首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sediment–landform associations of the northern Taymyr Peninsula in Arctic Siberia tell a tale of ice sheets advancing from the Kara Sea shelf and inundating the peninsula, probably three times during the Weichselian. In each case the ice sheet had a margin frozen to its bed and an interior moving over a deforming bed. The North Taymyr ice‐marginal zone (NTZ) comprises ice‐marginal and supraglacial landsystems dominated by thrust‐block moraines 2–3 km wide and large‐scale deformation of sediments and ice. Large areas are still underlain by remnant glacier ice and a supraglacial landscape with numerous ice‐walled lakes and kames is forming even today. The proglacial landsystem is characterised by subaqueous (e.g. deltas) or terrestrial (e.g. sandar) environments, depending on location/altitude and time of formation. Dating results (OSL, 14C) indicate that the NTZ was initiated ca. 80 kyr BP during the retreat of the Early Weichselian ice sheet and that it records the maximum limit of a Middle Weichselian glaciation (ca. 65 kyr BP). During both these events, proglacial lakes were dammed by the ice sheets. Part of the NTZ was occupied by a thin Late Weichselian ice sheet (20–12 kyr BP), resulting in subaerial proglacial drainage. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Sedimentological studies of a 30 m thick coastal cliff section within the Middle Proterozoic Eriksfjord Formation in western South Greenland reveals three distinct types of fluvial sand sheet deposits that reflect perennial streams (Type I), semi-perennial streams (Type II), and ephemeral flash floods (Type III). Perennial river sand sheets are characterised by co-sets of medium-scale trough cross-beds, interbedded with isolated medium- and large-scale, high-angle, tabular cross-beds. Indications of desiccation or subaerial exposure are absent. Semi-perennial fluvial sand sheets consist predominantly of low-angle cross-beds, interbedded with isolated sets of high-angle tabular cross-beds with common reactivation surfaces. Horizontal lamination and climbing ripple lamination form subordinate structures. Associated with the sand sheets are adhesion structures and 0.05–0.4 m thick sets of wind ripple-lamination indicating periods of subaerial exposure and aeolian reworking. High-energy ephemeral flash flood sand sheets consist almost exclusively of planar-parallel lamination and climbing ripple lamination with some isolated sets of low-angle cross-bedding. Scouring and internal truncation surfaces are common. The three types of sand sheets are considered to reflect deposition under changing climatic conditions, varying from humid to arid or semi-arid. Aeolian deposits are preserved within the sand sheets showing characteristics of dominantly perennial flow punctuated by shorter periods of desiccation (Type II), while sand sheets showing features typical of arid and or semi-arid flow conditions (Type III) contain no preserved aeolian deposits. This selective preservation is interpreted to be a result of the combined effect of groundwater table level and fluvial style which in turn are inferred to have been controlled by the climatic regime. The deposits show that during pre-vegetational times the preservation of aeolian deposits, under certain conditions, may be more optimal in fluvial systems formed in a humid climate than in fluvial systems formed under semi-arid or arid circumstances. The occurrence of aeolian deposits within a Precambrian succession of fluvial deposits therefore, need not be an indication of the most arid environmental conditions.  相似文献   

3.
The pre-orogenic morphology of the west Sicilian Mesozoic continental margin was characterised by platforms and basins elongated more or less parallel to the ancient junction between ocean and continent. The deformation of this continental margin during the Miocene gave rise to a number of thrust sheets which were transported southwards where they rest against the stable Iblean plateau. Eight thrust sheets have been sampled for palaeomagnetism in order to establish the amount of rotation, relative to Iblei, which occurred during emplacement. Clockwise rotations of large magnitude appear to have taken place, and these rotations are considered to be related to the emplacement of the Calabrian—Peloritani structure onto this continental margin.  相似文献   

