upper soil horizons. Thus, vertical flow transmitted water to layers with lateral outflow and did not delay runoff by deep percolation. Increasing initial soil moisture increased the percentage of water content recordings according to a lateral outflow slightly, while vertical flow was less frequent. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Uri Schwartz 《水文研究》2016,30(20):3704-3716
Although floods in arid environments have been documented, considerable uncertainties still exist as to the floodwater and in‐channel infiltration relationships. In desert alluvial channels, the prime cause of flood discharge attenuation is water loss by infiltration into the alluvium. The present study documents flows in Nahal Zin, Israel, their infiltration into the channel bed, and the resultant change in the alluvium moisture content. The study uses a systematic combination of two experimental scales, the cross‐section scale and the reach scale. Direct measurements of moisture distribution in the active channel during floods were made using time domain reflectometry. Twelve flow events were recorded. Flow patterns and their respective alluvium moisture content were analysed. A trench was dug in the alluvium for the study of alluvium properties and time domain reflectometry sensor installation. The alluvium was characterized in terms of size distribution and sediment stratigraphy, structure, and composition. Two main alluvial structures (closed and open) affected the advance of the wetting front and water losses. Alluvial units with an open structure (clast‐supported) reached their maximum moisture content faster than closed structure units (matrix‐supported). Small‐sized particles and matrix‐supported layers reduced infiltration rate. The measured velocities of the wetting front were 0.33 and 2.88 m h?1 for small and large floods respectively. The wetting front moved downward. Lateral movement was negligible. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Precipitation is often the sole source of water replenishment in arid and semi‐arid areas and, thus, plays a pertinent role in sustaining desert ecosystems. Revegetation over 40 years using mainly Artemisia ordosica and Caragana korshinskii at Shapotou Desert Experimental Research Station near Lanzhou, China, has established a dwarf‐shrub and microbiotic soil crust cover on the stabilized sand dunes. The redistribution of infiltrated moisture through percolation, root extraction, and evapotranspiration pathways was investigated. Three sets of time‐domain reflectometry (TDR) probes were inserted horizontally at 5, 10, 15, 20, 30 and 40 cm depths below the ground surface in a soil pit. The three sets of TDR probes were installed in dwarf‐shrub sites of A. ordosica and C. korshinskii community with and without a microbiotic soil crust cover, and an additional set was placed in a bare sand dune area that had neither vegetation nor a microbiotic soil crust present. Volumetric soil moisture content was recorded at hourly intervals and used in the assessment of infiltration for the different surface covers. Infiltration varied greatly, from 7·5 cm to more than 45 cm, depending upon rainfall quantity and soil surface conditions. In the shrub community area without microbiotic soil crust cover, infiltration increased due to preferential flow associated with root tunnels. The microbiotic soil crust cover had a significant negative influence on the infiltration for small rainfall events (~10 mm), restricting the infiltration depth to less than 20 cm and increasing soil moisture content just beneath the soil profile of 10 cm, whereas it was not as strong or clear for larger rainfall events (~60 mm). For small rainfall events, the wetting front depth for the three kinds of surface cover was as follows: shrub community without microbiotic soil crust > bare area > shrub community with microbiotic soil crust. In contrast, for large rainfall events, infiltration was similar in shrub communities with and without microbiotic soil crust cover, but significantly higher than measured in the bare area. Soil water extraction by roots associated with evapotranspiration restricted the wetting front penetration after 1 to 3 h of rainfall. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Erick Carlier 《水文研究》2008,22(17):3500-3506
An analytical transport‐model was developed to simulate the propagation of a contaminant in one‐ and two‐dimensional transient flow in groundwater. It is proved that the distribution of concentration at a given time and for a given discharge is identical to that obtained for a different discharge if the volumetric flux of water is the same in the two cases. The results of simulations have been compared with results obtained using the MT3DMS numerical model. There is good agreement when the calculated concentrations are flux‐weighted concentrations. On the other hand, there is a notable divergence when the resident mode is considered. Resident mode concentrations express the mass per unit volume whereas flux mode concentrations express the ratio of mass flux to fluid flux. The solutions presented in this paper can thus be a useful alternative to code MT3DMS when the objective is to simulate concentrations in transient flow according to a resident mode. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Wave‐induced oscillatory fluid flow in the vicinity of inclusions embedded in porous rocks is one of the main causes for P‐wave dispersion and attenuation at seismic frequencies. Hence, the P‐wave velocity depends on wave frequency, porosity, saturation, and other rock parameters. Several analytical models quantify this wave‐induced flow attenuation and result in characteristic velocity–saturation relations. Here, we compare some of these models by analyzing their low‐ and high‐frequency asymptotic behaviours and by applying them to measured velocity–saturation relations. Specifically, the Biot–Rayleigh model considering spherical inclusions embedded in an isotropic rock matrix is compared with White's and Johnson's models of patchy saturation. The modeling of laboratory data for tight sandstone and limestone indicates that, by selecting appropriate inclusion size, the Biot‐Rayleigh predictions are close to the measured values, particularly for intermediate and high water saturations.  相似文献   

