首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
南海陆坡天然气水合物饱和度估计   总被引:5,自引:0,他引:5  
基于双相介质理论和热弹性理论,建立了沉积层纵波速度与天然气水合物饱和度、弹性性质及地层孔隙度之间的关系。通过对比饱和水的理论P波速度与实际P波速度,可以得到天然气水合物饱和度。根据ODP184航次的电阻率、声波速度、密度等测井资料以及地质资料,初步推断南海陆坡存在天然气水合物。根据声波测井的纵波速度估算出南海1146和1148井天然气水合物饱和度分别为孔隙空间的25%~30%和10%~20%,1148井个别沉积层天然气水合物饱和度可达40%~50%。沉积层的纵波速度与饱和水速度差值越大,天然气水合物饱和度越高。  相似文献   

2.
Small amounts of free gas in interstitial sediment pores are known to significantly lower compressional (P-) wave velocity (Vp). This effect, combined with moderately elevated Vp from the presence of gas hydrates, is usually thought to be the cause for the often observed strong negative reflection coefficients of bottom simulating reflections (BSRs) at the base of gas hydrate stability (BGHS). At several locations however, weak BSRs have been observed, which are difficult to reconcile with a presence of gas in sediment pores. We here present a rock physics model for weak BSRs on the Hikurangi Margin east of New Zealand. Thin sections of a fine-grained mudstone sample from a submarine outcrop in the vicinity of a weak BSR show macroscopic porosity in the form of fractures and intrafossil macropores. We apply the Kuster-Toksöz theory to predict seismic velocities for a rock with water-saturated interstitial micropores and gas or hydrates in macroscopic pore space simulating fractures or compliant macropores. We match field observations of a weak BSR with a reflection coefficient of −0.016 with two end-member models; (1) rocks with gas hydrate-filled voids with a concentration of <4% of bulk sediment overlying water-filled voids, or (2) fully gas-saturated voids at a concentration of <2% beneath water-filled voids. A natural system is likely to consist of a combination of these end-members and of macroporosity filled with a mixture of water and gas or hydrate. Our results suggest weak BSRs may be caused by gas hydrate systems in fractures and macropores of fine-grained sediments with fully water-saturated interstitial pore space. Gas may be supplied into the macroscopic pore space by diffusion-driven short-range migration of methane generated within the gas hydrate stability field or, our favoured model based on additional geologic considerations, long-range advective migration from deeper sources along fractures.  相似文献   

3.
Gas hydrate stability conditions restrict the occurrence of gas hydrate to unconsolidated and high water-content sediments at shallow depths. Because of these host sediments properties, seismic and well log data acquired for the detection of free gas and associated gas hydrate-bearing sediments often require nonconventional analysis. For example, a conventional method of identifying free gas using the compressional/shear-wave velocity (Vp/Vs) ratio at the logging frequency will not work, unless the free-gas saturations are more than about 40%. The P-wave velocity dispersion of partially gas-saturated sediments causes a problem in interpreting well log velocities and seismic data. Using the White, J.E. [1975. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics 40, 224–232] model for partially gas-saturated sediments, the difference between well log and seismic velocities can be reconciled. The inclusion of P-wave velocity dispersion in interpreting well log data is, therefore, essential to identify free gas and to tie surface seismic data to synthetic seismograms.  相似文献   

4.
天然气水合物超声和时域反射联合探测技术   总被引:8,自引:0,他引:8  
首次将超声探测技术和时域反射技术集成于一个系统中,可实时探测沉积物中水合物饱和度和声学参数。进行了58个轮次的水合物生成与分解实验,超声、时域反射和温压异常3种方法所探测到的生成点、分解点吻合,这说明利用超声技术和时域反射技术联合探测沉积物中水合物的饱和度与声速是十分有效的,将有助于更好地了解含水合物沉积层的物理性质,为海洋天然气水合物的地球物理勘探和资源评价提供基础性参数。  相似文献   

