首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simplified method of numerical analysis has been developed to estimate the deformation and load distribution of piled raft foundations subjected to ground movements induced by tunnelling and incorporated into a computer program ‘PRAB’. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates, the piles as elastic beams, and the soil is treated as interactive springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are modelled based on Mindlin's solutions for both vertical and lateral forces. The validity of the proposed method is verified through comparisons with some published solutions for single piles and pile groups subjected to ground movements induced by tunnelling. Thereafter, the solutions from this approach for the analysis of a pile group and a piled raft subjected to ground movements induced by tunnelling are compared with those from three‐dimensional finite difference program. Good agreements between these solutions are demonstrated. The method is then used for a parametric study of single piles, pile groups and piled rafts subjected to ground movements induced by tunnelling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
提出一种多向荷载作用下层状地基中刚性桩筏基础的计算方法。基于剪切位移法,采用传递矩阵形式分析了竖向荷载下桩顶面-桩顶面相互作用;引入修正桩侧地基模量,采用有限差分法分析了水平荷载下桩顶面-桩顶面相互作用;基于层状弹性半空间理论,分析了多向荷载下桩顶面-土表面、土表面-桩顶面、土表面-土表面的相互作用关系。建立了桩土体系柔度矩阵,得到了多向荷载下层状地基中刚性桩筏基础的受力和变形的关系以及桩的内力和变形沿桩身分布规律。通过与有限元对比,验证了该方法的合理性和修正地基模量的优越性,并对多向荷载作用下的桩筏基础进行了计算分析,计算结果表明,水平力将会引起桩筏基础的倾斜。  相似文献   

3.
The piled raft has proved to be an economical foundation type compared to conventional pile foundations. However, there is a reluctance to consider the use of piled rafts on soft clay because of concerns about excessive settlement and insufficient bearing capacity. Despite these reasons, applications of piled rafts on soft clay have been increased recently. Current analysis methods for piled rafts on soft clay, however, are insufficient, especially for calculating the overall bearing capacity of the piled raft. This study describes the three-dimensional behavior of a piled raft on soft clay based on a numerical study using a 3D finite element method. The analysis includes a pile–soil slip interface model. A series of numerical analyses was performed for various pile lengths and pile configurations for a square raft subjected to vertical loading. Relatively stiff soil properties and different loading types were also used for estimating the bearing behavior of the piled raft. Based on the results, the effect of pile–soil slip on the bearing behavior of a piled raft was investigated. Furthermore, the proportion of load sharing of the raft and piles at the ultimate state and the relationship between the settlement and overall factor of safety was evaluated. The results show that the use of a limited number of piles, strategically located, might improve both bearing capacity and the settlement performance of the raft.  相似文献   