4.
To understand the characteristic responses of natural geological samples, viz., black granite, green marble, and graphite sheet, and to have “an a priori” knowledge of their physical property through electrical resistivity imaging, the physical model laboratory setup has been established to conduct scale model studies over targets of finite dimensions and resistivities. The present experiment involves IRIS make SYSCAL Pro-96 measuring system using 48 electrodes with 2-cm interelectrode separation in the laboratory model tank. In the present communication, we have presented the 2D cross section images using Wenner, Wenner–Schlumberger, and dipole–dipole array configurations over the resistive (granite, marble) and conductive (graphite) sheets. In the case of resistive target (black granite sheet, green marble), the combined usage of dipole–dipole and Wenner–Schlumberger arrays provided more accurate measures on target parameters, i.e., the combined usage of both the arrays is preferable in searching high-resistive targets beneath the low-resistive ones over burden. The shape of the resistive target (green marble sheet) is inappropriate when the thickness of the target is greater than one half of the minimum array separation. As the thickness of the target increases, the signatures of the target become feeble, and hence, the shape of the resistive target is not properly reflected in the corresponding tomogram. The response over graphite sheet indicates that the true parameters of the target are not reflected in the cross section, and the existence of the low-resistive (high-conductive) target in the host medium (water) deviates the resistivity of the medium. The target parameters from the cross section using dipole–dipole array are somewhat correlated with true parameters in the case of thin targets at shallow depths. In the case of the sequence of layers of gravel–marble gravel–sand gravel simulated in a small model tank in the physical model laboratory, the thickness of the high-resistive marble layer beneath the low-resistive gravel layer is enhanced conspicuously because of the significant resistivity contrast between gravel and marble.  相似文献   

5.
Pleistocene ice sheets can be reconstructed through three separate approaches: (1) Evidence based on glacial geological studies, such as erratic trains, till composition, crossing striations and exposures of multiple tills/nonglacial sediments. (2) Reconstructions based on glaciological theory and observations. These can be either two- or three-dimensional models; they can be constrained by ‘known’ ice margins at specific times; or they can be ‘open-ended’ with the history of growth and retreat controlled by parameters resting entirely within the model. (3) Glacial isostatic rebound after deglaciation provides a measure of the distribution of mass (ice) across a region. A ‘best fit’ ice sheet model can be developed that closely approximates a series of relative sea level curves within an area of a former ice sheet; in addition, the model should also provide a reasonable sea level fit to relative sea level curves at sites well removed from glaciation.This paper reviews some of the results of a variety of ice sheet reconstructions and concentrates on the various attempts to reconstruct the ice sheets of the last (Wisconsin, Weischelian, Würm, Devensian) glaciation. Evidence from glacial geology suggests flow patterns at variance with simple, single-domed ice sheets over North America and Europe. In addition, reconstruction of ice sheets from glacial isostatic sea level data suggests that the ice sheets were significantly thinner than estimates based on 18 ka equilibrium ice sheets (cf. Denton and Hughes, 1981). The review indicates it is important to differentiate between ice divides, which control the directions of glacial flow, and areas of maximum ice thickness, which control the glacial isostatic rebound of the crust upon deglaciation. Recent studies from the Laurentide Ice Sheet region indicate that the center of mass was not over Hudson Bay; that a major ice divide lay east of Hudson Bay so that flow across the Hudson Bay and James Bay lowlands was from the northeast; that Hudson Bay was probably open to marine invasions two or three times during the Wisconsin Glaciation; and that the Laurentide Ice Sheet was thinner than an equilibrium reconstruction would suggest.  相似文献   

