首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Piper  Hiscott  & Normark 《Sedimentology》1999,46(1):47-78
The uppermost Quaternary deposits of the Hueneme and Dume submarine fans in the Santa Monica Basin have been investigated using a closed-spaced grid of boomer seismic-reflection profiles, which give vertical resolution of a few tens of centimetres with acoustic penetration to 50 m. Acoustic facies integrated with geometry define six architectural elements, some with discrete subelements that are of a scale that can be recognized in outcrops of ancient turbidite systems. In the Santa Monica Basin, the relationship of these elements to fan morphology, stratigraphy and sediment source is precisely known.
The width of upper Hueneme fan valley has been reduced from 5 km since the last glacial maximum to 1 km at present by construction of laterally confined sandy levees within the main valley. The middle fan comprises three main subelements: thick sand deposits at the termination of the fan valley, low-gradient sandy lobes typically 5 km long and < 10 m thick, and scoured lobes formed of alternating sand and mud beds with many erosional depressions. The site of thickest lobe sediment accumulation shifts through time, with each sand bed deposited in a previous bathymetric low (i.e. compensation cycles). The lower fan and basin plain consists of sheet-like alternations of sand and mud with shallow channels and lenses.
Variations in the rate of late Quaternary sea level rise initiated changes in sediment facies distribution. At lowstand, and during the approximately 11 ka stillstand in sea level, the Hueneme Fan was fed largely by hyperpycnal flow from the Santa Clara River delta, depositing high sediment waves on the right hand levee and thick sandy lobes on the middle fan. At highstand of sea level, most turbidity currents were generated by failure of silty prodelta muds. In contrast, the smaller Dume Fan was apparently always fed from littoral drift of sand through a single-canyon point source.  相似文献   

2.
Small turbidite systems offshore from southern California provide an opportunity to track sediment from river source through the turbidity‐current initiation process to ultimate deposition, and to evaluate the impact of changing sea level and tectonics. The Santa Monica Basin is almost a closed system for terrigenous sediment input, and is supplied principally from the Santa Clara River. The Hueneme fan is supplied directly by the river, whereas the smaller Mugu and Dume fans are nourished by southward longshore drift. This study of the Late Quaternary turbidite fill of the Santa Monica Basin uses a dense grid of high‐resolution seismic‐reflection profiles tied to new radiocarbon ages for Ocean Drilling Program (ODP) Site 1015 back to 32 ka. Over the last glacial cycle, sedimentation rates in the distal part of Santa Monica Basin averaged 2–3 mm yr?1, with increases at times of extreme relative sea‐level lowstand. Coarser‐grained mid‐fan lobes prograded into the basin from the Hueneme, Mugu and Dume fans at times of rapid sea‐level fall. These pulses of coarse‐grained sediment resulted from river channel incision and delta cannibalization. During the extreme lowstand of the last glacial maximum, sediment delivery was concentrated on the Hueneme Fan, with mean depositional rates of up to 13 mm yr?1 on the mid‐ and upper fan. During the marine isotope stage (MIS) 2 transgression, enhanced rates of sedimentation of > 4 mm yr?1 occurred on the Mugu and Dume fans, as a result of distributary switching and southward littoral drift providing nourishment to these fan systems. Longer‐term sediment delivery to Santa Monica Basin was controlled by tectonics. Prior to MIS 10, the Anacapa ridge blocked the southward discharge of the Santa Clara River into the Santa Monica Basin. The pattern and distribution of turbidite sedimentation was strongly controlled by sea level through the rate of supply of coarse sediment and the style of initiation of turbidity currents. These two factors appear to have been more important than the absolute position of sea level.  相似文献   