5.
Host sediments may exert a significant influence on the formation of gas hydrate reservoirs. However, this issue has been largely neglected in the literature. In this study, we investigated the types, characteristics and the depositional model of the fine-grained gas hydrate-bearing sediments in the northeastern margin of the South China Sea by integrating core visual observations and logging-while-drilling downhole logs. The gas hydrate-bearing sediments consist dominantly of muddy sediments formed in the inter-canyon ridges of the upper continental slope, including hemipelagites, debrites (mud with breccia) and fine-grained turbidites. Cold-seep carbonates and associated slumping talus, muddy breccia debrites, as well as coarse-grained turbidites, may locally occur. Four classes and six sub-classes of log facies were defined by cluster analysis. Core-log correlation indicates that gas hydrates are majorly distributed in fine-grained sediments with high resistivity and low acoustic transit time (AC) log responses, which are easily differentiated from the fine-grained background sediments of high gamma-ray (GR), high AC, and low resistivity log values, and the seep carbonates characterized by low GR, high resistivity, high density, low AC and low porosity log values. The primary host sediments consist of fine-grained hemipelagic sediments formed by deposition from the nepheloid layers of river material and from the microfossils in seawater column. Most of the hemipelagic sediments, however, might have been extensively modified by slumping and associated gravity flow processes and were re-deposited in the forms of debrites and turbidites. Locally developed seep carbonates associated with gas hydrate dissociation and leakage provided additional sources for the gravity flow sediments.  相似文献   

6.
Seismic imaging of gas hydrates in the northernmost South China sea   总被引:1,自引:1,他引:0  
Horizon velocity analysis and pre-stack depth migration of seismic profiles collected by R/V Maurice Ewing in 1995 across the accretionary prism off SW Taiwan and along the continental slope of the northernmost South China Sea were implemented for identifying gas hydrates. Similarly, a survey of 32 ocean-bottom seismometers (OBS), with a spacing of about 500 m, was conducted for exploring gas hydrates on the accretionary prism off SW Taiwan in April 2006. Travel times of head wave, refraction, reflection and converted shear wave identified from the hydrophone, vertical and horizontal components of these OBS data were applied for imaging P-wave velocity and Poisson’s ratio of hydrate-bearing sediments. In the accretionary prism off SW Taiwan, we found hydrate-bearing sediment, with a thickness of about 100–200 m, a relatively high P-wave velocity of 1.87–2.04 km/s and a relatively low Poisson’s ratio of 0.445–0.455, below anticlinal ridges near imbricate emergent thrusts in the drainage system of the Penghu and Kaoping Canyons. Free-gas layer, with a thickness of about 30–120 m, a relatively low P-wave velocity of 1.4–1.8 km/s and a relatively high Poisson’s ratio (0.47–0.48), was also observed below most of the bottom-simulating reflectors (BSR). Subsequently, based on rock physics of the three-phase effective medium, we evaluated the hydrate saturation of about 12–30% and the free-gas saturation of about 1–4%. The highest saturation (30% and 4%) of gas hydrates is found below anticlines due to N–S trending thrust-bounded folds and NE-SW thrusting and strike-slip ramps in the lower slope of the accretionary prism. We suggest that fluid may have migrated through the relay-fault array due to decollement folding and gas hydrates have been trapped in anticlines formed by the basement rises along the thrust faults. In contrast, in the rifted continental margin of the northernmost South China Sea, P-wave velocities of 1.9–2.2 km/s and 1.3–1.6 km/s, and thicknesses of about 50–200 m and 100–200 m, respectively, for a hydrate layer and a free-gas layer were imaged below the remnant and erosional ridges in the upper continental slope. High P-wave velocity of hydrate-bearing sediment below erosional ridges may also indicate high saturation of hydrates there. Normal faults due to rifting in the South China continental crust may have provided conduits for gas migration below the erosional ridges where P-wave velocity of hydrate-bearing sediment in the passive continental margin of the northernmost South China Sea is greater than that in the active accretionary prism off SW Taiwan.  相似文献   

7.
天然气水合物的地球物理识别标志   总被引:5,自引:0,他引:5  
地球物理标志是天然气水合物识别标志的重要组成部分,包括测井识别标志和地震识别标志两个方面。系统地总结了含天然气水合物沉积层在电阻、电位、井径、声波、密度、中子和成像测井等方面的测井异常,常规剖面和属性剖面上的地震响应异常,以及东海海域的地球物理异常特征,旨在为我国天然气水合物地球物理识别技术的研究提供基础材料。  相似文献   

8.
The synthesis of available geological information and surface temperature evolution in the Alaska North Slope region suggests that: biogenic and deeper thermogenic gases migrated through fault networks and preferentially invaded coarse-grained layers that have relatively high hydraulic conductivity and low gas entry pressures; hydrate started forming before the beginning of the permafrost; eventually, the permafrost deepened and any remaining free water froze so that ice and hydrate may coexist at some elevations. The single tested specimen (depth 620.47-620.62 m) from the D unit consists of uncemented quartzitic fine sand with a high fraction of fines (56% by mass finer than sieve #200). The as-received specimen shows no evidence of gas present. The surface texture of sediment grains is compatible with a fluvial-deltaic sedimentation environment and shows no signs of glacial entrainment. Tests conducted on sediments with and without THF hydrates show that effective stress, porosity, and hydrate saturation are the major controls on the mechanical and geophysical properties. Previously derived relationships between these variables and mechanical/geophysical parameters properly fit the measurements gathered with Mount Elbert specimens at different hydrate saturations and effective stress levels. We show that these measurements can be combined with index properties and empirical geomechanical relationships to estimate engineering design parameters. Volumetric strains measured during hydrate dissociation vanish at 2-4 MPa; therefore, minimal volumetric strains are anticipated during gas production at the Mount Elbert well. However, volume changes could increase if extensive grain crushing takes place during depressurization-driven production strategies, if the sediment has unexpectedly high in situ porosity associated to the formation history, or if fines migration and clogging cause a situation of sustained sand production.  相似文献   

