首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluid depletion within a compacting reservoir can lead to significant stress and strain changes and potentially severe geomechanical issues, both inside and outside the reservoir. We extend previous research of time‐lapse seismic interpretation by incorporating synthetic near‐offset and full‐offset common‐midpoint reflection data using anisotropic ray tracing to investigate uncertainties in time‐lapse seismic observations. The time‐lapse seismic simulations use dynamic elasticity models built from hydro‐geomechanical simulation output and a stress‐dependent rock physics model. The reservoir model is a conceptual two‐fault graben reservoir, where we allow the fault fluid‐flow transmissibility to vary from high to low to simulate non‐compartmentalized and compartmentalized reservoirs, respectively. The results indicate time‐lapse seismic amplitude changes and travel‐time shifts can be used to qualitatively identify reservoir compartmentalization. Due to the high repeatability and good quality of the time‐lapse synthetic dataset, the estimated travel‐time shifts and amplitude changes for near‐offset data match the true model subsurface changes with minimal errors. A 1D velocity–strain relation was used to estimate the vertical velocity change for the reservoir bottom interface by applying zero‐offset time shifts from both the near‐offset and full‐offset measurements. For near‐offset data, the estimated P‐wave velocity changes were within 10% of the true value. However, for full‐offset data, time‐lapse attributes are quantitatively reliable using standard time‐lapse seismic methods when an updated velocity model is used rather than the baseline model.  相似文献   

2.
The main factors affecting seismic exploration is the propagation velocity of seismic waves in the medium. In the past, during marine seismic data processing, the propagation velocity of sea water was generally taken as a constant 1500 m/s. However, for deep water exploration, the sound velocity varies with the season, time, location, water depth, ocean currents, and etc.. It also results in a layered velocity distribution, so there is a difference of seismic traveltime, ray paths, and amplitude, which affect the migration imaging results if sea water propagation velocity is still taken as constant for the propagation wavefield. In this paper, we will start from an empirical equation of seismic wave velocity in seawater with changes of temperature, salinity, and depth, consider the variation of their values, build a seawater velocity model, and quantitatively analyze the impact of seawater velocity variation on seismic traveltime, ray paths, and amplitude in the seawater velocity model.  相似文献   

3.
Seismic conditioning of static reservoir model properties such as porosity and lithology has traditionally been faced as a solution of an inverse problem. Dynamic reservoir model properties have been constrained by time‐lapse seismic data. Here, we propose a methodology to jointly estimate rock properties (such as porosity) and dynamic property changes (such as pressure and saturation changes) from time‐lapse seismic data. The methodology is based on a full Bayesian approach to seismic inversion and can be divided into two steps. First we estimate the conditional probability of elastic properties and their relative changes; then we estimate the posterior probability of rock properties and dynamic property changes. We apply the proposed methodology to a synthetic reservoir study where we have created a synthetic seismic survey for a real dynamic reservoir model including pre‐production and production scenarios. The final result is a set of point‐wise probability distributions that allow us to predict the most probable reservoir models at each time step and to evaluate the associated uncertainty. Finally we also show an application to real field data from the Norwegian Sea, where we estimate changes in gas saturation and pressure from time‐lapse seismic amplitude differences. The inverted results show the hydrocarbon displacement at the times of two repeated seismic surveys.  相似文献   

4.
Full‐waveform inversion is an appealing technique for time‐lapse imaging, especially when prior model information is included into the inversion workflow. Once the baseline reconstruction is achieved, several strategies can be used to assess the physical parameter changes, such as parallel difference (two separate inversions of baseline and monitor data sets), sequential difference (inversion of the monitor data set starting from the recovered baseline model) and double‐difference (inversion of the difference data starting from the recovered baseline model) strategies. Using synthetic Marmousi data sets, we investigate which strategy should be adopted to obtain more robust and more accurate time‐lapse velocity changes in noise‐free and noisy environments. This synthetic application demonstrates that the double‐difference strategy provides the more robust time‐lapse result. In addition, we propose a target‐oriented time‐lapse imaging using regularized full‐waveform inversion including a prior model and model weighting, if the prior information exists on the location of expected variations. This scheme applies strong prior model constraints outside of the expected areas of time‐lapse changes and relatively less prior constraints in the time‐lapse target zones. In application of this process to the Marmousi model data set, the local resolution analysis performed with spike tests shows that the target‐oriented inversion prevents the occurrence of artefacts outside the target areas, which could contaminate and compromise the reconstruction of the effective time‐lapse changes, especially when using the sequential difference strategy. In a strongly noisy case, the target‐oriented prior model weighting ensures the same behaviour for both time‐lapse strategies, the double‐difference and the sequential difference strategies and leads to a more robust reconstruction of the weak time‐lapse changes. The double‐difference strategy can deliver more accurate time‐lapse variation since it can focus to invert the difference data. However, the double‐difference strategy requires a preprocessing step on data sets such as time‐lapse binning to have a similar source/receiver location between two surveys, while the sequential difference needs less this requirement. If we have prior information about the area of changes, the target‐oriented sequential difference strategy can be an alternative and can provide the same robust result as the double‐difference strategy.  相似文献   