3.
海底扇是由沉积物重力流形成的海底沉积体。其分类学和相模式研究表明,海底扇主要由海底水道、溢岸及朵叶体等沉积单元构成。然而古代和现代海底扇沉积均无法由单一的通用相模式进行解释。以粒度差异所建立的相模式类型涵盖了多方面信息,相对简单实用。海底扇的触发机制主要包括海底沉积物失稳、洪水型异重流、海洋动力过程及复合成因机制等类型。海底扇的主导流体类型(碎屑流与浊流)、海底地貌形态(限制性与非限制性)及海洋动力条件(底流作用)深刻影响了海底扇的沉积作用、平面形态及空间组合特征,整体上分为三类。其中,浊流沉积主导的海底扇在非限制性海底环境中主要表现为扇状或指状形态,在限制性海底环境中则直接受控于盆地的地貌形态;碎屑流沉积主导的海底扇以块体搬运为特征,平面上表现为舌状和叶状展布形态;底流与重力流共同作用形成的混合型海底扇朵叶体沿底流流向侧向偏转,部分受底流改造沉积形成孤立漂积丘状形态。海底扇沉积物记录了环境信号从“源”到“汇”传输效率和保存程度,对构造变形和古气候变化具有重要的指示作用。人类世以来的现代海底扇沉积物同时也是深海微塑料、陆源有机碳的重要储库,定量评估其丰度特征对于环境评价、污染治理与管控及全球碳循环均具有深远的现实意义。  相似文献   

4.
Permian deep‐water mudstones in the Tanqua Basin, South Africa, have been studied using geochemical and spectral gamma ray techniques. The mudstones occur as thick sequences between sand‐rich submarine fans, but also occur as thinner mud‐rich units within each fan. The interfan mudstones are interpreted to have accumulated during transgression and the consequent period of relatively high sea‐level, while the submarine fans and their intrafan mudstones were deposited during regression and relatively low sea‐level. Geochemical analyses revealed systematic differences between interfan and intrafan mudstones because the two types of mudstones have slightly different source lithologies. Differences between the two types of mudstone suggest that changes in relative sea‐level played a role in controlling exposure of sediment source areas. There are geochemical signals that display systematic stratigraphic trends within both interfan and intrafan mudstones. These are best explained by gradual denudation, exposure and weathering of different lithologies within a single sediment source area. Both interfan and intrafan mudstones have uniform geochemical signals along the flow direction except for the relative amount of uranium. It is most likely that the basinward increase in uranium in the mudstones is the result of reduced clastic dilution of uranium‐bearing pelagic fallout.  相似文献   

5.
ABSTRACT The Wagwater Trough is a fault-bounded basin which cuts across east-central Jamaica. The basin formed during the late Palaeocene or early Eocene and the earliest sediments deposited in the trough were the Wagwater and Richmond formations of the Wagwater Group. These formations are composed of up to 7000 m of conglomerates, sandstones, and shales. Six facies have been recognized in the Wagwater Group: Facies I-unfossiliferous massive conglomerates; Facies II—channelized, non-marine conglomerates, sandstones, and shales; Facies III-interbedded, fossiliferous conglomerates and sandstones; Facies IV—fossiliferous muddy conglomerates; Facies V—channelized, marine conglomerates, sandstones, and shales; and Facies VI—thin-bedded sheet sandstones and shales. The Wagwater and Richmond formations are interpreted as fan delta-submarine fan deposits. Facies associations suggest that humid-region fan deltas prograded into the basin from the adjacent highlands and discharged very coarse sediments on to a steep submarine slope. At the coast waves reworked the braided-fluvial deposits of the subaerial fan delta into coarse sand and gravel beaches. Sediments deposited on the delta-front slope were frequently remobilized and moved downslope as slumps, debris flows, and turbidity currents. At the slope-basin break submarine fans were deposited. The submarine fans are characterized by coarse inner and mid-fan deposits which grade laterally into thin bedded turbidites of the outer fan and basin floor.  相似文献   

