首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The differences in tropical Pacific sea surface temperature (SST) expressions of El Niño-Southern Oscillation (ENSO) events of the same phase have been linked with different global atmospheric circulation patterns. This study examines the dynamical forcing of precipitation during October–December (OND) and March–May (MAM) over East Africa and during December–March (DJFM) over Central-Southwest Asia for 1950–2010 associated with four tropical Pacific SST patterns characteristic of La Niña events, the cold phase of ENSO. The self-organizing map method along with a statistical distinguishability test was used to isolate La Niña events, and seasonal precipitation forcing was investigated in terms of the tropical overturning circulation and thermodynamic and moisture budgets. Recent La Niña events with strong opposing SST anomalies between the central and western Pacific Ocean (phases 3 and 4), force the strongest global circulation modifications and drought over the Northwest Indian Ocean Rim. Over East Africa during MAM and OND, subsidence is forced by an enhanced tropical overturning circulation and precipitation reductions are exacerbated by increases in moisture flux divergence. Over Central-Southwest Asia during DJFM, the thermodynamic forcing of subsidence is primarily responsible for precipitation reductions, with moisture flux divergence acting as a secondary mechanism to reduce precipitation. Eastern Pacific La Niña events in the absence of west Pacific SST anomalies (phases 1 and 2), are associated with weaker global teleconnections, particularly over the Indian Ocean Rim. The weak regional teleconnections result in statistically insignificant precipitation modifications over East Africa and Central-Southwest Asia.  相似文献   

2.
Observational data and climate model simulations and experiments are utilized to document an abrupt shift in Pacific sea surface temperatures (SSTs) and associated atmospheric conditions, which occurred in 1998–1999. Emphasis is placed on the March–May (MAM) season, as the motivation for the work is to extend a recent study that reported an abrupt decline in East African MAM rainfall at that time. An empirical orthogonal function analysis of MAM SSTs over the last century following the removal of the concurrent influence of the El Niño-Southern Oscillation and global warming trend by linear regression reveals a pattern of multidecadal variability in the Pacific similar to the Pacific Decadal Oscillation. Examination of MAM precipitation variations since 1940 indicates, among other findings, that recurrent drought events since 1999 in East Africa, central-southwest Asia, parts of eastern Australia and the southwestern US are all regional manifestations of a global scale multidecadal pattern. Associated shifts in the low-level wind field and upper-level stationary waves are discussed. Simulations using an atmospheric climate model forced with observed, global SSTs capture many of the salient precipitation and atmospheric circulation features associated with the observed shift. Further, when the model is forced only with observed SSTs from the tropical Pacific it also captures many of the observed atmospheric changes, including the abrupt shift in 1999. The results point to the fundamental role played by the tropical Pacific in driving the response to multidecadal variability of SSTs in the basin and provide important context for recent seasonal climate extremes in several regions of the globe.  相似文献   

3.
Observations show that the summer precipitation over East China often goes through decadal variations of opposite sign over North China and the Yangtze River valley (YRV), such as the “southern flood and northern drought” pattern that occurred during the late 1970s–1990s. In this study it is shown that a modulation of the Pacific Decadal Oscillation (PDO) on the summer precipitation pattern over East China during the last century is partly responsible for this characteristic precipitation pattern. During positive PDO phases, the warm winter sea surface temperatures (SSTs) in the eastern subtropical Pacific along the western coast of North American propagate to the tropics in the following summer due to weakened oceanic meridional circulation and the existence of a coupled wind–evaporation–SST feedback mechanism, resulting in a warming in the eastern tropical Pacific Ocean (5°N–20°N, 160°W–120°W) in summer. This in turn causes a zonal anomalous circulation over the subtropical–tropical Pacific Ocean that induces a strengthened western Pacific subtropical high (WPSH) and thus more moisture over the YRV region. The end result of these events is that the summer precipitation is increased over the YRV region while it is decreased over North China. The suggested mechanism is found both in the observations and in a 600-years fully coupled pre-industrial multi-century control simulations with Bergen Climate Model. The intensification of the WPSH due to the warming in the eastern tropical Pacific Ocean was also examined in idealized SSTA-forced AGCM experiments.  相似文献   

4.
Dai  Aiguo 《Climate Dynamics》2021,56(11):4027-4049

Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamflow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacific coasts of Canada. Streamflow records largely confirm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacific Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90 % of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections.