6.
Late Quaternary glaciation of Tibet and the bordering mountains: a review   总被引:2,自引:0,他引:2  
Abundant glacial geologic evidence present throughout Tibet and the bordering mountains shows that glaciers have oscillated many times throughout the late Quaternary. Yet the timing and extent of glacial advances is still highly debated. Recent studies, however, suggest that glaciation was most extensive prior to the last glacial cycle. Furthermore, these studies show that in many regions of Tibet and the Himalaya glaciation was generally more extensive during the earlier part of the last glacial cycle and was limited in extent during the global Last Glacial Maximum (marine oxygen isotope stage 2). Holocene glacial advances were also limited in extent, with glaciers advancing just a few kilometers from their present ice margins. In the monsoon-influenced regions, glaciation appears to be strongly controlled by changes in insolation that govern the geographical extent of the monsoon and consequently precipitation distribution. Monsoonal precipitation distribution strongly influences glacier mass balances, allowing glaciers in high altitude regions to advance during times of increased precipitation, which are associated with insolation maxima during glacial times. Furthermore, there are strong topographic controls on glaciation, particular in regions where there are rainshadow effects. It is likely that glaciers, influenced by the different climatic systems, behaved differently at different times. However, more detailed geomorphic and geochronological studies are needed to fully explore regional variations. Changes in glacial ice volume in Tibet and the bordering mountains were relatively small after the global LGM as compared to the Northern Hemisphere ice sheets. It is therefore unlikely that meltwater draining from Tibet and the bordering mountains during the Lateglacial and early Holocene would have been sufficient to affect oceanic circulation. However, changes in surface albedo may have influenced the dynamics of monsoonal systems and this may have important implications for global climate change. Drainage development, including lake level changes on the Tibetan plateau and adjacent regions has been strongly controlled by climatic oscillations on centennial, decadal and especially millennial timescales. Since the Little Ice Age, and particularly during this century, glaciers have been progressively retreating. This pattern is likely to continue throughout the 21st century, exacerbated by human-induced global warming.  相似文献   

7.
现代冰川过程与全球环境气候演变   总被引:3,自引:0,他引:3  
文章从宏观和微观两个方面扼要阐述了现代冰川过程与全球变化之间的关系。南极冰盖和格陵兰冰盖冰川物质平衡值目前还没有确切结论,虽然它与全球海平面的升降密切相关。山地冰川末端进退变化和冰川物质平衡与全球升温对应较好。极地冰盖现代降水中的稳定同位素比率,主要阴、阳离子、生物有机酸、微粒、超痕量重金属元素、宇宙尘埃以及火山灰等杂质的含量,为认识地球现代环境气候状况提供了丰富的资料。极地冰盖冰芯的分析结果为重建过去气候环境提供了大信息量,高保真度和高分辨率的资料为预测未来气候环境奠定了坚实基础,具有其它任何载体无法取代的优越性。山地冰川的现代和过去气候环境记录,对研究全球和区域性气候环境状况与变迁意义重大  相似文献   

8.
This synopsis highlights some of the main results presented in this issue of Boreas. The collection of papers deals with ice sheet reconstruction in space and time, isostatic and eustatic response to deglaciation, land to shelf sediment interaction, and Eemian and Holocene environmental variations. The most significant new results are that the last glacial maximum of the Kara Sea and Barents Sea ice sheets were both much smaller and much older than in most previous hypotheses. This puts new constraints on, for example, climate and ice sheet linkages, ice sheet interactions (Scandinavian-Barents Sea-Kara Sea), and land-ocean riverine input through time.  相似文献   

9.
冰盖数值模拟是一种基于多源观测数据,通过构建并求解冰流动力学方程组,理解冰流运动物理机制以及诊断和预估其演化过程的方法,目前已被广泛应用于冰盖变化研究。本文简要介绍了极地冰盖数值模拟方法,归纳综述了近十余年我国学者在极地冰盖数值模拟方面的研究进展,厘清我国在冰盖数值模拟领域遇到的瓶颈和关键问题。阐述了如何与我国的极地冰盖科考优势区域深度结合,协同多源强化观测和数值模拟,研发和改进冰盖模式,提高冰盖模拟能力,对定量估算极地冰盖的物质平衡及其对未来海平面上升的影响做出实质贡献。通过逐步发展冰盖模式的研究能力,有望将来在冰盖关键动力过程和机制的科学认识上有所突破。  相似文献   

10.
Abstract

Biostratigraphical data using larger foraminifera and planktonic foraminifera permitted us to establish the correlation between shallow platform sediments rich in larger foraminifera (Montsec and Serres Marginals thrust sheets) and deeper ones containing planktonic foraminifera (Boixols thrust sheet).