4.
An investigation is made to present analytical solutions provided by a Winkler model approach for analysis of piled rafts with nodular pile subjected to vertical loads in nonhomogeneous soils. The vertical stiffness coefficient along a piled raft with the nodular pile in nonhomogeneous soils is derived from the displacement given by the Mindlin solution for elastic continuum analysis. The vertical stiffness coefficients for the bases of the raft and the nodular part in the nodular pile in a soil are expressed by the Muki solution for the 3‐D elastic analysis. The relationship between settlement and vertical load on the pile base is presented considering the Mindlin solution and the equivalent thickness in the equivalent elastic method. The interaction factor between the shaft of the nodular pile and the soil is expressed taking into account the Mindlin solution and the equivalent elastic modulus. The relationship between settlement and vertical load for a piled raft with the nodular pile in nonhomogeneous soils is obtained by using the recurrence equation of influence factors of the pile for each layer. The percentage of each load carried by both nodular pile and raft subjected to vertical load is represented through the vertical influence factors proposed here. Comparison of the results calculated by the present method for piled rafts with nodular piles in nonhomogeneous soils has shown good agreement with those obtained from the finite element method and a field test. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A simplified analysis method has been developed to estimate the vertical movement and load distribution of pile raft foundations subjected to ground movements induced by tunneling based on a two‐stage method. In this method, the Loganathan–Polous analytical solution is used to estimate the free soil movement induced by tunneling in the first stage. In the second stage, composing the soil movement to the pile, the governing equilibrium equations of piles are solved by the finite difference method. The interactions between structural members (such as pile–soil, pile–raft, raft–soil, and pile–pile) are modeled based on the elastic theory method of a layered half‐space. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups, and pile rafts subjected to ground movements induced by tunneling. Good agreements between these solutions are demonstrated. The method is also used for a parametric study to develop a better understanding of the behavior of pile rafts influenced by tunneling operation in layered soil foundations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A simplified method of numerical analysis based on elasticity theory has been developed for the analysis of axially and laterally loaded piled raft foundations embedded in non‐homogeneous soils and incorporated into a computer program “PRAB”. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are approximated based on Mindlin's solutions for both vertical and lateral forces with consideration of non‐homogeneous soils. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups and capped pile groups in non‐homogeneous soils. Thereafter, the solutions from this approach for the analysis of axially and laterally loaded 4‐pile pile groups and 4‐pile piled rafts embedded in finite homogeneous and non‐homogeneous soil layers are compared with those from three‐dimensional finite element analysis. Good agreement between the present approach and the more rigorous finite element approach is demonstrated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
In designing piled raft foundations, controlling the total and differential settlements as well as the induced bending moments of the raft is crucial. The majority of piled raft foundations have been designed by placing piles uniformly. In such a design method, the settlements of the piled rafts are likely to be large, which leads to an increase of the pile length and/or number of piles required to reduce the settlements. However, this increase does not satisfy the requirement for economical design. On the basis of a parametric study, this paper contributes a framework for considering an economical design methodology in which piles are placed more densely beneath the column positions when the piled raft is subjected to column loads. The analysis uses PLAXIS 3D software, and the validity of the parametric study is examined through the results of centrifuge model tests conducted by the authors. The study shows that the concentrated pile arrangement method can help to considerably reduce the total and differential settlements as well as the induced bending moments of the raft. Moreover, the effects of parameters, such as pile length, pile number, raft thickness and load types, on the piled raft behavior are investigated. This study can help practicing engineers choose pile and raft parameters in combination with the concentrated pile arrangement method to produce an economical design.  相似文献   

8.
Piled rafts have been widely adopted as an effective foundation for designing high-rise buildings because of their efficiency in controlling the total and differential settlements and improving bearing capacity. In many cases the piled rafts settlements are likely to be large, which leads to an increase of the pile length and/or number of piles required to reduce the settlements. However, this increase does not satisfy the design requirements or an economical design. The majority of piled raft foundations has been designed with a uniform pile length and configuration. This paper describes the process of optimizing the design of a piled raft foundation for a high rise building in the Mazandaran province in Iran by considering an economical design methodology in which piles are placed more densely beneath the maximum load positions when the piled raft is subjected to non-uniform loads. By using the ELPLA software in the analysis process, the validity of the software is examined through the results of a report prepared on behalf of Technical Committee TC18 on piled foundations. The study shows that the pile arrangement method can help to considerably reduce the total and differential settlements with similar total pile length as well as the induced bending moments and shear forces of the raft. This study can help practicing engineers to choose pile and raft parameters with the pile arrangement method to produce an economical design.  相似文献   

9.
The load distribution and deformation of piled raft foundations subjected to axial and lateral loads were investigated by a numerical analysis and field case studies. Special attention is given to the improved analytical method (YSPR) proposed by considering raft flexibility and soil nonlinearity. A load transfer approach using py, tz and qz curves is used for the analysis of piles. An analytical method of the soil–structure interaction is developed by taking into account the soil spring coupling effects based on the Filonenko-Borodich model. The proposed method has been verified by comparing the results with other numerical methods and field case studies on piled raft. Through comparative studies, it is found that the proposed method in the present study is in good agreement with general trend observed by field measurements and, thus, represents a significant improvement in the prediction of piled raft load sharing and settlement behavior.  相似文献   