  相似文献   

5.
Observations and simulations link anthropogenic greenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60?years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by ~40° longitude (>4,000?km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55°E?C140°W) since at least 1948, explaining more variance than anomalies associated with the El Ni?o-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980?C2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ??long-rains?? season of March?CJune. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ??El Ni?o-like?? conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning.  相似文献   

6.
Results from nine coupled ocean-atmosphere simulations have been used to investigate changes in the relationship between the variability of monsoon precipitation over western Africa and tropical sea surface temperatures (SSTs) between the mid-Holocene and the present day. Although the influence of tropical SSTs on the African monsoon is generally overestimated in the control simulations, the models reproduce aspects of the observed modes of variability. Thus, most models reproduce the observed negative correlation between western Sahelian precipitation and SST anomalies in the eastern tropical Pacific, and many of them capture the positive correlation between SST anomalies in the eastern tropical Atlantic and precipitation over the Guinea coastal region. Although the response of individual model to the change in orbital forcing between 6 ka and present differs somewhat, eight of the models show that the strength of the teleconnection between SSTs in the eastern tropical Pacific and Sahelian precipitation is weaker in the mid-Holocene. Some of the models imply that this weakening was associated with a shift towards longer time periods (from 3–5 years in the control simulations toward 4–10 years in the mid-Holocene simulations). The simulated reduction in the teleconnection between eastern tropical Pacific SSTs and Sahelian precipitation appears to be primarily related to a reduction in the atmospheric circulation bridge between the Pacific and West Africa but, depending on the model, other mechanisms such as increased importance of other modes of tropical ocean variability or increased local recycling of monsoonal precipitation can also play a role.  相似文献   

7.
A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950–1999 is studied to identify and understand which components of the Asian–Australian monsoon (A–AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A–AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A–AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June–July–August SSTs in the equatorial eastern Pacific in recent decades. Among the A–AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A–AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices.  相似文献   

8.
The East Asian summer monsoon (EASM) circulation and summer rainfall over East China have experienced large decadal changes during the latter half of the 20th century. To investigate the potential causes behind these changes, a series of simulations using the national center for atmospheric research (NCAR) community atmospheric model version 3 (CAM3) and the geophysical fluid dynamics laboratory (GFDL) atmospheric model version 2.1 (AM2.1) are analyzed. These simulations are forced separately with different historical forcing, namely tropical sea surface temperature (SSTs), global SSTs, greenhouse gases plus aerosols, and a combination of global SSTs and greenhouse gases plus aerosols. This study focuses on the relative roles of these individual forcings in causing the observed monsoon and rainfall changes over East Asia during 1950–2000. The simulations from both models show that the SST forcing, primarily from the Tropics, is able to induce most of the observed weakening of the EASM circulation, while the greenhouse gas plus (direct) aerosol forcing increases the land-sea thermal contrast and thus enhances the EASM circulation. The results suggest that the recent warming in the Tropics, especially the warming associated with the tropical interdecadal variability centered over the central and eastern Pacific, is a primary cause for the weakening of the EASM since the late 1970s. However, a realistic simulation of the relatively small-scale rainfall change pattern over East China remains a challenge for the global models.  相似文献   

9.
Recent studies indicate a weakening of the Walker Circulation during the twentieth century. Here, we present evidence from an atmospheric general circulation model (AGCM) forced by the history of observed sea surface temperature (SST) that the Walker Circulation may have intensified rather than weakened. Observed Equatorial Indo-Pacific Sector SST since 1870 exhibited a zonally asymmetric evolution: While the eastern part of the Equatorial Pacific showed only a weak warming, or even cooling in one SST dataset, the western part and the Equatorial Indian Ocean exhibited a rather strong warming. This has resulted in an increase of the SST gradient between the Maritime Continent and the eastern part of the Equatorial Pacific, one driving force of the Walker Circulation. The ensemble experiments with the AGCM, with and without time-varying external forcing, suggest that the enhancement of the SST gradient drove an anomalous atmospheric circulation, with an enhancement of both Walker and Hadley Circulation. Anomalously strong precipitation is simulated over the Indian Ocean and anomalously weak precipitation over the western Pacific, with corresponding changes in the surface wind pattern. Some sensitivity to the forcing SST, however, is noticed. The analysis of twentieth century integrations with global climate models driven with observed radiative forcing obtained from the Coupled Model Intercomparison Project (CMIP) database support the link between the SST gradient and Walker Circulation strength. Furthermore, control integrations with the CMIP models indicate the existence of strong internal variability on centennial timescales. The results suggest that a radiatively forced signal in the Walker Circulation during the twentieth century may have been too weak to be detectable.  相似文献   