5.
Time‐lapse seismic surveying has become an accepted tool for reservoir monitoring applications, thus placing a high premium on data repeatability. One factor affecting data repeatability is the influence of the rough sea‐surface on the ghost reflection and the resulting seismic wavelets of the sources and receivers. During data analysis, the sea‐surface is normally assumed to be stationary and, indeed, to be flat. The non‐flatness of the sea‐surface introduces amplitude and phase perturbations to the source and receiver responses and these can affect the time‐lapse image. We simulated the influence of rough sea‐surfaces on seismic data acquisition. For a typical seismic line with a 48‐fold stack, a 2‐m significant‐wave‐height sea introduces RMS errors of about 5–10% into the stacked data. This level of error is probably not important for structural imaging but could be significant for time‐lapse surveying when the expected difference anomaly is small. The errors are distributed differently for sources and receivers because of the different ways they are towed. Furthermore, the source wavelet is determined by the sea shape at the moment the shot is fired, whereas the receiver wavelet is time‐varying because the sea moves significantly during the seismic record.  相似文献   

6.
Repeatability of seismic data plays a crucial role in time‐lapse seismic analysis. There are several factors that can decrease the repeatability, such as positioning errors, varying tide, source variations, velocity changes in the water layer (marine data) and undesired effects of various processing steps. In this work, the complexity of overburden structure, as an inherent parameter that can affect the repeatability, is studied. A multi‐azimuth three‐dimensional vertical‐seismic‐profiling data set with 10 000 shots is used to study the relationship between overburden structure and repeatability of seismic data. In most repeatability studies, two data sets are compared, but here a single data set has been used because a significant proportion of the 10 000 shots are so close to each other that a repeatability versus positioning error is possible. We find that the repeatability decreases by a factor of approximately 2 under an overburden lens. Furthermore, we find that the X‐ and Y‐components have approximately the same sensitivity to positioning errors as the Z‐component (for the same events) in this three‐dimensional vertical‐seismic‐profiling experiment. This indicates that in an area with complex overburden, positioning errors between monitor and base seismic surveys are significantly more critical than outside such an area. This study is based on a three‐dimensional three‐component vertical‐seismic‐profiling data set from a North Sea reservoir and care should be taken when extrapolating these observations into a general four‐dimensional framework.  相似文献   

7.
Scattering theory, a form of perturbation theory, is a framework from within which time‐lapse seismic reflection methods can be derived and understood. It leads to expressions relating baseline and monitoring data and Earth properties, focusing on differences between these quantities as it does so. The baseline medium is, in the language of scattering theory, the reference medium and the monitoring medium is the perturbed medium. The general scattering relationship between monitoring data, baseline data, and time‐lapse Earth property changes is likely too complex to be tractable. However, there are special cases that can be analysed for physical insight. Two of these cases coincide with recognizable areas of applied reflection seismology: amplitude versus offset modelling/inversion, and imaging. The main result of this paper is a demonstration that time‐lapse difference amplitude versus offset modelling, and time‐lapse difference data imaging, emerge from a single theoretical framework. The time‐lapse amplitude versus offset case is considered first. We constrain the general time‐lapse scattering problem to correspond with a single immobile interface that separates a static overburden from a target medium whose properties undergo time‐lapse changes. The scattering solutions contain difference‐amplitude versus offset expressions that (although presently acoustic) resemble the expressions of Landro ( 2001 ). In addition, however, they contain non‐linear corrective terms whose importance becomes significant as the contrasts across the interface grow. The difference‐amplitude versus offset case is exemplified with two parameter acoustic (bulk modulus and density) and anacoustic (P‐wave velocity and quality factor Q) examples. The time‐lapse difference data imaging case is considered next. Instead of constraining the structure of the Earth volume as in the amplitude versus offset case, we instead make a small‐contrast assumption, namely that the time‐lapse variations are small enough that we may disregard contributions from beyond first order. An initial analysis, in which the case of a single mobile boundary is examined in 1D, justifies the use of a particular imaging algorithm applied directly to difference data shot records. This algorithm, a least‐squares, shot‐profile imaging method, is additionally capable of supporting a range of regularization techniques. Synthetic examples verify the applicability of linearized imaging methods of the difference image formation under ideal conditions.  相似文献   

