首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of U-Pb, Rb-Sr and K-Ar isotope analyses of Proterozoic rocks and minerals, a chronology has been established for the tectonic, intrusive and metamorphic evolution of the Svecokarelian orogeny 1750–1950 Ma ago in the Uppsala Region, Eastern Sweden. It is suggested that when synkinematic granitoids intruded the orogenic belt, at a stage of general subsidence and at medium metamorphic conditions (600°C and 3.5–4 kbar), the U-Pb isotope system in zircons closed earlier than the Rb-Sr whole-rock system. The zircon age (1886 Ma) reflects the intrusion and crystallization of the rock melt and the Rb-Sr whole-rock age (1830 Ma) the time when the temperature had decreased below the threshold for 87Sr migration. The Rb-Sr whole rock age (1898 Ma) determined for metaandesites and metadacites reflects a recrystallization related to the intrusion of the granitoids. On the contrary, the more silicic metarhyodacitic volcanic rocks have a Rb-Sr whole rock age (1830 Ma) reflecting the cessation of the synkinematic metamorphism. The difference in the way the Rb-Sr isotope system responds in subsilicic or silicic metavolcanics is probably dependent on the amount of radiogenic 87Sr and on the fixation of 87Sr in Ca-rich minerals. Subsequent, late-kinematic, low amphibolite facies metamorphism has not altered the Rb-Sr ages of the granitoids and the recrystallized metavolcanics.  相似文献   

2.
南大别地体中榴辉岩的围岩──石榴黑云片麻岩具有角闪岩相变质矿物组合,其变质温度为525℃,Sm-Nd矿物等时线年龄为(229±3)Ma.黑云母的K-Ar封闭温度为300℃,相应K-Ar年龄为(231±5)Ma.因此该片麻岩在230Ma左右从525℃迅速冷却到300℃以下。然而该区榴辉岩在印支期(221Ma)变质温度为700℃左右,直到134Ma才降至400-450℃。说明该区榴辉岩与该片麻岩具有不同的冷却史。它不支持榴辉岩是原地(in situ)成因的。  相似文献   

3.
角闪岩相变形是大别山超高压变质岩的主期变形 ,露头和显微尺度的构造要素主要由这期变形产生 ,通过对超高压变质岩带内韧性剪切带中花岗片麻岩的Rb -Sr同位素年龄测定 ,获得一条变形花岗片麻岩的全岩 -白云母内部等时线年龄 ,表明超高压变质岩的角闪岩相变形产生于180Ma左右 ,超高压变质岩的主期变形确实为同角闪岩相变质期变形 ,该年龄与超高压变质岩的第二次快速冷却年龄一致 ,由此证实超高压变质岩在180Ma左右快速从下地壳折返至中地壳  相似文献   

4.
《Gondwana Research》2001,4(3):409-420
Petrological studies on the surrounding metamorphic rocks of the Eppawala carbonatite body, Wanni complex, Sri Lanka, revealed that these rocks had been metamorphosed under amphibolite to granulite facies conditions. Garnet-sillimanite-biotite gneiss shows lower range of metamorphic temperature (730–770°C) than the migmatite gneiss (750–780°C) and the pressure varies from 6.6–7.8 kbar to 5.6–6.4 kbar respectively. The metamorphic age of the garnet-sillimanite-biotite gneiss and migmatite gneiss dated 607±23 Ma and 626±16 Ma, respectively for mineral — whole rock isochron in Sm-Nd system. These ages are compatible with the ages of regional high-grade metamorphism occurred 610–550 Ma in the three crustal units in Sri Lanka.Rb-Sr system for biotite, apatite and whole-rock fractions suggests 493±5 Ma for the Eppawala carbonatite body. This age indicates the cooling age of the biotite. The presence of non-crystalline carbonatite matrix and large hexagonal apatite crystals suggests a slow cooling history. Further, low closure temperature of biotite in Rb-Sr system suggests that the intrusion age of carbonatite body should be more than 493 Ma, but non-metamorphosed nature provides evidence that the intrusion age of the carbonatite body should be less than the period of regional metamorphism 610–550 Ma. Therefore, Eppawala carbonatite body has a strong possibility to be a late to post magmatic intrusion. The other late to post magmatic intrusions in the Wanni complex and Highland complex are dated between 580–550 Ma. Therefore, the most probable intrusion age of the Eppawala carbonatite body is suggested to be around 550 Ma.  相似文献   