Consequently, the Santa Fe limestones containing Ovalveolina-Praealveolinaassemblage represent the Cenomanian. Early Turonian ( ‘IT~ archaeocretacea and P. helvetica zones) exist in both, Montsec and Boixols thrust sheets and it is constituted by Pithonella limestones. Late Turonian (M. schneegansi zone) is only present in Boixols thrust sheet (Reguard Fm.), the Montsec thrust sheet having an erosive hiatus.

Late Coniacian-Early Santonian (D. Concavata zone) is represented in the Montsec thrust sheet (Cova Limestones) and in the eastern part of the Boixols thrust sheet (St. Corneli Fm.) by two differents facies giving two different microfaunal assemblages; the firts one, characterized by Ophtalmidiidae s.l indicate a restricted lagoonal environment while the second one, characterized by diverses species of complex agglutinated, Fabulariidae, Meandropsinidae and Rotaliidae, represents an open shallow platform. In the Boixols thrust sheet (Anseroles Fm.) dominate the planktonic foraminifera and small benthic.

In the late Santonian (D. asyrnetrica zone) the sea reached as far as Serres Marginales thrust sheet where sediments (Tragó de Noguera unit) are terrigenous and deposited in a very shallow platform. In the Montsec thrust sheet (Montsec marls) the larger foraminifera indicate a platform deeper than that of the Serres Marginals thrust sheet. In the Boixols thrust sheet the sediments are deposited in an outer platform (Herbasavina Fm.) or turbiditic basin (Mascarell Mb.).

During Campanian times the transgresion reaches the maximum. In the Serres Marginals sediments are deposited in a restricted shallow environment rich in Meandropsinidae (Serres Limestones). In the Montsec thrust sheet they are deposited in a platform with patch reefs and shoals (Terradets limestones) and in the Boixols one in an outer platform, talus and/or basin.

During Early Maastrichtian times (C. falsostuarti zone) terrigenous materials arrived in the basin, the rate of sedimentation increased outstripping the subsidence rate and the retreat of the sea to the north. Late Maastrichtian (C. gansseri zone) is only present in the Boixols thrust sheet.  相似文献   

11.
The formation of natural cryogenic brines   总被引:1,自引:0,他引:1  
The source of salts in the Ca-chloridic, hypersaline brines (up to 190 g Cl L−1) occurring in crystalline basement rocks in the Canadian, Fennoscandian and Bohemian Shields and their evolution have been investigated and reported. The Cl-Br-Na relationship indicates that these waters have been concentrated from seawater, by freezing during glacial times. The Na/Cl ratio (0.25 to 0.35) in the more saline fluids is compatible with cooling down to −30°C, where the most saline waters have been concentrated by a factor of 25 to 30 relative to the parent seawater.The brines formed from seawater within cryogenic troughs, along the subarctic continental margins, around ice sheets. The depressions within which the brines formed are the cryogenic analogues of the classic, evaporitic lagoon. One million years suffice to saturate with brine a 2000km-radius by 1km-depth rock volume at an H2O removal rate of only 2.8 mm/yr. Density-induced brine migration on a continental scale takes place via fissures below the ice.Our calculations, that were performed on a hypothetical ice sheet with dimensions compatible with the Laurentide ice sheet, demonstrate that during 1m.y., a 60m thick cryogenic sediment section could have formed. However, the precipitated minerals (mirabilite and hydrohalite) are repeatedly dispersed by the advance and retreat of the ice sheet, dissolved by melt water-seawater mixtures, and eroded during postglacial uplift, leaving almost no trace in the geological record.The cryogenic brines formed intermittently during and between glacial periods. The repeating advance and retreat of the ice sheets exerted a major control on the direction and intensity of brine flow. The cryogenic concentration of seawater and the migration of brine towards the center of the glaciostatic depression occurred mainly during the build up of the ice sheet, while reversal of the water flow from the center of the cryogenic basin outwards happened upon deglaciation. The flow of the waters in the subsurface was, inevitably, accompanied by significant dilution with melt water from the ice sheets.Using a “granitic” U concentration of 4 ppm and a (Ca-Mg mass balance based) rock/water ratio anywhere between 3.4 and 6.8 kg L−1, a few hundred thousand years of brine-rock interaction are sufficient for the growth of 129I in the most saline Canadian Shield brine to its present concentration (3.4×108 atoms 129I L−1). Hence, both the formation of the saline fluids and their emplacement in their present sites occurred most likely within the Pleistocene.The young age calculated for cryogenic brines in crystalline shields and the dynamic water flow therein should raise concern about the planning and construction of high-grade nuclear waste repositories in such rocks, which are already under way.  相似文献   