8.
An approach is developed to estimate pore‐pressure changes in a compacting chalk reservoir directly from time‐lapse seismic attributes. It is applied to data from the south‐east flank of the Valhall field. The time‐lapse seismic signal of the reservoir in this area is complex, despite the fact that saturation changes do not have an influence. This complexity reflects a combination of pressure depletion, compaction and stress re‐distribution throughout the reservoir and into the surrounding rocks. A simple relation is found to link the time‐lapse amplitude and time‐shift attributes to variations in the key controlling parameter of initial porosity. This relation is sufficient for an accurate estimation of pore‐pressure change in the inter‐well space. Although the time‐lapse seismic estimates mostly agree with reservoir simulation, unexplained mismatches are apparent at a small number of locations with lower porosities (less than 38%). The areas of difference between the observations and predictions suggest possibilities for simulation model updating or a better understanding of the physics of the reservoir.  相似文献   

9.
The cross‐calibration of different vintage data is an important prerequisite in attempting to determine the time‐lapse seismic effects induced by hydrocarbon production in a reservoir. This paper reports the preprocessing and cross‐calibration procedures adopted to modify the data of four seismic vintages (1982, 1989, 1992 and 1999) from the Oseberg field in the North Sea, for optimal conditions for a time‐lapse seismic amplitude analysis. The final results, in terms of time‐lapse variations, of acoustic impedance and of amplitude‐versus‐offset, are illustrated for selected data sets. The application of preprocessing to each individual vintage data set reduces the effects of the different acquisition and noise conditions, and leads to consistency in the amplitude response of the four vintages. This consistency facilitates the final amplitude cross‐calibration that is carried out using, as reference, the Cretaceous horizon reflections above the Brent reservoir. Such cross‐calibration can be considered as vintage‐consistent residual amplitude correction. Acoustic impedance sections, intercept and gradient amplitude‐versus‐offset attributes and coherent amplitude‐versus‐offset estimates are computed on the final cross‐calibrated data. The results, shown for three spatially coincident 2D lines selected from the 1982, 1989 and 1999 data sets, clearly indicate gas‐cap expansion resulting from oil production. Such expansion is manifested as a decrease in acoustic impedance and a modification of the amplitude‐versus‐offset trends in the apical part of the reservoir.  相似文献   

10.
Common shot ray tracing and finite difference seismic modelling experiments were undertaken to evaluate variations in the seismic response of the Devonian Redwater reef in the Alberta Basin, Canada after replacement of native pore waters in the upper rim of the reef with CO2. This part of the reef is being evaluated for a CO2 storage project. The input geological model was based on well data and the interpretation of depth‐converted, reprocessed 2D seismic data in the area. Pre‐stack depth migration of the ray traced and finite difference synthetic data demonstrate similar seismic attributes for the Mannville, Nisku, Ireton, Cooking Lake, and Beaverhill Lake formations and clear terminations of the Upper Leduc and Middle Leduc events at the reef margin. Higher amplitudes at the base of Upper‐Leduc member are evident near the reef margin due to the higher porosity of the foreslope facies in the reef rim compared to the tidal flat lagoonal facies within the central region of the reef. Time‐lapse seismic analysis exhibits an amplitude difference of about 14% for Leduc reflections before and after CO2 saturation and a travel‐time delay through the reservoir of 1.6 ms. Both the ray tracing and finite difference approaches yielded similar results but, for this particular model, the latter provided more precise imaging of the reef margin. From the numerical study we conclude that time‐lapse surface seismic surveys should be effective in monitoring the location of the CO2 plume in the Upper Leduc Formation of the Redwater reef, although the differences in the results between the two modelling approaches are of similar order to the effects of the CO2 fluid replacement itself.  相似文献   