10.
 We introduce a 3D model for near-vent channelized lava flows. We assume the lava to be an isothermal Newtonian liquid flowing in a rectangular channel down a constant slope. The flow velocity is calculated with an analytical steady-state solution of the Navier-Stokes equation. The surface velocity and the flow rate are calculated as functions of the flow thickness for different flow widths, and the results are compared with those of a 2D model. For typical Etna lava flow parameters, the influence of levees on the flow dynamics is significant when the flow width is less than 25 m. The model predicts the volume flow rate corresponding to the surface velocity, taking into account that both depend on flow thickness. The effusion rate is a critical parameter to evaluate lava flow hazard. We propose a model to calculate the effusion rate given the lava flow width, the topograhic slope, the lava density, the surface flow velocity, and either the lava viscosity or the flow thickness. Received: 20 January 1998 / Accepted: 8 January 1999  相似文献   

11.
Hydraulic connectivity on hillslopes and the existence of preferred soil moisture states in a catchment have important controls on runoff generation. In this study we investigate the relationships between soil moisture patterns, lateral hillslope flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment. We identify five soil moisture conditions that occur during a year and present a conceptual model based on field studies and computer simulations of how streamflow is generated with respect to the soil moisture conditions. The five soil moisture conditions are (1) a summer dry period, (2) a transitional fall wetting period, (3) a winter wet, low‐flux period, (4) a spring wet, high‐flux period, and (5) a transitional late‐spring drying period. Transitions between the periods are driven by changes in the water balance between rain, snow, snowmelt and evapotranspiration. Low rates of water input to the soil during the winter allow dry soil regions to persist at the soil–bedrock interface, which act as barriers to lateral flow. Once the dry‐soil flow barriers are wetted, whole‐slope hydraulic connectivity is established, lateral flow can occur, and upland soils are in direct connection with the near‐stream soil moisture. This whole‐slope connectivity can alter near‐stream hydraulics and modify the delivery of water, pressure, and solutes to the stream. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
There is a need to elucidate the impact of ethanol on the subsurface environment because of the application of ethanol as automotive fuel. This study quantifies the effects of changes in surface tension, viscosity, and density induced by ethanol on the transmission and retention of water in the vadose zone. The HYDRUS‐1D model was modified to simulate two different scenarios of flow in a sandy loam involving ponding (constant head) or spillage with a subsequent rainfall event (constant flux). Solutions containing different amounts of the highly miscible ethanol (10, 50, and 100% by weight) as well as pristine water were considered. During ponding, ethanol reduced the amount of fluid entering the soil and slowed down the advancement of the wetting front. Viscosity effects were predominant for this scenario, reducing the average depth of the infiltrating liquid up to 44%. The total amount of pure ethanol that entered the soil was 11.38 vs. 17.64 cm for pure water. For the spillage scenario, the results suggest that density has little impact on the liquid movement. Surface tension effects are predominant in the upper portion of the soil. The changes in hydraulic conductivity due to ethanol‐induced modifications of solution viscosity are responsible for the slower advancement of the moisture front. The 10% ethanol solution moved 43.1% faster than pure ethanol during the first 2 d because of viscosity and surface tension effects.  相似文献   