10.
The present study investigates the interdecadal change in the relationship between southern China (SC) summer rainfall and tropical Indo-Pacific sea surface temperature (SST). It is found that the pattern of tropical Indo-Pacific SST anomalies associated with SC summer rainfall variability tends to be opposite between the 1950–1960s and the 1980-1990s. Above-normal SC rainfall corresponds to warmer SST in the tropical southeastern Indian Ocean (SEIO) and cooler SST in the equatorial central Pacific (ECP) during the 1950–1960s but opposite SST anomalies in these regions during the 1980–1990s. A pronounced difference is also found in anomalous atmospheric circulation linking SEIO SST and SC rainfall between the two periods. In the 1950–1960s, two anomalous vertical circulations are present between ascent over SEIO and ascent over SC, with a common branch of descent over the South China Sea that is accompanied by an anomalous low-level anticyclone. In the 1980–1990s, however, a single anomalous vertical circulation directly connects ascent over SC to descent over SEIO. The change in the rainfall–SST relationship is likely related to a change in the magnitude of SEIO SST forcing and a change in the atmospheric response to the SST forcing due to different mean states. A larger SEIO SST forcing coupled with a stronger and more extensive western North Pacific subtropical high in recent decades induce circulation anomalies reaching higher latitudes, influencing SC directly. Present analysis shows that the SEIO and ECP SST anomalies can contribute to SC summer rainfall variability both independently and in concert. In comparison, there are more cases of concerted contributions due to the co-variability between the Indian and Pacific Ocean SSTs.  相似文献   

11.
Aiguo Dai 《Climate Dynamics》2013,41(3-4):633-646
Precipitation over the contiguous United States exhibits large multi-decadal oscillations since the early twentieth century, and they often lead to dry (e.g., 1946–1976 and 1999-present) and wet (e.g., 1977–1998) periods and apparent precipitation trends (e.g., from the 1950s to 1990s) over most of the western and central US. The exact cause of these inter-decadal variations is not fully understood. Using observational and reanalysis data and model simulations, this paper examines the influence of the Inter-decadal Pacific Oscillation (IPO) on US precipitation. The IPO is a leading mode of sea surface temperatures (SSTs) seen mostly in the Pacific Ocean. It is found that decadal precipitation variations over much of the West and Central US, especially the Southwest, closely follow the evolution of the IPO (r = 0.85 during 1923–2010 for the Southwest US), and the dry and wet periods are associated, respectively, with the cold and warm phases of the IPO. In particular, the apparent upward trend from the 1950s–1990s and the dry decade thereafter in precipitation over much of the West and Central US are largely caused by the IPO cycles, which switched to a warm phase around 1977 and back to a cold phase around 1999. An atmospheric model forced with observed SSTs reproduces much of this association of US precipitation with the IPO (r = 0.95 between smoothed observed and simulated Southwest US precipitation during 1950–2009 and r = 0.88 between the simulated Southwest US precipitation and the IPO). Atmospheric reanalysis and model data both show a strong high (low) pressure center and anti-cyclonic (cyclonic) anomaly circulation over the North Pacific in the lower troposphere during cold (warm) phases of the IPO, which lead to dry and cold northwesterly and northerly winds and below-normal precipitation over much of the West US during IPO cold periods. The IPO induced changes are most pronounced during the boreal cold season. The results reinforce the notion that tropical Pacific SSTs (and the accompanying SST anomalies in the North Pacific) have large impacts on US precipitation and highlight the need to understand and simulate the IPO for decadal prediction of US precipitation.  相似文献   