11.
CO2 has been injected into the saline aquifer Utsira Fm at the Sleipner field since 1996. In order to monitor the movement of the CO2 in the sub‐surface, the seventh seismic monitor survey was acquired in 2010, with dual sensor streamers which enabled optimal towing depths compared to previous surveys. We here report both on the time‐lapse observations and on the improved resolution compared to the conventional streamer surveys. This study shows that the CO2 is still contained in the subsurface, with no indications of leakage. The time‐lapse repeatability of the dual sensor streamer data versus conventional data is sufficient for interpreting the time‐lapse effects of the CO2 at Sleipner, and the higher resolution of the 2010 survey has enabled a refinement of the interpretation of nine CO2 saturated layers with improved thickness estimates of the layers. In particular we have estimated the thickness of the uppermost CO2 layer based on an analysis of amplitude strength together with time‐separation of top and base of this layer and found the maximum thickness to be 11 m. This refined interpretation gives a good base line for future time‐lapse surveys at the Sleipner CO2 injection site.  相似文献   

12.
The hydrodynamic characterization of the epikarst, the shallow part of the unsaturated zone in karstic systems, has always been challenging for geophysical methods. This work investigates the feasibility of coupling time‐lapse refraction seismic data with petrophysical and hydrologic models for the quantitative determination of water storage and residence time at shallow depth in carbonate rocks. The Biot–Gassmann fluid substitution model describing the seismic velocity variations with water saturation at low frequencies needs to be modified for this lithology. I propose to include a saturation‐dependent rock‐frame weakening to take into account water–rock interactions. A Bayesian inversion workflow is presented to estimate the water content from seismic velocities measured at variable saturations. The procedure is tested first with already published laboratory measurements on core samples, and the results show that it is possible to estimate the water content and its uncertainty. The validated procedure is then applied to a time‐lapse seismic study to locate and quantify seasonal water storage at shallow depth along a seismic profile. The residence time of the water in the shallow layers is estimated by coupling the time‐lapse seismic measurements with rainfall chronicles, simple flow equations, and the petrophysical model. The daily water input computed from the chronicles is used to constraint the inversion of seismic velocities for the daily saturation state and the hydrodynamic parameters of the flow model. The workflow is applied to a real monitoring case, and the results show that the average residence time of the water in the epikarst is generally around three months, but it is only 18 days near an infiltration pathway. During the winter season, the residence times are three times shorter in response to the increase in the effective rainfall.  相似文献   

13.
4D seismic is widely used to remotely monitor fluid movement in subsurface reservoirs. This technique is especially effective offshore where high survey repeatability can be achieved. It comes as no surprise that the first 4D seismic that successfully monitored the CO2 sequestration process was recorded offshore in the Sleipner field, North Sea. In the case of land projects, poor repeatability of the land seismic data due to low S/N ratio often obscures the time‐lapse seismic signal. Hence for a successful on shore monitoring program improving seismic repeatability is essential. Stage 2 of the CO2CRC Otway project involves an injection of a small amount (around 15,000 tonnes) of CO2/CH4 gas mixture into a saline aquifer at a depth of approximately 1.5 km. Previous studies at this site showed that seismic repeatability is relatively low due to variations in weather conditions, near surface geology and farming activities. In order to improve time‐lapse seismic monitoring capabilities, a permanent receiver array can be utilised to improve signal to noise ratio and hence repeatability. A small‐scale trial of such an array was conducted at the Otway site in June 2012. A set of 25 geophones was installed in 3 m deep boreholes in parallel to the same number of surface geophones. In addition, four geophones were placed into boreholes of 1–12 m depth. In order to assess the gain in the signal‐to‐noise ratio and repeatability, both active and passive seismic surveys were carried out. The surveys were conducted in relatively poor weather conditions, with rain, strong wind and thunderstorms. With such an amplified background noise level, we found that the noise level for buried geophones is on average 20 dB lower compared to the surface geophones. The levels of repeatability for borehole geophones estimated around direct wave, reflected wave and ground roll are twice as high as for the surface geophones. Both borehole and surface geophones produce the best repeatability in the 30–90 Hz frequency range. The influence of burying depth on S/N ratio and repeatability shows that significant improvement in repeatability can be reached at a depth of 3 m. The level of repeatability remains relatively constant between 3 and 12 m depths.  相似文献   