6.
Turbidite facies distribution and palaeocurrent analysis of submarine fan evolution in the Pindos foreland basin of west Peloponnesus peninsula (SW Greece) indicate that this part of the foreland was developed during Late Eocene to Early Oligocene in three linear sub‐basins (Tritea, Hrisovitsi and Finikounda). The basin fill conditions, with a multiple feeder system, which is characterized by axial transport of sediments and asymmetric stratigraphic thickness of the studied sediments, indicate that the Pindos Foreland Basin in this area was an underfilled foreland basin. Sediments are dominated by conglomerates, sandstones and mudstones. The flow types that controlled the depositional processes of the submarine fans were grain flows, debris flows and low‐ and high‐density turbidity currents. The sedimentary model that we propose for the depositional mechanisms and geometrical distribution of the turbidite units in the Tritea sub‐basin is a mixed sand‐mud submarine fan with a sequential interaction of progradation and retrogradation for the submarine fan development and shows a WNW main palaeocurrent direction. The Hrisovitsi sub‐basin turbidite system characterized by small‐scale channels was sediment starved, and the erosion during deposition was greater than the two other studied areas, indicating a more restricted basin topography with a NW main palaeocurrent direction. The Finikounda sub‐basin exhibits sand‐rich submarine fans, is characterized by the presence of distinct, small‐scale, thickening‐upward cycles and by the covering of a distal fan by a proximal fan. It was constructed under the simultaneous interaction of progradation and aggradation, where the main palaeocurrent direction was from NNW to SSE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
ABSTRACT The Sumeini Group formed along the passive continental margin slope that bounded the northeastern edge of the Arabian carbonate platform. With the initial development of this passive continental margin in Oman during Early to Middle Triassic time (possibly Permian), small carbonate submarine fans of the C Member of the Maqam Formation developed along a distally steepened slope. The fan deposits occur as several discrete lenticular sequences of genetically related beds of coarsegrained redeposited carbonate (calciclastic) sediment within a thick interval of basinal lime mudstone and shale. Repeated pulses of calciclastic sediment were derived from ooid shoals on an adjacent carbonate platform and contain coarser intraclasts eroded from the surrounding slope deposits. Sediment gravity flows, primarily turbidites with lesser debris flows and grain flows, transported the coarse sediments to the relatively deep submarine fans. Channel erosion was a major source of intraformational calcirudite. Two small submarine fan systems were each recurrently supplied with calciclastic sediment derived from point sources, submarine canyons. The northern fan system retrogrades and dies out upsection. The southern fan system was apparently longer-lived; calciclastic sediments in it are more prevalent and occur throughout the section. The proximal portions of this fan system are dominated by channelized beds of calcirudite which represent inner- to mid-fan channel complexes. The distal portions include mostly lenticular, unchannelized beds of calcarenite, apparently mid- to outer-fan lobes. Carbonate submarine fans appear to be rare in the geological record in comparison with more laterally continuous slope aprons of coarse redeposited sediment. The carbonate submarine fans of the C Member apparently formed by the funnelling of coarse calciclastic sediment into small submarine canyons which may have developed due to rift and/or transform tectonics. The alternation of discrete sequences of calciclastic sediment with thick intervals of ‘background’ sediment resulted from either sea-level fluctuations or pulses of tectonic activity.  相似文献   

8.
This paper defines the principal architectural elements present within the Pleistocene, glaciolacustrine basin-fill of the Copper River Basin in Alaska. The Copper River drains an intermontane basin via a single deeply incised trench through the Chugach Mountains to the Gulf of Alaska. This trench was blocked by ice during the last glacial cycle and a large ice-dammed lake, referred to as Lake Atna, filled much of the Copper Basin. Facies analysis within the basin floor allows a series of associations to be defined consistent with the basinward transport of sediment deposited along calving ice margins and at the basin edge. Basinward transport involves a continuum of gravity driven processes, including slumping, cohesive debris flow, hyperconcentrated/concentrated density flows, and turbidity currents. This basinward transport results in the deposition of a series of subaqueous fans, of which two main types are recognised. (1) Large, stratified, basin floor fans, which extend over at least 5 km and are exposed in the basin centre. These fans are composed of multiple lobes, incised by large mega-channels, giving fan architectures that are dominated by horizontal strata and large, cross-cutting channel-fills. Individual lobes and channel-fills consist of combinations of: diamict derived from iceberg rainout and the ice-marginal release of subglacial sediment; multiple units of fining upward gravels which grade vertically into parallel laminated and rippled fine sands and silts, deposited by a range of density flows and currents derived from the subaqueous discharge of meltwater; and rhythmites grading vertically into diamicts deposited from a range of sediment-density flows re-mobilising sediment deposited by either iceberg rainout or the ice-marginal release of sediment. (2) Small, complex, proximal fans, which extend over less than 2 km, and are exposed in the southern part of the basin. These fans are composed of coalescing and prograding lobes of diamict and gravel deposited both directly by subaqueous meltwater and from sediment-density flows. These lobes are cross-cut by a range of sand and gravel-filled troughs and channels cut by subaqueous outwash, and either overlie or are overlain by horizontal sheets of gravel and diamict deposited from a range of sediment-density flows. The fans are, therefore, characterised by a complex, and laterally variable facies, architecture. Water depth, proglacial topography, stability of meltwater portals and sediment supply may all be important in determining the type of subaqueous fan present at any one location. We suggest that the Copper River basin-fill is dominated by packages of sediment containing multiple subaqueous fans with individual fans separated by units of diamict. Each sediment package is in turn separated from the next by a palaeo-landsurface shaped by interstadial/interglacial fluvial processes and by volcanic debris flows.  相似文献   