5.
Kinetics of isotopic equilibrium in the mineral radiometric systems of igneous and metamorphic rocks is an important issue in geochronology. It turns out that temperature is the most important factor in dictating isotopic equilibrium or disequilibrium with respect to diffusion mechanism. Contemporaneous occurrence of Mesozoic granites and gneisses in the Dabie orogen of China allows us to evaluate the thermal effect of magma emplacement and associated metamorphism on mineral radiometric systems. Zircon U-Pb, mineral Rb-Sr and O isotope analyses were carried out for a Cretaceous granite and its host gneiss (foliated granite) from North Dabie. Zircon U-Pb dating gave consistently concordant ages of 127 ± 3 Ma and 128 ± 2 Ma for the granite and the gneiss, respectively. A direct correspondence in equilibrium state is observed between the O and Rb-Sr isotope systems of both granitic and gneissic minerals. Mineral O isotope temperatures correlate with O diffusion closure temperatures under conditions of slow cooling, indicating attainment and preservation of O isotope equilibrium in these minerals. The mineral Rb-Sr isochron of granite, constructed by biotite, feldspar, apatite and whole-rock with the O isotope equilibrium, yields a meaningful age of 118 ± 3 Ma, which is in accordance with the mineral Rb-Sr isochron age of 122 ± 1 Ma for the host gneiss. The consistency in both U-Pb and Rb-Sr ages between the granite and the gneiss suggests a contemporaneous process of crystallizing the zircons and resetting the Rb-Sr radiometric systems during magma emplacement and granite foliation. Whereas the zircon U-Pb ages for both granite and gneiss are interpreted as the timing of magma crystallization, the young Rb-Sr isochron ages record the timing of Sr diffusion closure during the slow cooling. Protolith of the gneiss crystallized shortly before intrusion of the granite, so that it was able to be foliated by voluminous emplacement of coeval mafic to felsic magmas derived by anatexis of orogenic lithospheric keel. Therefore, extensional collapse of collision-thickened crust at Early Cretaceous is suggested to trigger the post-collisional magmatism, which in turn serves as an essential driving force for the contemporaneous high-T deformation/metamorphism.  相似文献   

6.
相鹏  崔敏利  吴华英  张晓静  张连昌 《岩石学报》2012,28(11):3655-3669
河北滦平县周台子铁矿位于华北克拉通北缘,是产于前寒武纪单塔子群变质岩系中的鞍山式铁矿,具有条带状铁建造(BIF)特征。矿石主要呈条带状构造,有的呈条纹和致密块状构造。矿石类型主要以石英磁铁矿型为主,含铁介于30%~35%。前寒武纪变质岩是矿床的主要围岩,出露有黑云母(角闪)斜长片麻岩和斜长角闪岩,局部见花岗片麻岩。原岩恢复表明,黑云母(角闪)斜长片麻岩的原岩为英安岩-流纹岩,斜长角闪岩原岩为玄武岩。花岗片麻岩的SiO2含量大于56%,MgO含量小于3%,Al2O3含量大于15%,Sr含量大于500×10-6,Yb含量均小于1.9×10-6,轻重稀土元素分异明显,重稀土元素强烈亏损,并且Eu负异常不明显,表明该片麻岩具埃达克质岩石的地球化学特征。锆石U-Pb定年结果显示出几组年龄,分别是2512±21Ma, 2452±9.6Ma,2394±55Ma。大体看,2512Ma代表了火山喷发和周台子铁矿BIF沉淀年龄,2452Ma左右的锆石年龄代表了TTG质花岗片麻岩的侵位结晶年龄,2394Ma锆石年龄代表了周台子铁矿经历了一次变质作用,并对原有的岩石和矿石进行了改造。锆石Hf同位素特征显示斜长角闪岩和TTG质片麻岩的岩浆源区受到过古老地壳物质的混染。周台子铁矿构造环境可能是与裂谷有关的张性环境。  相似文献   