13.
To assess recharge through floodwater spreading, three wells, approx. 30 m deep, were dug in a 35-year-old basin in southern Iran. Hydraulic parameters of the layers were measured. One well was equipped with pre-calibrated time domain reflectometry (TDR) sensors. The soil moisture was measured continuously before and after events. Rainfall, ponding depth and the duration of the flooding events were also measured. Recharge was assessed by the soil water balance method, and by calibrated (inverse solution) HYDRUS-1D. The results show that the 15 wetting front was interrupted at a layer with fine soil accumulation over a coarse layer at the depth of approx. 4 m. This seemed to occur due to fingering flow. Estimation of recharge by the soil water balance and modelling approaches showed a downward water flux of 55 and 57% of impounded floodwater, respectively.  相似文献   

14.
Large‐scale flow structures (LSFS) in the streamwise direction are important features of gravel‐bed river flows, because they may contribute to sediment transport and gas exchange. In the present study, these structures are detected using Huang's empirical mode decomposition and reconstructed with phase‐averaging techniques based on a Hilbert transform of the velocity signal. The analysis is based on the fluctuating component of 15 quasi‐instantaneous velocity profiles measured with a three‐dimensional (3D) acoustic Doppler velocity profiler (ADVP) in an armoured gravel‐bed river with a low relative submergence of 2.9 (ratio between flow depth and bed grain diameter). LSFS were identified in most of the measured profiles and consistently showed similar features. We were able to characterize the geometry of these large‐scale coherent structures: the front has a vertical linear shift in the time domain and a vertical profile corresponding to a first quarter moon with the apex situated at z/h ≈ 0.4. In the vertical, the front scales with flow depth h, and in the streamwise direction, LSFS scale with three to seven times the mean flow depth. On the bed, the effect of LSFS is a periodic non‐linear variation of the friction velocity on average between 0.90 and 1.10 times the mean value. A model for the friction velocity cycle resulting from LSFS oscillation is presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
《Advances in water resources》2005,28(10):1133-1141
We study the motion of wetting fronts for vertical infiltration problems as modeled by Richards’ equation. Parlange and others have shown that wetting fronts in infiltration flows can be described by traveling wave solutions. If the soil layer is not initially dry, but has an initial distribution of water content then the motion of the wetting front will change due to the interaction of the infiltrating flow with the pre-existing soil conditions. Using traveling wave profiles, we construct simple approximate solutions of initial-boundary value problems for Richards’ equation that accurately describe the position and moisture distribution of the wetting front. We show that the influences of surface boundary conditions and initial conditions produce shifts to the position of the wetting front. The shifts can be calculated by examining the cumulative infiltration, and are validated numerically for several problems for Richards’ equation and the linear advection–diffusion equation.  相似文献   