12.
We have performed experiments using an ocean model to study the sensitivity of tropical Pacific Ocean to variations in precipitation induced freshwater fluxes. Variations in these fluxes arise from natural causes on all time scales. In addition, estimates of these fluxes are uncertain because of differences among measurement techniques. The model used is a quasi-isopycnal model, covering the Pacific from 40?°S to 40?°N. The surface forcing is constructed from observed wind stress, evaporation, precipitation, and sea surface temperature (SST) fields. The heat flux is produced with an iterative technique so as to maintain the model close to the observed climatology, but with only a weak damping to that climatology. Climatological estimates of evaporation are combined with various estimates of precipitation to determine the net surface freshwater flux. Results indicate that increased freshwater input decreases salinity as expected, but increases temperatures in the upper ocean. Using the freshwater flux estimated from the Microwave Sounding Unit leads to a warming of up to 0.6?°C in the western Pacific over?a case with zero net freshwater flux. SST is sensitive to the discrepancies among different precipitation observations, with root-mean-square differences in SST on the order of 0.2–0.3?°C. The change in SST is more pronounced in the eastern Pacific, with difference of over 1?°C found among the various precipitation products. Interannual variation in precipitation during El Niño events leads to increased warming. During the winter of 1982–83, freshwater flux accounts for about 0.4?°C (approximately 10–15% of the maximum warming) of the surface warming in the central-eastern Pacific. Thus, the error of SST caused by the discrepancies in precipitation products is more than half of the SST anomaly produced by the interannual variability of observed precipitation. Further experiments, in which freshwater flux anomalies are imposed in the western, central, and eastern Pacific, show that the influence of net freshwater flux is also spatially dependent. The imposition of freshwater flux in the far western Pacific leads to a trapping of salinity anomalies to the surface layers near the equator. An identical flux imposed in the central Pacific produces deeper and off-equatorial salinity anomalies. The contrast between these two simulations is consistent with other simulations of the western Pacific barrier layer formation.  相似文献   

13.
Some drought years over sub-Saharan west Africa (1972, 1977, 1984) have been previously related to a cross-equatorial Atlantic gradient pattern with anomalously warm sea surface temperatures (SSTs) south of 10°N and anomalously cold SSTs north of 10°N. This SST dipole-like pattern was not characteristic of 1983, the third driest summer of the twentieth century in the Sahel. This study presents evidence that the dry conditions that persisted over the west Sahel in 1983 were mainly forced by high Indian Ocean SSTs that were probably remanent from the strong 1982/1983 El Ni?o event. The synchronous Pacific impact of the 1982/1983 El Ni?o event on west African rainfall was however, quite weak. Prior studies have mainly suggested that the Indian Ocean SSTs impact the decadal-scale rainfall variability over the west Sahel. This study demonstrates that the Indian Ocean also significantly affects inter-annual rainfall variability over the west Sahel and that it was the main forcing for the drought over the west Sahel in 1983.  相似文献   

14.
Summary This paper investigates the warming trend and interannual variability of surface air temperatures in the Malaysian region during the period 1961–2002. The trend analyses show that most regions in Malaysia experience warming over the period at comparable rates to those in regions surrounding the Bay of Bengal. The regions of Peninsular Malaysia and northern Borneo experience warming rates of between 2.7–4.0 °C/100 years. However, the warming rates are lower in the south-western region of Borneo. The interannual variability of Malaysian temperature is largely dominated by the El Ni?o-Southern Oscillation (ENSO). Regardless of the warming trends, all regions in Malaysia experience uniform warming during an El Ni?o event, particularly during the October–November–December (OND) and the January–February–March (JFM) periods. This uniform warming is associated with the latent heat released from the central eastern Pacific region and forced adiabatic subsidence in the Maritime Continent during an El Ni?o event. During its early development period i.e. during the July–August–September (JAS) season, the El Ni?o’s impact on the Malaysian temperatures is relatively weak compare to its influence during the OND and JFM seasons. However, the warming continues to the April–May–June (AMJ) season although during this period the anomalous conditions in the eastern central Pacific have begun or have returned to normal. The Indian Ocean Dipole (IOD) mode exerts an influence on Malaysian temperatures. When it co-occurs with ENSO, it tends to weaken the ENSO influence particularly during an OND period. However, it appears to have an appreciable influence only during an AMJ period when it occurs in the absence of an ENSO event. Despite the strong influence of the ENSO, the warming rates during the 42-year period appears to be least affected by interannual variability.  相似文献   