7.
沙坝麻粒岩是扬子陆块西缘前寒武系变质杂岩的重要代表。麻粒岩具有Ba、Ce、LREE和Al的富集以及Nb、Ta、Zr、Hf、Ti和HREE亏损的岩石化学性质,结合对麻粒岩的Rb—Sr、Sm—Nd4、0Ar/39Ar和锆石U—Pb测年结果的分析和比较,表明沙坝麻粒岩的原岩形成于新元古代(780Ma)扬子陆块西缘活动大陆边缘的岛弧环境。根据对麻粒岩的变质演化历史和岩石地球化学特征分析,角闪岩相退变质的流体作用对麻粒岩的Rb—Sr、Sm—Nd和40Ar/39Ar同位素计时体系产生了严重干扰,这也是沙坝麻粒岩峰期变质和角闪岩相退变质时代难以确定的重要原因。  相似文献   

8.
东喜马拉雅构造结南迦巴瓦岩群花岗质片麻岩的初步研究   总被引:5,自引:0,他引:5  
野外地质填图和研究发现,东喜马拉雅构造结高喜马拉雅结晶岩系中有古老的花岗岩侵入,并在鲁霞地区圈定了9个花岗质侵入体。古老的花岗质岩石主要侵位于南迦巴瓦岩群直白岩组中,与南迦巴瓦岩群一起经历了麻粒岩相变质作用而形成花岗质片麻岩套。岩石类型有花岗闪长质片麻岩、黑云母花岗质片麻岩、闪长质片麻岩等。岩石化学研究表明这些花岗片麻岩套具“S”型特征,可能有深部幔源物质的加入。花岗岩形成深度在2~5km之间.侵位时代为552~525Ma,为新元古代晚期,属泛非期陆内演化阶段的产物。高喜马拉雅地区在元古宙末期形成了结晶基底。  相似文献   

9.
U-Pb isotope analyses of zircon and titanite extracted from different rocks of the Felbertal scheelite deposit yield the following information: (1) An age of 593±22 Ma (2) is obtained for zircon crystallization in the scheelite-bearing matrix of an eruption breccia in the western ore field. (2) Discordant zircons from an elongated, up to 8 m thick scheelite-rich quartzite body in the eastern ore field give an upper intercept age of 544±5 Ma. This quartzite contains a laminated, fine-grained scheelite mineralization. (3) Zircons from a small granitoid intrusion of the western ore field reveal an age of 336±16 Ma, and concordant titanites document an age of 282±2 Ma for Variscan amphibolite facies metamorphism. Both events, granitoid intrusion and later metamorphism caused ore re-mobilization, including the formation of yellowish fluorescent (molybdo-) scheelite porphyroblasts. (4) For a narrow lamprop-1hyric dike in the western ore field, a concordant titanite age of 283±7 Ma is obtained. This age is identical with the titanites from the amphibolite facies metamorphic intrusion. Tiny scheelite grains were tapped by the dike from pre-existing scheelite mineralizations in the truncated host rocks. (5) Alpine metamorphism at 31±4 Ma did not exceed lowermost amphibolite facies conditions, and it caused scheelite re-mobilization on a minor scale only, producing bluish fluorescent porphyroblasts in quartz veinlets and veins, as well as bluish fluorescent scheelite rims around older scheelite grains. Moreover, crosscutting Alpine fissure fillings show bluish fluorescent, inclusion-free scheelite. (6) The preservation of Variscan titanites, the absence of Alpine titanite growth, and the large degree of Variscan scheelite re-mobilization demonstrate that amphibolite facies metamorphism in the Felbertal area has a Variscan age. This result clearly documents Variscan tectono-metamorphism to be the dominant event, instead of the hitherto surmised Alpine metamorphism. This multi-stage evolution of the Felbertal ore bodies corroborates the view that tungsten deposits are conditioned by several succeeding thermal events, leading to a series of stages that ultimately produce high-grade scheelite concentrations. These high-grade ores predominately occur along shear zones of different age, accompanied by the formation of large volumes of low-grade scheelite mineralizations along host rock foliations and quartz veinlets and veins.  相似文献   