9.
The Tanqua area of the Karoo basin, South Africa, contains five Permian deep-water turbidite fan systems, almost completely exposed over some 640 km2. Reconstruction of the basin-fill and fan distributions indicates a progradational trend in the 450 m+ thick succession, from distal basin floor (fan 1) through basin-floor subenvironments (fans 2, 3 and 4) to a slope setting (fan 5). Fans are up to 65 m thick with gradational to sharp bases and tops. Facies associations include basin plain claystone and distal turbidite siltstone/claystone and a range of fine-grained sandstone associations, including low- and high-density turbidite current deposits and proportionally minor debris/slurry flows. Architectural elements include sheets of amalgamated and layered styles and channels of five types. Each fan is interpreted as a low-frequency lowstand systems tract with the shaly interfan intervals representing transgressive and highstand systems tracts. All fans show complex internal facies distributions but exhibit a high-frequency internal stratigraphy based on fan-wide zones of relative sediment starvation. These zones are interpreted as transgressive and highstand systems tracts of higher order sequences. Sandy packages between these fine-grained intervals are interpreted as high-frequency lowstand systems tracts and exhibit dominantly progradational stacking patterns, resulting in subtle downdip clinoform geometries. Bases of fans and intrafan packages are interpreted as low- and high-frequency sequence boundaries respectively. Facies juxtapositions across these sequence boundaries are variable and may be gradational, sharp or erosive. In all cases, criteria for a basinward shift of facies are met, but there is no standard 'motif' for sequence boundaries in this system. High-frequency sequences represent the dominant mechanism of active fan growth in the Tanqua deep-water system.  相似文献   

10.
Flume experiments were performed to study the flow properties and depositional characteristics of high‐density turbidity currents that were depletive and quasi‐steady to waning for periods of several tens of seconds. Such currents may serve as an analogue for rapidly expanding flows at the mouth of submarine channels. The turbidity currents carried up to 35 vol.% of fine‐grained natural sand, very fine sand‐sized glass beads or coarse silt‐sized glass beads. Data analysis focused on: (1) depositional processes related to flow expansion; (2) geometry of sediment bodies generated by the depletive flows; (3) vertical and horizontal sequences of sedimentary structures within the sediment bodies; and (4) spatial trends in grain‐size distribution within the deposits. The experimental turbidity currents formed distinct fan‐shaped sediment bodies within a wide basin. Most fans consisted of a proximal channel‐levee system connected in the downstream direction to a lobe. This basic geometry was independent of flow density, flow velocity, flow volume and sediment type, in spite of the fact that the turbidity currents of relatively high density were different from those of relatively low density in that they exhibited two‐layer flow, with a low‐density turbulent layer moving on top of a dense layer with visibly suppressed large‐scale turbulence. Yet, the geometry of individual morphological elements appeared to relate closely to initial flow conditions and grain size of suspended sediment. Notably, the fans changed from circular to elongate, and lobe and levee thickness increased with increasing grain size and flow velocity. Erosion was confined to the proximal part of the leveed channel. Erosive capacity increased with increasing flow velocity, but appeared to be constant for turbidity currents of different grain size and similar density. Structureless sediment filled the channel during the waning stages of the turbidity currents laden with fine sand. The adjacent levee sands were laminated. The massive character of the channel fills is attributed to rapid settling of suspension load and associated suppression of tractional transport. Sediment bypassing prevailed in fan channels composed of very fine sand and coarse silt, because channel floors remained fully exposed until the end of the experiments. Lobe deposits, formed by the fine sand‐laden, high‐density turbidity currents, contained massive sand in the central part grading to plane parallel‐laminated sand towards the fringes. The depletive flows produced a radial decrease in mean grain size in the lobe deposits of all fans. Vertical trends in grain size comprised inverse‐to‐normal grading in the levees and in the thickest part of the lobes, and normal grading in the channel and fringes of the fine sandy fans. The inverse grading is attributed to a process involving headward‐directed transport of relatively fine‐grained and low‐concentrated fluid at the level of the velocity maximum of the turbidity current. The normal grading is inferred to denote the waning stage of turbidity‐current transport.  相似文献   