12.
At the 41,000-period of orbital tilt, summer insolation forces a lagged response in northern ice sheets. This delayed ice signal is rapidly transferred to nearby northern oceans and landmasses by atmospheric dynamics. These ice-driven responses lead to late-phased changes in atmospheric CO2 that provide positive feedback to the ice sheets and also project ‘late’ 41-K forcing across the tropics and the Southern Hemisphere. Responses in austral regions are also influenced by a fast response to summer insolation forcing at high southern latitudes.At the 22,000-year precession period, northern summer insolation again forces a lagged ice-sheet response, but with muted transfers to proximal regions and no subsequent effect on atmospheric CO2. Most 22,000-year greenhouse-gas responses have the ‘early’ phase of July insolation. July forcing of monsoonal and boreal wetlands explains the early CH4 response. The slightly later 22-K CO2 response originates in the southern hemisphere. The early 22-K CH4 and CO2 responses add to insolation forcing of the ice sheets.The dominant 100,000-year response of ice sheets is not externally forced, nor does it result from internal resonance. Internal forcing appears to play at most a minor role. The origin of this signal lies mainly in internal feedbacks (CO2 and ice albedo) that drive the gradual build-up of large ice sheets and then their rapid destruction. Ice melting during terminations is initiated by uniquely coincident forcing from insolation and greenhouse gases at the periods of tilt and precession.  相似文献   

13.
The inter-relationships between the exact footwall geometry and the rheology of thrust sheets are investigated. Deviations in the thrust fault surface from an ideal plane will induce a local heterogeneous deformation. The resulting deformation processes depend upon the rate of thrust sheet displacement, the geometry of the feature causing heterogeneous flow, the deformation conditions and the lithologies involved. Two classes of features are particularly important in causing heterogeneous deformation in thrust sheets. The first features are small perturbations on bedding planes which may be inherited sedimentary structures or produced during layer-parallel shortening; the second class of features are ramps, where the thrust sheet climbs up the stratigraphic section. Displacement over these features causes repeated, cyclic straining in the hanging-wall during movement. The strain rates associated with deformation at perturbations, ramps of different geometries and different displacement rates are estimated and used to discuss the influence of footwall geometry on the structural evolution of a thrust sheet. Particular attention is given to the range of fault rocks and deformation microstructures preserved after movement over a footwall with a complex geometry. Perturbations are suggested to be important in the localization of ramps, either because they create ‘sticking points’ near the fault tip during propagation or because they induce eventual failure in the hanging-wall after the movement over a number of these features raises the accumulated damage to a critical level. Analysis of the influence of the exact geometry of ramps on deformation processes during displacement leads to two important conclusions. Firstly, the exact geometry of ramps (i.e. the maximum dip angle and the straining distance from a flat to this maximum angle) may be used to estimate a maximum displacement rate of the thrust sheet. Secondly, the listric geometry of ramps may be an equilibrium shape adjusted to the displacement rate and the rheology of the hanging-wall. Adjustments towards the final geometry may involve the generation of shortcuts on either hanging- or footwall which reduce the imposed deformation rate in the hanging-wall during displacement.  相似文献   