10.
The sequence of rock and ore formation at the Yermakovsky beryllium deposit is established on the basis of geological relationships and Rb-Sr and U-Pb isotopic dating. The Rb-Sr age of amphibolitefacies regional metamorphism is determined for quartz-biotite-plagioclase schist (266 ± 18 Ma) and dolomitized limestone (271 ± 12 Ma) of the Zun-Morino Formation. The U-Pb zircon age of premineral gabbro is 332 ± 1 Ma. The Rb-Sr age of gabbro is somewhat younger (316 ± 8.3 Ma), probably owing to the effect of Hercynian metamorphism on sedimentary rocks of the Zun-Morino Formation and gabbroic intrusion that cuts through it. The U-Pb zircon age of gneissose granite of the Tsagan Complex at the Yermakovsky deposit is 316 ± 2 Ma, i.e., close to the age of metamorphism superimposed on gabbro rocks. The U-Pb zircon age of preore granitic dikes, estimated at 325 ± 3 and 333 ± 10 Ma, is close to the age of gabbro. The Ar/Ar age of amphibole from a granitic dike (302.5 ± 0.9 Ma) probably displays a later closure of this isotopic system or the effect of superimposed processes. The Rb-Sr age of alkali syenite intrusion is 227 ± 1.9 Ma. The U-Pb zircon age of alkali leucogranite stock pertaining to the Lesser Kunalei Complex is 226 ± 1 Ma, while the Rb-Sr age of beryllium ore is 225.9 ± 1.2 Ma. These data indicate that beryllium ore mineralization is closely related in space and time to igneous rocks of the Lesser Kunalei Complex dated at 224 ± 5 Ma and varying from gabbro to alkali granite in composition. Thus, the preore Hercynian magmatism at the Yermakovsky deposit took place ∼330 Ma ago and was completed by metamorphism dated at 271–266 Ma. The ore-forming magmatism and beryllium ore mineralization are dated at 224 ± 5 Ma. Postore magmatic activity is scarce and probably correlated with tectonic melange of host rocks.  相似文献   