9.
Presence of gas hydrate and free gas in Iranian part of Makran accretionary prism changes the elastic properties of unconsolidated sediments and produces sharp bottom simulating reflectors (BSRs) which are observed on the 2-D seismic data. Different methods have been applied to estimate the gas hydrate and free gas saturations in marine sediments based on seismic measurements. Most of these methods are based on relating the elastic properties to the hydrate and free gas saturations and remotely estimating their concentration. In this regard, using the effective medium theory (EMT) which was developed for different modes of hydrate distribution is more considered among other rock physics theories. The main concern about saturation estimations based on EMT is that the velocities of the hydrate-bearing sediments primarily depend on how they are distributed within the pore space. Therefore, understanding the modes of hydrate distribution (at least cementing or non-cementing modes) is necessary to decrease the estimation uncertainties.The first intention of paper is to investigate amplitude variation versus offset (AVO) analysis of BSR to determine the hydrate distribution modes. The results from the probable saturation revealed that if the hydrate cements the sediment grains, BSR would show the AVO class IV and if hydrate does not cement the sediment grains, then BSR would show either the AVO class II or class III depending on the free gas saturation just beneath the BSR. The second intention of paper is to introduce some templates called reflectivity templates (RTs) for quantitative study of hydrate resources. These templates are provided based on the EMT to quantify the hydrate and free gas near the BSR. Validation of this approach by synthetic data showed that a reliable quantification could be achieved by intercept-gradient RTs, only if these attributes are determined with a high accuracy and good assumptions are made about the mineralogical composition and porosity of the unconsolidated host sediments. The results of this approach applied to a 2-D marine pre-stack time migrated seismic line showed that less than 10% of the gas hydrate accumulated near to the BSR in anticlinal-ridge type structure of Iranian deep sea sediments. The free gas saturation near to the BSR by assuming a homogeneous distribution was less than 3% and by assuming patchy distribution was about 3–10%.  相似文献   

10.
Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2CH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.  相似文献   

11.
A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis.  相似文献   

12.
There are two types of gas hydrate-bearing reservoirs in the permafrost area of Qilian Mountain. Most of the gas hydrates occur mainly in the fractured mudstone reservoirs and rarely in the pores of the sandstone reservoirs. In this study, for the acoustic velocity characterization of the fractured gas hydrate reservoirs of the Qilian Mountain permafrost area, some mudstone core samples were collected for physical rock experiments, such as the acoustic experiment and the porosity and permeability experiment. An acoustic velocity numerical simulation of gas hydrate reservoirs was performed according to the Biot theory and the differential effective medium theory, with the conditions of multiple gas hydrate occurrence models, including the suspension model, the semi-cementation model and the cementation model, and considering both infinite and penny-shaped cracks. Fracture porosity was added to the core samples that only contain matrix porosity. With fracture porosity ranging from 0.01% to 5%, the variation laws between acoustic velocity with fractured porosity and hydrate saturation are obtained: (1) In the case of an infinite crack, if the fractured porosity is 0.01%–1%, the P-wave velocity decreases rapidly in the case of the three occurrence models. If the fractured porosity is higher than 1%, the acoustic velocity decreases gradually. If the crack shape is a penny-shaped crack, the P-wave velocity decreases almost linearly with increasing fracture porosity. (2) If the hydrate occurrence model is the suspension model, the P-wave velocity increases slightly with increasing hydrate saturation. If the occurrence model is the semi-cementation model or the cementation model, when the gas hydrate saturation of the infinite crack ranges from 0 to 80%, the acoustic velocity increases approximately linearly, whereas when the gas hydrate saturation ranges from 80% to 100%, the velocity increases rapidly. If the crack is a penny-shaped crack, the velocity increases almost linearly with increasing gas hydrate saturation from 0 to 100%. (3) It is found that the fractured gas hydrate reservoirs of the Qilian Mountain permafrost area contain both penny-shaped and infinite cracks, of which the infinite crack is the main crack shape. The gas hydrate occurrence in the Qilian Mountain permafrost area mainly follows the suspension model. This has significance for the seismic exploration and log evaluation of gas hydrate-bearing fractured reservoirs in the permafrost area of the Qilian Mountain in studying the acoustic velocity characterization, the crack shapes and occurrence models of gas hydrate reservoirs in the study area.  相似文献   