10.
Considering there is hardly any concerted effort to analyze the pile‐raft foundations under complex loads (combined with vertical loads, horizontal loads and moments), an analysis method is proposed in this paper to estimate the responses of pile‐raft foundations which are subjected to vertical loads, horizontal loads and moments in layered soils based on solutions for stresses and displacements in layered elastic half space. Pile to pile, pile to soil surface, soil surface to pile and soil surface to soil surface interactions are key ingredients for calculating the responses of pile‐raft foundations accurately. Those interactions are fully taken into account to estimate the responses of pile‐raft foundations subject to vertical loads, horizontal loads and moments in layered soils. The constraints of the raft on vertical movements, horizontal movements and rotations of the piles as well as the constraints of the raft on vertical movements and horizontal movements of the soils are considered to reflect the coupled effect on the raft. The method is verified through comparisons with the published methods and FEM. Then, the method is adopted to investigate the influence of soil stratigraphy on pile responses. The study shows that it is necessary to consider the soil non‐homogeneity when estimating the responses of pile‐raft foundations in layered soils, especially when estimating the horizontal responses of pile‐raft foundations. The horizontal loads and the moments have a significant impact on vertical responses of piles in pile‐raft foundations, while vertical loads have little influence on horizontal responses of piles in pile‐raft foundations in the cases of small deformations. The proposed method can provide a simple and useful tool for engineering design. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This paper develops a method to analyze the piled raft foundation under vertical harmonic load. This method takes into account the interactions among the piles, soil, and raft. The responses of the piles and raft are formulated as a series of equations in a suitable way and that of layered soils is simulated with the use of the analytical layer‐element method. Then, according to the equilibrium and continuity conditions at the piles–soil–raft interface, solutions for the piled raft systems are obtained and further demonstrated to be correct through comparing with the existing results. Finally, some examples are given to investigate the influence of the raft, pile length‐diameter ratio, and layering on the response of the piled raft foundations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Disconnected piled raft foundations are characterised by no structural connection between the upper raft and the underlying piles, mostly playing the role of settlement-reducers. The resulting raft–pile gap is usually filled with a granular interlayer, through which the loads from the superstructure are transferred to the piles.In this paper, the complex interaction mechanisms involving the foundational components (raft, piles and soil) are numerically investigated by means of 3D finite elements analyses, accounting for soil non-linearity. The main features of the soil–structure interaction mechanisms under purely vertical external loads are explored over a realistic range of raft–soil gaps for different pile configurations, in which the number of piles – i.e. their spacing – is varied. Special attention is also devoted to the structural response of the piles in terms of axial and bending internal stress resultants. In particular, while disconnection beneficially affects the structural pile response, increasing the raft–pile gap tends to reduce the overall settlement/stiffness efficiencies.The numerical results being presented are in substantial agreement with the outcomes from literature small-scale experiments and suggest a number of relevant theoretical inferences.  相似文献   

13.
竖向荷载作用下桩筏基础可视化模型试验研究   总被引:3,自引:0,他引:3  
郑刚  裴颖洁  刘双菊 《岩土力学》2008,29(11):2912-2918
进行了群桩基础可视化模型试验。在试验过程中对各级竖向荷载作用下群桩基础桩、土的变形采用高清晰数码相机拍摄了照片。通过对照片进行后处理分析,得到了桩、土的位移场,也对桩身轴力也进行了量测,在该基础上研究了群桩基础的变形性状和破坏模式,重点分析对比了桩间距和桩长对桩端土体沉降以及桩身侧摩阻力的影响。试验发现,桩距是影响桩土相对滑移量的主要因素,桩距越大,桩身与土的相对滑移量就越大,桩端刺入量也越大。在柔性筏基下,随桩距增加中桩的桩土相对滑移量可能会大于边桩。桩端刺入量是大桩距桩基础主要的沉降构成,以桩端刺入量为研究对象建立一套大桩距基础新的沉降计算理论,似乎值得进一步研究。桩顶向上刺入(可通过设置褥垫层、桩顶预留净空或设置可压缩垫块来实现)有利于桩间土的压密,减小桩端刺入量,甚至改变破坏模式。  相似文献   

14.
汪宏伟  纠永志  木林隆 《岩土力学》2012,33(Z1):205-210
提出一种多向荷载同时作用下的刚性桩筏基础简化计算方法,基于Mindlin解,分析桩顶面-桩顶面、桩顶面-土表面、土表面-土表面的相互作用关系。推导多向荷载下桩土体系柔度矩阵,得到刚性桩筏基础的受力和变形的关系,通过与有限元对比证明了文中方法的正确性,在此基础上对耦合荷载作用下的风机基础的受力和变形特性进行分析。研究表明,耦合荷载作用下风机基础将会产生竖向不均匀沉降,并会引起桩顶轴力的的巨大的差异。  相似文献   