11.
The Nordre Strømfjord shear zone is about 20 km wide and is exposed for 170 km along strike. It formed under granulite to amphibolite facies conditions as part of the 1,850 Ma-old Nagssugtoqidian orogeny affecting the largely Archean terrain of central West Greenland. We have made Rb-Sr isotope measurements on ca. 130 whole rock samples from the shear zone and have made microprobe analyses of biotite and plagioclase on 40 of them in order to evaluate the effects of shear zone formation on the Rb-Sr isotope system. Seven separate localities were sampled, four of them extensively; large whole rock samples and small, cm-scale thin slices were used in this study.The Rb-Sr isotope systems and the biotite compositions of the large whole rocks show variable degrees of re-equilibration during shear zone formation. Rb-Sr data for the least affected suites still scatter about Archean isochrons and the biotite compositions show wide variations both within and between samples. In other more affected suites, the Rb-Sr system was reset to approximate the age of shear zone formation on the scale of 10's of meters, and the biotite compositions are consistent within individual samples. The most strongly affected suites underwent profound chemical and isotopic changes. Whole rock suites preserve virtually no Rb-Sr isotopic record of their preshear zone history and the biotite compositions of entire suites are very homogeneous. The cm-scale suites of thin slices all show some degree of Proterozoic re-equilibration, although sharp Sr isotopic discontinuities between groups of lithologic layers are preserved.Among the suites of large whole rocks, the observed variations do not correlate with variations in shear strain, size of sampling domain, average Rb/Sr, range of Rb/Sr or ppm Sr. The combined Rb-Sr and microprobe data suggest that the responses are most likely to represent differences in total fluid/rock ratio in a system undergoing significant fluid transport. Our data suggest an uneven distribution of fluid pathways within the shear zone and a strongly preferred direction of fluid flow parallel to lithologic boundaries.Data from previous studies are also consistent with the conclusion that fluid transport is the major agent of Rb-Sr isotopic resetting in shear zones. This conclusion has implications for optimum sampling strategies in Rb-Sr dating of high strain events and for the processes by which Rb-Sr isotopic resetting occurs during regional metamorphism.  相似文献   

12.
陈丹玲  刘良 《地学前缘》2011,18(2):158-169
在岩相学观察和锆石CL图像研究的基础上,利用LA ICP MS原位分析方法,对北秦岭官坡超高压榴辉岩和伴生的石榴石角闪岩(榴闪岩)进行了详细的锆石微区微量元素和U Th Pb同位素分析,在榴辉岩样品中得到变质年龄为(502±11)Ma,原岩结晶年龄>(657±18)Ma;在榴闪岩样品中得到原岩结晶年龄为(791±6)Ma,变质年龄为487~503 Ma,角闪岩相退变质年龄为(366±4)Ma。岩石地球化学研究显示,北秦岭官坡地区的榴闪岩具有低Si(SiO2质量分数为4916%~5078%),高Ti(TiO2质量分数为228%~283%)、富集LREE、LILE和大部分的HFSE元素,不显Nb、Ta负异常的板内玄武岩特征,与北秦岭超高压榴辉岩地球化学特征一致。结合两者的野外产状、岩相学特征、锆石形貌和年代学研究结果,表明本文研究的官坡地区的榴闪岩是超高压榴辉岩在抬升过程中在角闪岩相条件下退变质的产物。综合两者的年代学研究结果,得到北秦岭地区超高压榴辉岩的变质年龄为(502±11)Ma,原岩结晶年龄为(791±6)Ma,角闪岩相退变质年龄为(366±4)Ma。研究得到的(502±11)Ma的榴辉岩相变质年龄与前人得到的该榴辉岩围岩超高压泥质片麻岩的变质年龄(507±38)Ma以及北秦岭松树沟地区的超高压长英质片麻岩的变质年龄485~514 Ma一致,表明它们经历了同期超高压变质作用。而且,榴辉岩(502±11)Ma的变质年龄与其原岩的结晶年龄(791±6)Ma存在近300 Ma的时间间隔,表明原岩具有板内玄武岩性质的北秦岭官坡超高压榴辉岩不可能是秦岭古生代大洋板块深俯冲的产物,而可能是已构造就位的古洋壳或裂谷火山岩在古生代随陆壳一起发生大陆深俯冲作用的产物。  相似文献   