15.
Precipitation changes over the Indo-Pacific during El Niño events are studied using an Atmospheric General Circulation Model forced with sea-surface temperature (SST) anomalies and changes in atmospheric CO2 concentrations. Linear increases in the amplitude of the El Niño SST anomaly pattern trigger nonlinear changes in precipitation amounts, resulting in shifts in the location and orientation of the Intertropical Convergence Zone (ITCZ) and the South Pacific Convergence Zone (SPCZ). In particular, the maximum precipitation anomaly along the ITCZ and SPCZ shifts eastwards, the ITCZ shifts south towards the equator, and the SPCZ becomes more zonal. Precipitation in the equatorial Pacific also increases nonlinearly. The effect of increasing CO2 levels and warming SSTs is also investigated. Global warming generally enhances the tropical Pacific precipitation response to El Niño. The precipitation response to El Niño is found to be dominated by changes in the atmospheric mean circulation dynamics, whereas the response to global warming is a balance between dynamic and thermodynamic changes. While the dependence of projected climate change impacts on seasonal variability is well-established, this study reveals that the impact of global warming on Pacific precipitation also depends strongly on the magnitude of the El Niño event. The magnitude and structure of the precipitation changes are also sensitive to the spatial structure of the global warming SST pattern.  相似文献   

16.
Mathew Roxy 《Climate Dynamics》2014,43(5-6):1159-1169
Over the tropical oceans, higher sea surface temperatures (SST, above 26 °C) in summer are generally accompanied by increased precipitation. However, it has been argued for the last three decades that, any monotonic increase in precipitation with respect to SST is limited to an upper threshold of 28–29.5 °C, and beyond this, the relationship fails. Based on this assessment it has often been presumed that, since the mean SSTs over the Asian monsoon basins (Indian Ocean and north-west Pacific) are mostly above the threshold, SST does not play an active role on the summer monsoon variability. It also implies that increasing SSTs due to a changing climate need not result in increasing monsoon precipitation. The current study shows that the response of precipitation to SST has a time lag, that too with a spatial variability over the monsoon basins. Taking this lag into account, the results here show that enhanced convection occurs even up to the SST maxima of 31 °C averaged over these basins, challenging any claim of an upper threshold for the SST-convection variability. The study provides us with a novel method to quantify the SST-precipitation relationship. The rate of increase is similar across the basins, with precipitation increasing at ~2 mm day?1 for an increase of 1 °C in SST. This means that even the high SSTs over the monsoon basins do play an active role on the monsoon variability, challenging previous assumptions. Since the response of precipitation to SST variability is visible in a few days, it would also imply that including realistic ocean–atmosphere coupling is crucial even for short term monsoon weather forecasts. Though recent studies suggest a weakening of the monsoon circulation over the last few decades, results here suggest an increased precipitation over the tropical monsoon regions, in a global warming environment with increased SSTs. Thus the signature of SST is found to be significant for the Asian summer monsoon, in a quantifiable manner, seamlessly through all the timescales—from short-term intraseasonal to long-term climate scales.  相似文献   

17.
The relationship between mid-latitude tropospheric warming (MLTW) and the tropical sea surface temperatures (SSTs) in June–August (JJA) of 2010 has been investigated using an atmospheric general circulation model forced with the evolving observed SSTs. The simulation results indicate that the SST anomalies (SSTAs) in the equatorial Pacific in JJA 2010, indicating La Niña condition, did not contribute simultaneously to produce the MLTW in JJA 2010, and, instead, the SSTAs in the northern subtropics (the whole latitudinal band between 10°N and 30°N) contributed. However, it is shown by the results that enough magnitude of the atmospheric height anomalies over the northern mid-latitude was not reproduced by the SSTAs over the northern subtropical Indo-western Pacific (IWP) alone or over the northern subtropical Atlantic alone. It implies that both the SSTA over the northern subtropics of IWP and Atlantic were necessary to reproduce the MLTW. The possible role of convective activity for the MLTW is also discussed.  相似文献   