11.
The Transverse Ranges of southern California represent an uplifted and variably dissected Mesozoic magmatic arc, and Mesozoic to Holocene sedimentary and volcanic strata deposited in convergent and transform tectonic settings. Modern sand within part of the Western Transverse Ranges represents: first-order sampling scale of the Santa Monica and the San Gabriel Mountains; second-order sampling scale of the Santa Clara River draining both mountain ranges; and third-order sampling scale of the beach system between the mouth of the Santa Clara River and the eastern Santa Monica Mountains, and turbidite sand of the Hueneme-Mugu submarine fan. Source lithology includes plutonic and metamorphic rocks of the San Gabriel Mountains, and sedimentary and volcanic rocks of the Santa Monica Mountains. First-order sands have large compositional variability. Sand from local coastal drainage of the Santa Monica Mountains ranges from basaltic feldspatholithic to quartzofeldspathic. Sand of the San Gabriel Mountains local drainages has three distinct petrofacies, ranging from metamorphiclastic feldspatholithic to mixed metamorphi/plutoniclastic and plutoniclastic quartzofeldspathic. Second-order sand is represented by the main channel of the Santa Clara River; the sand has an abrupt downstream compositional change, from feldspathic to quartzofeldspathic. Third-order sand (beaches and deep-sea turbidite samples) of the Santa Monica Basin is quartzofeldspathic. Beach sand is more quartz-rich than is Santa Clara river sand, whereas turbidite sand is more feldspar-rich than is beach sand. Deep-sea sand has intermediate composition with respect to second-order samples of the Santa Clara River and third-order samples of the beach system, suggesting that (1) the Santa Clara River is the main source of sediments to the marine environment; and (2) local entry points from canyons located near local drainages may generate turbidity currents during exceptional flood conditions. Petrologic data of modern sand of the study area are highly variable at first- and second-order scale, whereas third-order sand is homogenized. The homogenized composition of deep-marine sand is similar to the composition of most ancient sandstone derived primarily from the Mesozoic dissected magmatic arc of southern California. This study of the Western Transverse Ranges illustrates the effects of source lithology, transport, depositional environment, and sampling scale on sand composition of a complex system, which provides insights regarding actualistic petrofacies models.  相似文献   

12.
Bed thickness data of two turbidite sections viz., Corbyn's Cove section, South Andaman and Kalipur section, North Andaman those belong to Oligocene Andaman Flysch Group, a forearc submarine fan system, were assessed for facies clustering employing Hurst statistics. Both the sections show Hurst phenomenon and reveal clustering in terms of thick and thin beds. Forcing behind event (bed) depositions in either of the studied sections was assessed statistically and inferred to be non-random and with cyclicities of irregular physical length. The inferred paleogeography through Hurst criteria though worked well for distal fan setting i.e., basin floor sheet sandstones of Corbyn's Cove section, its unequivocal application in proximal fan deposits remains to be tested. The mismatch in paleogeographic interpretation between Hurst test result (lobe-interlobe) and field observation (channel-levee) for the inner fan deposit is explained through differential facies stacking between fans grow in sea-level lowstand and highstand. Lower bed amalgamation, poor sand to mud ratio and subordinately present thick event deposits may be the result of active growth of Andaman Flysch fan in sea level highstand and expressed in lower Hurst K value for inner fan channel-levee association (Kalipur section) compared to many of the channel-levee deposits of lowstand fan systems observed world over.  相似文献   