13.
石鼓群的划分及变质特征探讨   总被引:1,自引:0,他引:1  
石鼓群位于云南西北部,面积约1 600km2,为甘孜一理塘板块的结晶基底.据现有资料,分为古元古代黎明岩群、中元古代新主岩群、新元古代巨甸岩群.黎明岩群为云母石英片岩、云母片岩,夹斜长片麻岩、斜长角闪岩.泥质岩石中具铁铝榴石、十字石、蓝晶石组合,基性岩中具铁铝榴石、普通角闪石组合,为中压低角闪岩相.黎明岩群后期抬升减压,叠加低压低角闪岩相变质,新生红柱石,部分原生蓝晶石退变成红柱石.于侵入其中的斜长角闪岩中获得Nd同位素模式年龄1 369.8Ma和1 343.8Ma,绿泥石英片岩中获得1 896.6Ma和2 161MaNd同位素模式年龄,故将黎明岩群时代置于古元古代.新主岩群分哈吉洛岩组和路西岩组,岩性为云母石英片岩、云母片岩、大理岩夹片麻岩及斜长角闪岩,部分岩石具糜棱岩化.哈吉洛岩组为低压低角闪岩相,具红柱石、十字石、铁铝榴石组合,路西岩组为高绿片岩相.于侵入新主岩群中的变质变形花岗质岩脉中获得锆石铅同位素年龄811 ±2Ma、820±1Ma、823±1Ma,故将新主岩群时代置于中元古代.巨甸岩群分陇巴岩组和塔城岩组,岩性为千枚岩、板岩,夹一层变质杏仁状玄武岩,为低绿片岩相.  相似文献   

14.
内蒙古锡林浩特岩群岩石学特征及变质温压条件   总被引:4,自引:0,他引:4       下载免费PDF全文
锡林浩特岩群出露于内蒙古锡林浩特市东南部,指原锡林郭勒杂岩中表壳岩部分,为一套片麻岩夹层状斜长角闪岩、磁铁石英岩和变粒岩等的变质岩组合。选取岩群中片麻岩及斜长角闪岩进行岩石学及岩相学分析,其中斜长角闪岩主要矿物组合为角闪石+斜长石;片麻岩样品中见夕线石+钾长石矿物组合,石榴子石具明显进变质环带,所以在计算其形成条件时选取了生长于峰期变质阶段的特定部位。运用角闪石斜长石、石榴子石黑云母矿物温压计分别估算锡林浩特岩群中准同时形成的变质基性火山岩及变质碎屑岩的变质温压区间。综合二者计算结果,得锡林浩特岩群峰期变质温压条件为660~707 ℃,0.5~0.6 GPa。变质达高角闪岩相。其变质年龄为1 000 Ma左右,推测锡林浩特岩群角闪岩相变质为中元古代末期锡林浩特微陆块与其他陆块碰撞的结果。  相似文献   

15.
New U-Pb zircon data from a segregation pegmatite in the granitic gneiss at Glenfinnan yield discordant points which appear to be aligned along a chord on a concordia diagram with upper and lower intersection ages of 1,517±30 Ma and 556±8 Ma, respectively. The results are similar to published U-Pb zircon data from the granitic gneiss but the lower intersection age does not correspond to concordant ages of 455±3 Ma obtained for monazites from the segregation pegmatite and from paragneiss which hosts the granitic gneiss. The apparent U-Pb zircon chord also gives no indication of a 1,030±50 Ma (large sample) Rb-Sr whole rock isochron age for the granitic gneiss (Brook et al. 1976). A traverse of adjacent 5–8 cm thick slabs in the paragneiss yields a Rb-Sr errochron of 455±60 Ma which also does not agree with the U-Pb zircon lower intersection age. The scale of this Sr whole rock diffusion (ca. 10 cm) is not at variance with existing thermal, temporal and experimental constraints.A two episodic loss model has been applied to the zircon data from the segregation pegmatite, to the previously published zircon data on the granitic gneiss and to new U-Pb zircon data on the host paragneiss. The first lead loss event, if assumed to be in Grenville time, was computed to be strongest in the granitic gneiss and segregation pegmatite. For the three suites of zircon considered, primary ages converge in the 1,700–1,800 Ma range with a final disturbance event at ca. 490 Ma, i.e., close to a plausible prograde stage of Caledonian metamorphism.The zircons in both the granitic gneiss and the paragneiss are believed to have been derived from the ubiquitous early Proterozoic shields bordering the North Atlantic. Furthermore the above model is consistent with the hypothesis that the zircons in the granitic gneiss were largely derived from the paragneiss. However, the U-Pb zircon data are not inconsistent with new Sr-isotopic evidence which suggests an additional, possibly deeper source with lower 87Sr/ 86Sr ratios.  相似文献   