14.
This article addresses the question whether time‐lapse seismic reflection techniques can be used to follow and quantify the effects of solution salt mining. Specifically, the production of magnesium salts as mined in the north of the Netherlands is considered. The use of seismic time‐lapse techniques to follow such a production has not previously been investigated. For hydrocarbon production and CO2 storage, time‐lapse seismics are used to look at reservoir changes mainly caused by pressure and saturation changes in large reservoirs, while for solution mining salt is produced from caverns with a limited lateral extent, with much smaller production volumes and a fluid (brine) replacing a solid (magnesium salt). In our approach we start from the present situation of the mine and then study three different production scenarios, representing salt production both in vertical and lateral directions of the mine. The present situation and future scenarios have been transformed into subsurface models that were input to an elastic finite‐difference scheme to create synthetic seismic data. These data have been analysed and processed up to migrated seismic images, such that time‐lapse analyses of intermediate and final results could be done. From the analyses, it is found that both vertical and lateral production is visible well above the detection threshold in difference data, both at pre‐imaging and post‐imaging stages. In quantitative terms, an additional production of the mine of 6 m causes time‐shifts in the order of 2 ms (pre‐imaging) and 4 ms (post‐imaging) and amplitude changes of above 20% in the imaged sections. A laterally oriented production causes even larger amplitude changes at the edge of the cavern due to replacement of solid magnesium salt with brine introducing a large seismic contrast. Overall, our pre‐imaging and post‐imaging time‐lapse analysis indicates that the effects of solution salt mining can be observed and quantified on seismic data. The effects seem large enough to be observable in real seismic data containing noise.  相似文献   

15.
Time-lapse seismic analysis of pressure depletion in the Southern Gas Basin   总被引:1,自引:0,他引:1  
In the Southern Gas Basin (SGB) of the North Sea there are many mature gas fields where time‐lapse monitoring could be very beneficial in extending production life. However, the conditions are not immediately attractive for time‐lapse seismic assessment. This is primarily because the main production effect to be assessed is a pore pressure reduction and frame stiffening because of gas production in tight sandstone reservoirs that also have no real seismic direct hydrocarbon indicators. Modelling, based on laboratory measurements, has shown that such an effect would be small and difficult to detect in seismic data. This paper makes two main contributions. Firstly, this is, to our knowledge, the first time‐lapse study in the SGB and involves a real‐data assessment of the viability for detecting production in such an environment. Secondly, the feasibility of using markedly different legacies of data in such a study is addressed, including an assessment of the factors influencing the crossmatching. From the latter, it is found that significant, spatially varying time shifts need to be, and are successfully, resolved through 3‐D warping. After the warping, the primary factors limiting the crossmatching appear to be residual local phase variations, possibly induced by the differing migration strategies, structure, reverberations and different coherencies of the volumes, caused by differences in acquisition‐structure azimuth and acquisition fold. Despite these differences, a time‐lapse amplitude signature is observed that is attributable to production. The character of the 4‐D amplitude anomalies may also indicate variations in stress sensitivity, e.g. because of zones of fracturing. Additionally, warping‐derived time attributes have been highlighted as a potential additional avenue for detection of pressure depletion in such reservoirs. Although the effects are subtle, they may indicate changes in stress/pressure in and around the reservoir because of production. However, to fully resolve the subtle time‐lapse effects in such a reservoir, the data differences need to be better addressed, which may be possible by full re‐processing and pre‐stack analysis, but more likely dedicated 4‐D acquisition would be required.  相似文献   

16.
Time‐lapse seismics is the methodology of choice for remotely monitoring changes in oil/gas reservoir depletion, reservoir stimulation or CO2 sequestration, due to good sensitivity and resolving power at depths up to several kilometres. This method is now routinely applied offshore, however, the use of time‐lapse methodology onshore is relatively rare. The main reason for this is the relatively high cost of commercial seismic acquisition on land. A widespread belief of a relatively poor repeatability of land seismic data prevents rapid growth in the number of land time‐lapse surveys. Considering that CO2 sequestration on land is becoming a necessity, there is a great need to evaluate the feasibility of time‐lapse seismics for monitoring. Therefore, an understanding of the factors influencing repeatability of land seismics and evaluating limitations of the method is crucially important for its application in many CO2 sequestration projects. We analyse several repeated 2D and 3D surveys acquired within the Otway CO2 sequestration pilot project (operated by the Cooperative Research Centre for Greenhouse Technologies, CO2CRC) in Australia, in order to determine the principal limitations of land time‐lapse seismic repeatability and investigate the influence of the main factors affecting it. Our findings are that the intrinsic signal‐to‐noise ratio (S/N, signal to coherent and background noise levels) and the normalized‐root‐mean‐square (NRMS) difference are controlled by the source strength and source type. However, the post‐stack S/N ratio and corresponding NRMS residuals are controlled mainly by the data fold. For very high‐fold data, the source strength and source type are less critical.  相似文献   