13.
J. R. INESON 《Sedimentology》1989,36(5):793-819
The Cretaceous of west James Ross Island, Antarctica represents the proximal fill of a late Mesozoic back-arc basin that was probably initiated by oblique extension during the early development of the Weddell Sea. The succession records sedimentation in two contrasting depositional systems: a laterally persistent slope apron flanking the faulted basin margin interrupted both spatially and temporally by coarse-grained submarine fans. Slope apron deposits are dominated by thinly interbedded turbiditic sandstones and mudstones (mudstone association), interspersed with non-channelized chaotic boulder beds, intraformational slump sheets and isolated exotic blocks representing a spectrum of mass-flow processes from debris flow to submarine gliding. Localized sand-rich sequences (sandstone-breccia association) represent sandy debris lobes at the mouths of active slope chutes. The submarine fan sediments (conglomerate association) are typified by coarse conglomerates and pebbly sandstones, interpreted as the deposits of high-density turbidity currents and non-cohesive debris flows. Three assemblages are recognized and are suggested to represent components of the inner channelled zone of coarse-grained submarine fans, from major fan channels through ephemeral, marginal channels or terraces to levee or interchannel environments. The occurrence of both slope apron and submarine fan depositional systems during the Early and Mid-Cretaceous is attributed to localized input of coarse arc-derived sediment along a tectonically active basin margin. Periods of extensive fan development were probably linked to regional tectonic uplift and rejuvenation of the arc source region; cyclicity within individual fan sequences is attributed to migration or switching of fan channels or canyons. Slope apron sedimentation was controlled largely by intrabasinal tectonics. Local unconformities and packets of amalgamated slide sheets and debris flow deposits probably reflect episodic movement on basin margin faults. Differential subsidence across the basin margin anchored the basin slope for at least 20 Myr and precluded basinward progradation of shallow marine environments.  相似文献   

14.
在岩心观察的基础上,结合录井及多种分析化验资料,对吐哈盆地鲁克沁地区二叠系梧桐沟组沉积相标志、物源方向、沉积相展布及沉积模式进行研究。结果表明,梧桐沟组沉积时期,鲁克沁地区湖盆经历了由断陷湖盆向坳陷湖盆转换的过程。梧桐沟组一段沉积时期,研究区东西两侧发育水下扇沉积,扇中水道形成多期叠置的厚层泥质砂砾岩沉积,砂砾岩分布面积大,物性较差。梧桐沟组二段和三段沉积时期,湖盆水体变浅,湖岸坡度变缓,研究区东西两侧发育扇三角洲沉积,前缘水下分流河道形成了几套厚10~15 m的砂砾岩沉积,分选性好于水下扇形成的砂砾岩,物性相对较好。相比较而言,扇三角前缘水下分流河道砂体和水下扇砂体顶部的含砾砂岩是较好的储集体。该研究成果将对鲁克沁稠油聚集带储集层预测及区带优选具有指导意义。  相似文献   

15.
F. Mattern 《Sedimentary Geology》2002,150(3-4):203-228
Hydraulic differences between channelized and unchannelized flows in sand-rich submarine fans result in different distributions of amalgamation surfaces, bed thicknesses, and dish structures in successions of these two different environments. Distribution trends of these fabrics were quantified for the sand-rich fans of the Reiselsberger Sandstein (Cenomanian–Turonian). These trends can be used as criteria to distinguish channelized from unchannelized paleoenvironments of sand-rich submarine fans.

Amalgamation surfaces in the studied fans' channelized regions are considerably more abundant than in the unchannelized fan areas. In unchannelized deposits, tabular amalgamation surfaces outnumber nontabular ones, whereas the opposite occurs in channelized successions. These results indicate a higher degree of erosive power of gravity-driven sediment flows in channels as a result of a greater flow thickness, higher flow velocity, and turbulence.

The average turbidite layer thickness in channelized successions is markedly greater than in unchannelized deposits (“layer” as defined herein). This is mainly attributed to the combined effects of differences in sediment fall-out rate and the inefficiency of sand-rich suspensions to transport sand. In the proximal and channelized fan areas, more sediment is deposited from a flow in the form of a layer than in distal unchannelized fan regions despite a higher degree of erosion in channels. The greater average bed thickness in channel fills is a function of layer thickness and more frequent amalgamations (“bed” as defined herein).