16.
The fate and transport of contaminants in the vicinity of septic fields remains poorly understood in many hydrogeomorphological environments. We report hydrometric data from an intensive hillslope‐scale experiment conducted between 29 August and 11 November 1998 at a residential leach field in New York State. The objective of our study was to characterize water flux within the vadose zone, understand the physical controls on the flux, and predict how this ultimately will affect subsurface water quality. Soil‐water flux was calculated using matric potential measurements from a network of 25 tensiometer nests, each nest consisting of three tensiometers installed to depths of 10, 50 and 130 cm. Unsaturated hydraulic conductivity curves were derived at each depth from field‐determined time‐domain reflectometry–tensiometry moisture‐release curves and borehole permeametry measurements. Flownets indicated that a strong upward flux of soil water occurred between rainstorms. Following the onset of (typically convective) rainfall, low near‐surface matric potentials were rapidly converted to near‐saturated and saturated conditions, promoting steep vertical gradients through the near‐surface horizons of the hillslope. Lateral hydraulic gradients were typically 10 times smaller than the vertical gradients. Resultant flow vectors showed that the flux was predominantly vertical through the vadose zone, and that the flux response to precipitation was short‐lived. The flux response was controlled primarily by the shape of the unsaturated hydraulic conductivity curves, which indicated a rapid loss of conductivity below saturation. Thus, soil water had a very high residence time in the vadose zone. The absence of rapid wetting at 130 cm and the delayed and small phreatic zone response to rainfall indicated that water movement through macropores did not occur on this hillslope. These results are consistent with a Cl tracing experiment, which demonstrated that the tracer was retained in the vadose zone for several months after injection to the system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Subsurface water flows play a key role in the distribution of water and solutes and thereby in the water availability for plants. However, the characterization of different flow processes (i.e. matrix and preferential flow), the frequency and factors that cause them, is relatively rare. This characterization enables a better understanding of spatio‐temporal variability of water resources and allows for the design of models to be improved. Using a method based on the time derivative of soil moisture variation known as maximum wetting slope, types of soil wetting processes were classified and quantified. For this, capacitance sensors, which registered the volumetric water content at high temporal resolution (30 min) for more than two hydrological years, were installed at different depths and placed in soil moisture stations with different vegetation covers, lithology and topographic position. Results indicated that there is a general behaviour or pattern of soil moisture dynamics in the catchment with a dominant occurrence of slower soil wetting processes (>50%), caused by matrix flows, and a low occurrence of those faster processes (<30%), originated by preferential flows. Nevertheless, when the total volume of water is considered, preferential flow becomes the dominant process, so that the ecological role of both flow types becomes prominent in water‐limited environments. Statistical multivariate analyses based on data‐mining techniques proved that although both flow types depend on variables associated with precipitation and antecedent soil moisture conditions, faster soil wetting processes are mainly related to variables such as rainfall intensity and topography, while slower soil wetting processes are related to flow velocity, soils or vegetation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Flood irrigation is globally one of the most used irrigation methods. Typically, not all water that is applied during flood irrigation is consumed by plants or lost to evaporation. Return flow, the portion of applied water from flood irrigation that returns back to streams either via surface or subsurface flow, can constitute a large part of the water balance. Few studies have addressed the connection between vertical and lateral subsurface flows and its potential role in determining return flow pathways due to the difficulty in observing and quantifying these processes at plot or field scale. We employed a novel approach, combining induced polarization, time‐lapse electrical resistivity tomography, and time‐lapse borehole nuclear magnetic resonance, to identify flow paths and quantify changes in soil hydrological conditions under nonuniform application of flood irrigation water. We developed and tested a new method to track the wetting front in the subsurface using the full range of inverted resistivity values. Antecedent soil moisture conditions did not play an important role in preferential flow path activation. More importantly, boundaries between lithological zones in the soil profile were observed to control preferential flow pathways with subsurface run‐off occurring at these boundaries when saturation occurred. Using the new method to analyse time‐lapse resistivity measurements, we were able to track the wetting front and identify subsurface flow paths. Both uniform infiltration and preferential lateral flows were observed. Combining three geophysical methods, we documented the influence of lithology on subsurface flow processes. This study highlights the importance of characterizing the subsurface when the objective is to identify and quantify subsurface return flow pathways under flood irrigation.  相似文献   

19.
Vertical movement of snowmelt water through snowpacks is modelled by applying the kinematic wave theory. Analytical solutions are obtained for moisture flux, particle velocity, time history and velocity of meltwater front and total moisture content for a single melt event assuming that the melt rate is constant. These solutions are extended to the case involving more than one event. © 1997 by John Wiley & Sons Ltd.  相似文献   

20.
Abstract

The instability of a current with a geostrophic surface density front is investigated by means of a reduced gravity model having a velocity profile with nearly uniform potential vorticity. It is shown that currents are unstable when the mean potential vorticity decreases toward the surface front at the critical point of the frontal trapped waves investigated by Paldor (1983). This instability is identical with that demonstrated by Killworth (1983) in the longwave limit.

The cross-stream component of mass flux and the rates of energy conversions among the five energy forms defined by Orlanski (1968) are also calculated. The main results are as follows, (a) The mass flux toward the surface front is positive near the front and negative around the critical point. The positive mass flux near the front does not vanish at the position of the undisturbed surface front, so that the mean position of the front moves outward and the region of the strong current spreads. (b) The potential energy of the mean flow integrated over the fluid is released through the work done by the force of the pressure gradient of the mean flow on the fluid, and is converted into the kinetic energy of the mean flow. (c) In the critical layer, the mean flow is rapidly accelerated with the growth of the unstable wave. This acceleration is caused by the rapid phase shift of the unstable wave in the critical layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号