18.
Changes in growing seasons for 2041–2060 across Africa are projected using a regional climate model at 90-km resolution, and confidence in the predictions is evaluated. The response is highly regional over West Africa, with decreases in growing season days up to 20% in the western Guinean coast and some regions to the east experiencing 5–10% increases. A longer growing season up to 30% in the central and eastern Sahel is predicted, with shorter seasons in parts of the western Sahel. In East Africa, the short rains (boreal fall) growing season is extended as the Indian Ocean warms, but anomalous mid-tropospheric moisture divergence and a northward shift of Sahel rainfall severely curtails the long rains (boreal spring) season. Enhanced rainfall in January and February increases the growing season in the Congo basin by 5–15% in association with enhanced southwesterly moisture transport from the tropical Atlantic. In Angola and the southern Congo basin, 40–80% reductions in austral spring growing season days are associated with reduced precipitation and increased evapotranspiration. Large simulated reductions in growing season over southeastern Africa are judged to be inaccurate because they occur due to a reduction in rainfall in winter which is over-produced in the model. Only small decreases in the actual growing season are simulated when evapotranspiration increases in the warmer climate. The continent-wide changes in growing season are primarily the result of increased evapotranspiration over the warmed land, changes in the intensity and seasonal cycle of the thermal low, and warming of the Indian Ocean.  相似文献   

19.
How drought may change in the future are of great concern as global warming continues. In Part I of this study, we examine the uncertainties in estimating recent drought changes. Substantial uncertainties arise in the calculated Palmer Drought Severity Index (PDSI) with Penman-Monteith potential evapotranspiraiton (PDSI_pm) due to different choices of forcing data (especially for precipitation, solar radiation and wind speed) and the calibration period. After detailed analyses, we recommend using the Global Precipitation Climatology Centre (GPCC) or the Global Precipitation Climatology (GPCP) datasets over other existing land precipitation products due to poor data coverage in the other datasets since the 1990s. We also recommend not to include the years after 1980 in the PDSI calibration period to avoid including the anthropogenic climate change as part of the natural variability used for calibration. Consistent with reported declines in pan evaporation, our calculated potential evapotranspiration (PET) shows negative or small trends since 1950 over the United States, China, and other regions, and no global PET trends from 1950 to 1990. Updated precipitation and streamflow data and the self-calibrated PDSI_pm all show consistent drying during 1950–2012 over most Africa, East and South Asia, southern Europe, eastern Australia, and many parts of the Americas. While these regional drying trends resulted primarily from precipitation changes related to multi-decadal oscillations in Pacific sea surface temperatures, rapid surface warming and associated increases in surface vapor pressure deficit since the 1980s have become an increasingly important cause of widespread drying over land.  相似文献   

20.
ABSTRACT

South Indian Ocean Rossby waves (SIO-RW) are identified in the Global Ocean Data Assimilation System (GODAS) 1.5–7?yr filtered sea surface height (SSH) time series. There is a persistent three-year oscillation in the 5°–15°S latitude band from 55° to 85°E. Field correlations show little coupling at 90°E, but as the SIO-RW undulates westward at approximately 0.19?m?s?1 across the mid-basin, a northwest–southeast axis of warm sea surface temperatures (SSTs) and deep convection forms. Many teleconnections in earlier work are confirmed: interannual pulses of zonal wind in the eastern basin trigger the SIO-RW via anticyclonic wind stress curl. New insights derive from an understanding of links with the upper troposphere. As the SIO-RWs move westward with the onset of an El Niño in the Pacific, increased convection over the north Indian Ocean corresponds to reduced evaporation and SST warming. Mid-tropospheric heating T′?>?2°C over the northwest Indian Ocean accelerates the southern sub-tropical jet to greater than 10?m?s?1 over the southeast Indian Ocean, reinforcing the anticyclonic vorticity. The downstream acceleration of the jet generates upper-level divergence and moist convection over the western basin, anchoring an atmospheric Rossby wave in a northwest–southeast alignment underpinned by differential propagation of the SIO-RW. As the ocean Rossby wave reaches Africa, the coupling fades and transitions. What distinguishes Indian Ocean from Pacific Ocean Rossby waves are their southern latitude and higher frequency. The tropical mid-tropospheric heating that accelerates the southern sub-tropical jet shifts westward in tandem with the SIO-RW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号