17.
In seismic waveform inversion, non‐linearity and non‐uniqueness require appropriate strategies. We formulate four types of L2 normed misfit functionals for Laplace‐Fourier domain waveform inversion: i) subtraction of complex‐valued observed data from complex‐valued predicted data (the ‘conventional phase‐amplitude’ residual), ii) a ‘conventional phase‐only’ residual in which amplitude variations are normalized, iii) a ‘logarithmic phase‐amplitude’ residual and finally iv) a ‘logarithmic phase‐only’ residual in which the only imaginary part of the logarithmic residual is used. We evaluate these misfit functionals by using a wide‐angle field Ocean Bottom Seismograph (OBS) data set with a maximum offset of 55 km. The conventional phase‐amplitude approach is restricted in illumination and delineates only shallow velocity structures. In contrast, the other three misfit functionals retrieve detailed velocity structures with clear lithological boundaries down to the deeper part of the model. We also test the performance of additional phase‐amplitude inversions starting from the logarithmic phase‐only inversion result. The resulting velocity updates are prominent only in the high‐wavenumber components, sharpening the lithological boundaries. We argue that the discrepancies in the behaviours of the misfit functionals are primarily caused by the sensitivities of the model gradient to strong amplitude variations in the data. As the observed data amplitudes are dominated by the near‐offset traces, the conventional phase‐amplitude inversion primarily updates the shallow structures as a result. In contrast, the other three misfit functionals eliminate the strong dependence on amplitude variation naturally and enhance the depth of illumination. We further suggest that the phase‐only inversions are sufficient to obtain robust and reliable velocity structures and the amplitude information is of secondary importance in constraining subsurface velocity models.  相似文献   

18.
Quantitative detection of fluid distribution using time-lapse seismic   总被引:1,自引:0,他引:1  
Although previous seismic monitoring studies have revealed several relationships between seismic responses and changes in reservoir rock properties, the quantitative evaluation of time‐lapse seismic data remains a challenge. In most cases of time‐lapse seismic analysis, fluid and/or pressure changes are detected qualitatively by changes in amplitude strength, traveltime and/or Poisson's ratio. We present the steps for time‐lapse seismic analysis, considering the pressure effect and the saturation scale of fluids. We then demonstrate a deterministic workflow for computing the fluid saturation in a reservoir in order to evaluate time‐lapse seismic data. In this approach, we derive the physical properties of the water‐saturated sandstone reservoir, based on the following inputs: VP, VS, ρ and the shale volume from seismic analysis, the average properties of sand grains, and formation‐water properties. Next, by comparing the in‐situ fluid‐saturated properties with the 100% formation‐water‐saturated reservoir properties, we determine the bulk modulus and density of the in‐situ fluid. Solving three simultaneous equations (relating the saturations of water, oil and gas in terms of the bulk modulus, density and the total saturation), we compute the saturation of each fluid. We use a real time‐lapse seismic data set from an oilfield in the North Sea for a case study.  相似文献   

19.
Seismic time‐lapse surveys are susceptible to repeatability errors due to varying environmental conditions. To mitigate this problem, we propose the use of interferometric least‐squares migration to estimate the migration images for the baseline and monitor surveys. Here, a known reflector is used as the reference reflector for interferometric least‐squares migration, and the data are approximately redatumed to this reference reflector before imaging. This virtual redatuming mitigates the repeatability errors in the time‐lapse migration image. Results with synthetic and field data show that interferometric least‐squares migration can sometimes reduce or eliminate artifacts caused by non‐repeatability in time‐lapse surveys and provide a high‐resolution estimate of the time‐lapse change in the reservoir.  相似文献   

20.
A method to provide an improved time‐lapse seismic attribute for dynamic interpretation is presented. This is based on the causal link between the time‐lapse seismic response and well production activity taken over time. The resultant image is obtained by computing correlation coefficients between sequences of time‐lapse seismic changes extracted over different time intervals from multiply repeated seismic and identical time sequences of cumulative fluid volumes produced or injected from the wells. Maps of these cross‐correlations show localized, spatially contiguous signals surrounding individual wells or a specific well group. These may be associated with connected regions around the selected well or well group. Application firstly to a synthetic data set reveals that hydraulic compartments may be delineated using this method. A second application to a field data set provides empirical evidence that a connected well‐centric fault block and active geobody can be detected. It is concluded that uniting well data and time‐lapse seismic using our proposed method delivers a new attribute for dynamic interpretation and potential updating of the model for the producing reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号