15.
考虑流变与固结效应的桩筏基础-地基共同作用分析   总被引:2,自引:0,他引:2  
栾茂田  崔春义  杨庆 《岩土力学》2008,29(2):289-295
土的流变性与地基固结的综合作用,导致了上部结构与地基变形的时效性,并呈现出明显的非线性,对桩筏基础与地基共同作用的工作机理及其工作性能产生重要影响。为此,采用弹黏塑性流变模型考虑土的流变特性,通过有限元方法数值求解Biot耦合固结方程,对桩筏基础与地基共同作用的时间效应问题进行了非线性数值分析。通过算例计算,对加载后桩筏基础荷载分配和沉降特性及下覆土层中孔隙水压力的扩散和消散规律进行了探讨。研究表明,地基孔隙水压力的增长和消散不仅具有Mandel-Cryer效应,而且依赖于土的流变变形,尤其在排水条件较差时更为明显。因此,在分析桩筏基础内力变形的时效性时必须考虑土的流变性与地基的固结作用的联合效应。  相似文献   

16.
In a piled raft, the length and arrangement of piles has a significant effect on the stresses and deflections of the raft. The use of piles with different dimensions and properties below a raft is an innovative concept and can optimize the design of a piled raft. In this study, an integral equation method with a fictitious pile model was adopted to analyze the piled raft foundation with dissimilar piles. The Fredholm integral equations of the second kind were obtained for this problem. The loads shared by piles and subsoil, the load transfer, and the settlement of the piled raft were obtained using numerical calculation. The results from the present method were compared with those in the literature. An optimization technique was introduced to design piled rafts with dissimilar piles. The stiffening effect of piles on the surrounding soil is also discussed as compared the conventional interaction factor approach.  相似文献   

17.
王成华  刘庆晨 《岩土力学》2012,33(6):1851-1856
对土体采用Mohr-Coulomb弹塑性本构模型,用接触面单元模拟桩-土相互作用,利用ABAQUS建立桩筏基础--地基--基坑开挖三维有限元分析模型。对基坑开挖影响下的群桩基础竖向承载性状进行了分析,讨论了桩顶反力分布、桩身轴力、桩侧摩阻力以及开挖引起的桩身水平位移及其弯矩的变化规律,并进行了考虑基坑开挖与不考虑基坑开挖的群桩基础竖向承载性状的对比分析。通过研究,取得了基坑开挖对高层建筑桩筏基础影响的基本认识,这些认识对于改进桩筏基础设计理论有一定的参考意义。  相似文献   

18.
This paper presents an approximate method of numerical analysis of piled–raft foundations in which the raft is modelled as a thin plate and the piles as interacting springs of appropriate stiffness. Allowance is made for the development of limiting pressures below the raft and of the ultimate axial load capacity of the piles. Comparisons between this analysis and existing solutions verify that, despite the approximations involved, the analysis can provide solutions of adequate accuracy for the settlement and pile load distribution within a piled raft. Comparisons are also made with the results of a series of centrifuge tests and with measurements of the performance of a full-scale piled raft. In both cases, the analysis predicts very well the settlement and proportion of load carried by the piles.  相似文献   

19.
This paper presents a simplified nonlinear solution for piled raft foundations in layered soils under vertical loading. Based on the elastic–plastic analysis of a single pile in a layered soil, the shielding effect between a receiver pile and the soil is taken into account to modify the conventional interaction factor between two piles. An approximate approach with the concept of the interaction factor is employed to study the nonlinear behavior of pile groups with a rigid cap. Considering the variation of soil properties, the solution to multilayered elastic materials is used to calculate the settlement of the soil. The interactions between pile–soil–raft are taken into account to determine the stiffness matrix of the piled raft. By solving the stiffness matrix equations, the settlement and the load shared by the piles and raft could be obtained. Compared with results of the available published literatures, the proposed solution provides reasonable results.  相似文献   

20.
当前虽然已有考虑桩筏非线性的设计,但仍无人在此基础上,考虑上部结构。因此考虑上部结构,进一步认识其与桩筏基础非线性共同作用机理,优化桩筏基础设计,具有重要的现实意义。本文以子结构法凝聚上部结构的荷载及刚度,以平面壳体单元模拟筏板,按有限层法模拟桩土之间的弹性相互作用,用广义剪切位移法模拟桩的非线性工作性状,建立了一种考虑上部结构共同作用的桩筏基础非线性分析方法,并编制了分析程序。通过实例分析,探讨了上部结构与桩筏基础非线性共同作用的机理,研究了合理布桩方式,探讨了以差异沉降为目标的优化设计的可能途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号