16.
The quarry at Kottavattom in the Trivandrum Block of southern India contains spectacular examples of fluid-assisted alteration of high-grade metamorphic rocks. Garnet-biotite gneiss has undergone a change in mineral assemblage to form submetre scale orthopyroxene-bearing patches, later retrogressed to form an amphibole-bearing lithology. These patches, often referred to as arrested or incipient charnockite, crosscut the original metamorphic foliation and are typically attributed to passage of a low aH2O fluid through the rock. Whilst this conversion is recognised as a late stage process, little detailed chronological work exists to link it temporally to metamorphism in the region. Zircon and monazite analysed from Kottavattom not only record metamorphism in the Trivandrum Block but also show internal, lobate textures crosscutting the original zoning, consistent with fluid-aided coupled dissolution-reprecipitation during formation of the orthopyroxene-bearing patches. High-grade metamorphism at the quarry occurred between the formation of metamorphic monazite at ~585 Ma and the growth of metamorphic zircon at ~523 Ma. The fluid-assisted alteration of the garnet-biotite gneiss is poorly recorded by altered zircon with only minimal resetting of the U–Pb system, whereas monazite has in some cases undergone complete U–Pb resetting and records an age for fluid infiltration at ~495 Ma. The fluid event therefore places the formation of the altered patches at least 25 Myr after the zircon crystallisation in the garnet-biotite gneiss. The most likely fluid composition causing the modification and U–Pb resetting of zircon and monazite is locally derived hypersaline brine.  相似文献   

17.
The lower tectonic unit of Ios provides evidence of an at least four stage metamorphic and intrusive history which well might be generalized for large parts of the internal Pelagonian.Metamorphic country rocks of unknown age were intruded about 500 Ma ago, as concluded from a Rb-Sr whole rock (WR) isochron on relic tonalites to granodiorites which largely escaped the polyphase postmagmatic overprints.A Hercynian amphibolite facies metamorphism, during which the igneous rocks were partly recrystallized to orthogneisses, is dated by a lower intercept age of 300–305 Ma of U-Pb determinations on zircons and by three almost concordant Rb-Sr muscovite-WR ages of 295 to 288 Ma.K-Ar analyses on these muscovites and on biotites, and Rb-Sr tie lines WR-biotite and WR with other relic magmatic minerals yielded various apparent ages between 260 and 60 Ma. They are interpreted as mixed ages between a Hercynian cooling age and the two stage Alpidic overprints.White micas formed during the Eocene high P/T and/or Oligocene/Miocene Barrovian-type overprints yielded K-Ar dates ranging from 82 to 26 Ma, as well as a single Rb-Sr date of 13 Ma. These Alpidic dates resemble the more detailed age patterns of other Cycladic islands. But they are not sufficient for an independent dating of the Tertiary evolution on Ios island.  相似文献   