13.
Gas hydrate has been recognized as a potential energy resource in South China Sea (SCS). Understanding the acoustic response of gas hydrate formation in the SCS sediments is essential for regional gas hydrate investigation and quantification. The sediments were obtained from gravity core sampling at E 115°12.52363′ N 19°48.40299′. Gas hydrate was formed within a “gas + water-saturated SCS sediments” system. Combination of a new bender element technique and coated time domain reflectometry (TDR) was carried out to study the acoustic response of hydrate occurrence in SCS sediments. The results show the acoustic signal becomes weak when hydrate saturation (Sh) is lower than 14%. The acoustic velocities (Vp, Vs) of the sediments increase with Sh during hydrate formation, and Vs increases relatively faster when Sh is higher than 14%. These results indicate that tiny hydrate particles may firstly float in the pore fluid, which causes a significant acoustic attenuation, but has little influence on shear modulus. As time lapses and Sh approaches 14%, numerous particles coalesce together and contact with sediment particles. As a result, Vs has a sharp increase when hydrate saturation exceeds 14%. Several velocity models were validated with the experimental data, which suggests a combination of the BGTL (Biot–Gassmann Theory modified by Lee) model and the Weighted Equation is suitable to estimate Sh in SCS.  相似文献   

14.
The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled and cored from 606.5 to 760.1 m on the North Slope of Alaska, to evaluate the occurrence, distribution and formation of gas hydrate in sediments below the base of the ice-bearing permafrost. Both the dissolved chloride and the isotopic composition of the water co-vary in the gas hydrate-bearing zones, consistent with gas hydrate dissociation during core recovery, and they provide independent indicators to constrain the zone of gas hydrate occurrence. Analyses of chloride and water isotope data indicate that an observed increase in salinity towards the top of the cored section reflects the presence of residual fluids from ion exclusion during ice formation at the base of the permafrost layer. These salinity changes are the main factor controlling major and minor ion distributions in the Mount Elbert Well. The resulting background chloride can be simulated with a one-dimensional diffusion model, and the results suggest that the ion exclusion at the top of the cored section reflects deepening of the permafrost layer following the last glaciation (∼100 kyr), consistent with published thermal models. Gas hydrate saturation values estimated from dissolved chloride agree with estimates based on logging data when the gas hydrate occupies more than 20% of the pore space; the correlation is less robust at lower saturation values. The highest gas hydrate concentrations at the Mount Elbert Well are clearly associated with coarse-grained sedimentary sections, as expected from theoretical calculations and field observations in marine and other arctic sediment cores.  相似文献   

15.
The northern Gulf of Mexico (GoM) has long been a focus area for the study of gas hydrates. Throughout the 1980s and 1990s, work focused on massive gas hydrates deposits that were found to form at and near the seafloor in association with hydrocarbon seeps. However, as global scientific and industrial interest in assessment of the drilling hazards and resource implications of gas hydrate accelerated, focus shifted to understanding the nature and abundance of “buried” gas hydrates. Through 2005, despite the drilling of more than 1200 oil and gas industry wells through the gas hydrate stability zone, published evidence of significant sub-seafloor gas hydrate in the GoM was lacking. A 2005 drilling program by the GoM Gas Hydrate Joint Industry Project (the JIP) provided an initial confirmation of the occurrence of gas hydrates below the GoM seafloor. In 2006, release of data from a 2003 industry well in Alaminos Canyon 818 provided initial documentation of gas hydrate occurrence at high concentrations in sand reservoirs in the GoM. From 2006 to 2008, the JIP facilitated the integration of geophysical and geological data to identify sites prospective for gas hydrate-bearing sands, culminating in the recommendation of numerous drilling targets within four sites spanning a range of typical deepwater settings. Concurrent with, but independent of, the JIP prospecting effort, the Bureau of Ocean Energy Management (BOEM) conducted a preliminary assessment of the GoM gas hydrate petroleum system, resulting in an estimate of 607 trillion cubic meters (21,444 trillion cubic feet) gas-in-place of which roughly one-third occurs at expected high concentrations in sand reservoirs. In 2009, the JIP drilled seven wells at three sites, discovering gas hydrate at high saturation in sand reservoirs in four wells and suspected gas hydrate at low to moderate saturations in two other wells. These results provide an initial confirmation of the complex nature and occurrence of gas hydrate-bearing sands in the GoM, the efficacy of the integrated geological/geophysical prospecting approach used to identify the JIP drilling sites, and the relevance of the 2008 BOEM assessment.  相似文献   