Dish structures seem to be considerably more common in midfan than in outer-fan successions. This may indicate a higher sedimentation rate from individual suspension currents in midfan areas.  相似文献   


16.
High-resolution seismic boomer profiles, with a vertical resolution of less than 1 m, together with piston cores and previous side-scan sonar data, are used to describe late Quaternary sedimentation on the Var deep-sea fan. Chronological control is provided by foram biostratigraphy and radiocarbon dating in cores, and is extended over the fan by seismic correlation. Regional erosional events correspond to the oxygen isotopic stage 2 and 6 glacial maxima. Cores and seismic data define a widespread surface sand layer that is correlated with prodelta failure in 1979 and subsequent submarine cable breaks. Numerical modelling constrains the character of this 1979 turbidity current. It originated from a relatively small slide on the upper prodelta that put sufficient material in suspension to form an accelerating turbidity current which eroded sand from the Var Canyon. The turbidity current was only 30 m thick on the Upper Valley, but experienced significant flow expansion in the Middle Valley to thicknesses of more than 120 m, where it spilled over the eastern Var Sedimentary Ridge at a velocity of about 2·5 m s?1. Other Holocene turbidity currents (with a recurrence interval of 1000 years) were somewhat muddier and thicker, but also deposited sand on the levees of the Middle Valley, and are inferred to have had a similar slide-related origin. Late Pleistocene turbidity currents deposited thick mud beds on the Var Sedimentary Ridge. The presence of sediment waves and the mean cross-flow slope inferred from levee asymmetry indicates that some of these flows were many hundreds of metres thick and flowed at velocities of about 0·35 m s?1. This contrast with Holocene turbidites suggests that a slide origin is unlikely. Estimated times for deposition of thick mud beds on the levees are many days to weeks. The Late Pleistocene flows may therefore result from hyperpycnal flow of glacial outwash in the Var River. The variation in the Late Pleistocene to Holocene turbidite sedimentation is controlled more by variations in sediment supply than by sea-level change.  相似文献   

17.
The Middle and Late Pleistocene succession on the glacier-fed fan at the mouth of Storfjorden trough was studied using high-resolution seismic data. Seven glacial advances to the shelf break during Middle and Late Pleistocene resulted in episodic high sediment input to the fan with real sedimentation rates of up to 172 cm/1000 years, separated by sediment-starved interstadials and interglacials. On the upper fan the high sediment input resulted in frequent slides and slumps, generating debris flows which dominate the mid-fan strata. Compared with the larger neighbouring Bear Island trough mouth fan, the Storfjorden trough mouth fan has a steeper fan gradient, narrower, thinner and shorter debris flow deposits and lower frequency of large scale sliding. Glacier-fed submarine fans receive their main sediment input from a glacier margin at the shelf break, as opposed to river-fed fans where sediment input occurs through a channel-levee complex. As a result, the depocentre of a river-fed fan is found on the mid-fan and the upper slope is mainly an area of sediment bypass, whereas the glacier-fed fan has an elongated depocentre across the uppermost fan. The river-fed fans are dominated by deposition from turbidity currents, whereas glacier-fed fans are dominated by debris flow deposits.  相似文献   