18.
桐柏秦岭岩群的两类变质作用   总被引:1,自引:1,他引:0  
任留东  李崇  王彦斌  李淼  蔡春红 《岩石学报》2016,32(6):1596-1610
本文重点对河南桐柏地区的秦岭岩群进行了观察与研究,根据野外地质、岩相关系及同位素测年资料,提出该区秦岭岩群具有明显不同的两类变质作用,一是较早期的高温麻粒岩相变质作用,以包体或长透镜群、甚至巨型条块状局限于中部郭庄组的花岗质片麻岩之中。根据伟晶岩、片麻岩及麻粒岩锆石年龄的综合限定,该变质作用的时间可能为~498Ma,多数人主张的445~430Ma的麻粒岩相变质年龄实际上是早期锆石被后期岩浆或变质事件引起的同位素体系重启年龄。另一种是相对晚期的角闪岩相变质作用,变质程度以角闪岩相为主,局部达高角闪岩相,没有任何早期高温或高压变质的残留迹象,形成秦岭岩群中主导类型的变质作用。同样,采用伟晶岩及有关片麻岩和麻粒岩中锆石测年限定,角闪岩相变质时间可能为~472Ma。高温麻粒岩的产出具有其特殊机制,大量的花岗质岩浆侵位过程中把地壳深部的高温麻粒岩裹挟上升至浅部层次,随后一起遭受区域上的角闪岩相变质作用。  相似文献   

19.
鸡南铁矿床位于吉林省和龙地区,地处华北克拉通北缘与兴蒙造山带接壤的龙岗地块北部,是东北地区发现较早的BIF型铁矿床之一。该矿床铁矿体主要呈层状、似层状、扁豆状赋存于鞍山群鸡南组上段中部层位,含矿岩石以黑云斜长片麻岩、角闪黑云斜长片麻岩、黑云角闪斜长片麻岩及斜长角闪岩为主,为角闪岩相的中低级区域变质岩系;主要矿石类型为条带状磁铁石英岩型和块状磁铁角闪岩型。为确定该矿床含矿建造的原岩、变质时代及构造背景,重点对含矿岩系中的斜长角闪岩进行了岩石地球化学和锆石U-Pb年代学研究。结果表明:斜长角闪岩的地球化学特征表现为富集大离子亲石元素、轻微富集重稀土元素;主量元素质量分数与中性-基性岩类基本相似,结合原岩恢复图解,判断其原岩类型为亚碱性玄武岩(拉斑玄武岩),形成于弧后盆地背景;LA-ICP-MS锆石U-Pb年代学研究中,2个较老的锆石测点年龄分别为(2 468±15)和(2 469±9)Ma,代表区内峰期变质年龄(约2 460 Ma),26个锆石测点的测年数据较为集中,加权平均年龄为(2 275±25)Ma,代表区内退变质年龄。通过与国内外典型BIF型铁矿床的对比研究认为,区内的鸡南铁矿与官地铁矿同属Algoma型铁矿床。  相似文献   

20.
河南舞阳地区赵案庄铁矿床是产于超基性岩中的隐伏矿床。超基性岩侵位于新太古界太华群赵案庄组透辉斜长角闪片麻岩中。矿体呈似层状,具有多层。矿石成分较复杂,主要矿物为磁铁矿、蛇纹石、氟磷灰石等。矿床规模为中等,其成因是与超基性岩有关的岩浆晚期磷灰石-磁铁矿矿床。在磷灰蛇纹磁铁矿石中选出的锆石样品为变质锆石,利用激光烧蚀多接收器电感耦合等离子体质谱仪(LA-MC-ICPMS)进行微区原位U_Pb同位素测年,获得不一致线的上交点年龄为(1943±5)Ma(MSWD=2.3)。同时对锆石阴极发光(CL)图像研究,表明该年龄代表锆石遭受强烈变质作用的年龄,可以限定矿体形成时代的上限,即矿体形成时代不晚于1943 Ma。超基性岩浆演化晚期,岩浆充填构造裂隙呈透辉石岩脉产出。透辉石脉与矿体同期并且穿切铁山庙组BIF型铁山铁矿。铁山庙组形成时代在2300~2500 Ma之间。透辉石岩脉形成时代不早于该组年龄,可作为赵案庄铁矿床形成时代的下限。赵案庄铁矿床的形成时代为1943~2300 Ma,为古元古代,这是中国目前发现的最古老的岩浆型铁矿床。该成矿地质时代反映了在华北陆块东南缘曾发生过一次地壳扩张和裂陷活动及华北克拉通裂解事件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号