16.
针对天然气水合物钻探与取样难以解决的水合物矿体空间展布等问题,利用白云-荔湾凹陷高密度分析重新处理的三维地震资料,首先基于模糊数学的多属性融合技术对水合物分布进行刻画;再通过高分辨率速度场对浅层开展高分辨率宽频无井反演技术,提高了水合物层分辨率;最后,利用岩石物理方法及多种模型对水合物饱和度进行定量预测,实现了对5~6m厚水合物层的有效辨别,进而形成了一套适合于孔隙充填型的水合物矿藏目标识别评方法。结果表明:应用该技术可有效对荔湾3水合物富集区第四条带水合物空间刻画,揭示出该区水合物饱和度最高可超40%,同时薄层与厚层水合物具有明显互层分布特征,在水合物矿体刻画及饱和度预测基础上,进一步对该区实施了井位优选,该方法预测的水合物层与实际钻探H1和H2站位吻合较好。这些结果说明常规三维油气地震数据在经过宽频处理后可应用于高分辨率水合物勘探,节约经济成本,同时提高了常规地震在水合物勘探中精度与实用性。  相似文献   

17.
Regional erosion of the Rock Garden ridge top, a bathymetric high within New Zealand’s Hikurangi Subduction Margin, is likely associated with its gas hydrate system. Seismic data reveal gas pockets that appear partially trapped beneath the shallow base of gas hydrate stability. Steady-state fluid flow simulations, conducted on detailed two-dimensional geological models, reveal that anomalous fluid pressure can develop close to the sea floor in response to lower-permeability hydrate-bearing sediments and underlying gas pockets. Transient simulations indicate that large-scale cycling of fluid overpressure may occur on time scales of a few to tens of years. We predict intense regions of hydro-fracturing to preferentially develop beneath the ridge top rather than beneath the flanks, due to more pronounced overpressure generation and gas migration through hydrate-bearing sediments. Results suggest that sediment weakening and erosion of the ridge top by hydro-fracturing could be owed to fluid dynamics of the shallow gas hydrate system.  相似文献   

18.
海底天然气水合物的地震资料处理与分析   总被引:2,自引:0,他引:2  
介绍了利用多道反射地震资料,采用反射振幅随炮检距变化AVO(Ampltude versus Offset)技术和其他地震正、反演方法,通过研究地震剖面上的拟海底反射层(BSR)分布、地震弹性参数特征,来探讨BSR上、下方含天然气水合物沉积层和含游离气沉积层的内部结构和某些主要物理性质,如沉积物的空隙率、天然气水合物的饱和度等,由此来评估海底天然气水合物的资源前景并研究其成矿机制。  相似文献   

19.
Downhole wireline log (DWL) data was acquired from eight drill sites during China's first gas hydrate drilling expedition (GMGS-1) in 2007. Initial analyses of the acquired well log data suggested that there were no significant gas hydrate occurrences at Site SH4. However, the re-examination of the DWL data from Site SH4 indicated that there are two intervals of high resistivity, which could be indicative of gas hydrate. One interval of high resistivity at depth of 171–175 m below seafloor (mbsf) is associated with a high compressional- wave (P-wave) velocities and low gamma ray log values, which suggests the presence of gas hydrate in a potentially sand-rich (low clay content) sedimentary section. The second high resistivity interval at depth of 175–180 mbsf is associated with low P-wave velocities and low gamma values, which suggests the presence of free gas in a potentially sand-rich (low clay content) sedimentary section. Because the occurrence of free gas is much shallower than the expected from the regional depth of the bottom simulating reflector (BSR), the free gas could be from the dissociation of gas hydrate during drilling or there may be a local anomaly in the depth to the base of the gas hydrate stability zone. In order to determine whether the low P-wave velocity with high resistivity is caused by in-situ free gas or dissociated free gas from the gas hydrate, the surface seismic data were also used in this analysis. The log analysis incorporating the surface seismic data through the construction of synthetic seismograms using various models indicated the presence of free gas directly in contact with an overlying gas hydrate-bearing section. The occurrence of the anomalous base of gas hydrate stability at Site SH4 could be caused by a local heat flow conditions. This paper documents the first observation of gas hydrate in what is believed to be a sand-rich sediment in Shenhu area of the South China Sea.  相似文献   

20.
Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号