14.
塔西北柯坪剪切挤压构造   总被引:28,自引:3,他引:25  
塔里木西北的柯坪地区存在着再变形的逆冲岩席。研究表明塔里木盆地西北边界断层-阿合奇断层为一巨型左行走滑断层。它在新生代的总走滑量达304km,具有与塔里木盆地东南边界阿尔金断层相同量级的走滑量。阿合奇断层与阿尔金断层造成了阿合奇-西昆仑-西南塔里木-阿尔金断层剪切挤压构造系统。  相似文献   

15.
The York Haven diabase sheet displays clear-cut evidence of fractionation of Pd and Pt during differentiation of a high-Ti (about 1.1%) quartz-normative tholeiitic magma (York Haven type). At York Haven the sheet is about 750 m thick. It is characterized by abundant cumulus MgO-rich orthopyroxene (bronzite), and is markedly depleted in incompatible elements relative to the chilled margins. In contrast, at Reesers Summit, 16 km to the northwest, the sheet is about 500 m thick and consists of evolved rocks that have contents of incompatible elements two to three times greater than in the enclosing chilled margins. These evolved rocks represent complementary fractions to the cumulate rocks at York Haven. Mineralogic, petrologic and geochemical variations suggest considerable lateral migration and fractionation of the initial magma.Chilled margins of both sections have essentially the same Pd and Pt contents (10 ppb each) and similar Pd to Pt ratios (1.2). During differentiation, the cumulate rocks at York Haven were enriched in Pt and depleted in Pd, whereas at Reesers Summit, the low-MgO diabase and ferrogabbro zone were enriched in Pd relative to Pt. Anomalously high contents of Pd (to 165 ppb), Au (to 54 ppb), and Te (to 26 ppb) were found in an iron- (to 18%) and chlorine- (to 0.44%) rich ferrogabbro at Reesers Summit, suggesting possible late or post-magmatic enrichment of precious metals. Field relations, geochemical and petrographic data provide guides for further exploration for Pd and Pt in differentiated high-Ti quartz-normative diabase sheets. Based on present information, the most favorable sites for economic deposits are late-stage differentiates enriched in Fe and Cl.  相似文献   

16.
Ice sheets are the only components of Earth’s climate system that can self-destruct. This paper presents the quantitative force balance for bottom-up modeling of ice sheets, as first presented qualitatively in this journal as a way to quantify ice-bed uncoupling leading to self-destruction of ice sheets (Hughes, 2009a). Rapid changes in sea level and climate can result if a large ice-sheet self-destructs quickly, as did the former Laurentide Ice Sheet of North America between 8100 and 7900 BP, thereby terminating the last cycle of Quaternary glaciation. Ice streams discharge up to 90 percent of ice from past and present ice sheets. A hypothesis is presented in which self-destruction of an ice sheet begins when ubiquitous ice-bed decoupling, quantified as a floating fraction of ice, proceeds along ice streams. This causes ice streams to surge and reduce thickness by some 90 percent, and height above sea level by up to 99 percent for floating ice, so the ice sheet undergoes gravitational collapse. Ice collapsing over marine embayments becomes floating ice shelves that may then disintegrate rapidly. This floods the world ocean with icebergs that reduce the ocean-to-atmosphere heat exchange, thereby triggering climate change. Calving bays migrate up low stagnating ice streams and carve out the accumulation zone of the collapsed ice sheet, which prevents its recovery, decreases Earth’s albedo, and terminates the glaciation cycle. This sequence of events may coincide with a proposed life cycle of ice streams that drain the ice sheet. A first-order treatment of these life cycles is presented that depends on the longitudinal force balance along the flowbands of ice streams and gives a first approximation to ice-bed uncoupling at snapshots during gravitational collapse into ice shelves that disintegrate, thereby removing the ice sheet. The stability of the Antarctic Ice Sheet is assessed using this bottom-up approach.  相似文献   