18.
Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross‐shelf troughs. One of these fans, termed here ‘Uummannaq Fan’, is a trough‐mouth fan built largely by debris delivered from a fast‐flowing outlet of the Greenland Ice Sheet during past glacial maxima. Cores from this fan provide the first information on glacimarine sedimentary facies within a major West Greenland trough‐mouth fan and on the nature of Late Weichselian–Holocene glacigenic sediment delivery to this region of the Baffin Bay margin. Glacigenic debris flows deposited on the upper slope and extending to at least 1800 m water depth in front of the trough‐mouth are related to the remobilization of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterized by hemipelagic and ice‐rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Quantitative X‐ray diffraction studies of the <2‐mm sediment fraction indicate that the bulk of the sediment in the fan is derived from Uummannaq Trough but there are distinct intervals when sediment from northern Baffin Bay sources dominates, especially on the northern limit of the fan. These data demonstrate considerable variation in the nature of sediment delivery across the Uummannaq Fan when the Greenland Ice Sheet was at the shelf edge. They highlight the variability of glacimarine depositional processes operating on trough‐mouth fans on high‐latitude continental margins during the last glacial maximum and indicate that glacigenic debris flows are just one of a number of mechanisms by which such large depocentres form. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The late Pleistocene and Holocene stratigraphy of Navy Fan is mapped in detail from more than 100 cores. Thirteen 14C dates of plant detritus and of organic-rich mud beds show that a marked change in sediment supply from sandy to muddy turbidites occurred between 9000 and 12,000 years ago. They also confirm the correlation of several individual depositional units. The sediment dispersal pattern is primarily controlled by basin configuration and fan morphology, particularly the geometry of distributary channels, which show abrupt 60° bends related to the Pleistocene history of lobe progradation. The Holocene turbidity currents are depositing on, and modifying only slightly, a relict Pleistocene morphology. The uppermost turbidite is a thin sand to mud bed on the upper-fan valley levées and on parts of the mid-fan. Most of its sediment volume is in a mud bed on the lower fan and basin plain downslope from a sharp bend in the mid-fan distributary system. Little sediment occurs farther downstream within this distributary system. It appears that most of the turbidity current overtopped the levée at the channel bend, a process referred to as flow stripping. The muddy upper part of the flow continued straight down to the basin plain. The residual more sandy base of the flow in the distributary channel was not thick enough to maintain itself as gradient decreased and the channel opened out on to the mid-fan lobe. Flow stripping may occur in any turbidity current that is thick relative to channel depth and that flows in a channel with sharp bends. Where thick sandy currents are stripped, levée and mid-fan erosion may occur, but the residual current in the channel will lose much of its power and deposit rapidly. In thick muddy currents, progressive overflow of mud will cause less declaration of the residual channelised current. Thus both size and sand-to-mud ratio of turbidity currents feeding a fan are important factors controlling morphologic features and depositional areas on fans. The size-frequency variation for different types of turbidity currents is estimated from the literature and related to the evolution of fan morphology.  相似文献   

20.
F. 《Earth》2005,70(3-4):167-202
Sand-rich submarine fans are radial or curved in plan view depending on the slope of the basin floor. They occur isolated or in coalescing systems. The fans' average lateral extent measures close to 25 km and their thickness usually less than 300 m. The thickness of outer fan sequences averages around 120 m and that of middle fan successions around 160 m. Rarely reported inner fan sequences have a maximum thickness of 80 m.

The formation of sand-rich fans is closely related to tectonic activity. Their sediment is coarse-grained and compositionally immature as indicated by significant feldspar content due to close provenance and rapid transport by short rivers with a steep gradient controlled by tectonism. Tectonic activity also provides for narrow shelves making the fans relatively insensitive to sealevel changes. Formation of sand-rich fans typically occurs in restricted continental basins. The tectonic settings are highly variable. Sand-rich fans typically receive their sediment through submarine canyons which intercept sand from longshore drift and/or are fed more or less directly by regional rivers.

The type of ancient fan system (radial, curved, isolated, coalescing) may be identified through paleocurrent map plots, facies map sketches, recognition of lateral thickness variations and sediment influx centers, as well as lateral bed correlations defining the minimum fan extent.

Important in distinguishing different environments of ancient fans are detailed measured sections, their comparison and correlation. Channelized inner fan and middle fan deposits may be distinguished from the unchannelized outer fan successions through bed correlation tests which reflect their different stratigraphic architectures and bedding patterns. Bedding in outer fan deposits (lobes) is relatively simple, parallel, and regular. The lateral bed continuity is relatively high. Channel fills, especially those of middle fan distributary channels, display a complicated bedding pattern with vertical and lateral random distribution of channel fills, axial erosion, and bed convergence towards the channel margins. Channel fills exhibit only linear bed continuity. Thus, the probability in carrying out local to regional scale lateral bed correlations is almost exclusively limited to outer fan deposits.

The measured sections will help further distinguish fan environments by revealing: (1) different facies associations in outer fan sequences (mainly B, C and D) and middle fan successions (mainly A, B, C, D, and channel margin facies); (2) greater average bed and layer thicknesses in middle fan as opposed to outer fan successions (“bed” and “layer” as used herein); (3) more frequent amalgamation surfaces in channel fills than in unchannelized outer fan deposits; (4) more frequent tabular amalgamation surfaces in outer fan sections; (5) more frequent nontabular amalgamation surfaces in channel fills; and (6) more frequent dish structures in middle fan than outer fan successions.

Rarely exposed fan valley fills may be identified by coarse conglomerates. Moreover, in proximity to fan valley fills, relatively mud-rich sediments may be observed that derive from the depositional system of the basin slope.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号