17.
The last ice sheet over the British Isles, together with other mid-latitude Pleistocene ice sheets, and in contrast to the modern ice sheets of Greenland and Antarctica, had a relatively low profile, low summit elevation and extensive, elongated lobes at its margin. A thermo-mechanically coupled numerical ice sheet model, driven by a proxy climate, has been used to explore the properties that would have permitted these characteristics to develop. The approach, the key to quantitative palaeoglaciology, is to determine the boundary conditions that permit the simulated ice sheet to mimic the evolution of the real ice sheet through the last glacial cycle. Simulations show how a British ice sheet may have been confluent with a Scandinavian ice sheet during some parts of its history and how unforced periodic and asynchronous oscillations could occur in different parts of its margins. Marginal lobes are a reflection of streaming within the ice sheet. Such streams can be ephemeral, dynamic streams located because of ice sheet properties, or fixed streams whose location is determined by bed properties. The simulations that best satisfy constraints of extent, elevation and relative sea levels are those with major fixed streams that strongly draw down the ice sheet surface. In these, the core upland areas of the ice sheet were cold based at the Last Glacial Maximum, basal streaming velocities were between 500 and 1000 ma−1 compared with surface velocities of 10–50 ma−1 in inter-stream zones, shear stresses were as low as 15–25 kPa in streams compared with 70–110 kPa in upland areas and 60–84% of the ice flux was delivered to the margin via streams.  相似文献   

18.
In Scandinavia, most fluvial erosion takes place in the Quaternary glacial overburden at a restricted number of small source areas along individual drainage channels. As a consequence, a sample of active stream sediment is representative of only a very limited portion of the drainage area. This restriction makes stream sediment less reliable for regional exploration than generally expected. Overbank (levee or river-plain) sediment produced during large floods is an alternate more representative sampling medium. The sediment suspended during a flood has a much more widespread origin, and when the load is deposited upon the flood plain, nearly horizontal strata are formed and preserved at levels above the ordinary stream channel. A composite sample through a vertical section of such strata represents a great number of sediment sources that have been active at different times and forms an integrated sample of the entire catchment area. Because young sediments overlay older, the uppermost layers will be contaminated by pollutants in industrialized regions, but those at depth may remain pristine and will to a greater extent reflect the natural pre-industrial environment. In regional geochemical mapping, overbank sediment can be sampled at widely spaced sites, keeping costs per unit area low. Examples from Norway (1 sample station per 500 km2) show that overbank sediment produces broad geochemical patterns with high contrasts reflecting the bedrock geochemistry. Some patterns agree with known geological units and metallogenic provinces, but hitherto unknown major structures have also been indicated. A large Mo-deposit missed by a traditional stream survey is readily detected in the overbank sediment. It is concluded that overbank sediment is a promising alternate sample medium that should be tested in other physiographic regions.  相似文献   

19.
Conventional stream sediment sampling in which sediments are taken from the active channels during reconnaissance regional geochemical surveys in gold exploration has over the years failed to delineate prospective target zones in northern Ghana, where the relict is flat. Whereas the technique has been successful in the south western Ghana, which is characterised by moderate to high relief, generally the savannah north is associated with low relief, commonly with flat topographies and generally decoupled stream channels. Geochemical comparison of active stream and overbank sediments in this study demonstrate that active stream channels may contain contaminated materials of recent origin, but overbank sediments, except for the uppermost horizons, represent alluvial regolith of earlier depositional cycles over time. Based on gold value repeatability, composite samples taken from the overbank sediment layers were relatively less erratic and are considered to be an appropriate geochemical medium in delineating potential regional gold targets for follow up. The results show that overbank sediment sampling can be used as a cost-effective method to define broad anomalous zones; and the technique must be considered useful during reconnaissance geochemical surveys in the savannah regions.  相似文献   

20.
Three‐dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1–2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast‐flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号