首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical Study of the Upper-Layer Circulation in the South China Sea   总被引:7,自引:0,他引:7  
Upper-layer circulation in the South China Sea has been investigated using a three-dimensional primitive equation eddy-resolving model. The model domain covers the region from 99° to 122°E and from 3° to 23°N. The model is forced by the monthly averaged European Centre for Medium-Range Weather Forecasts (ECMWF) model winds and the climatological monthly sea surface temperature data from National Oceanographic Data Center (NODC). Inflow and outflow through the Taiwan Strait and the Sunda shelf are prescribed monthly from the Wyrtki estimates. Inflow of the Kuroshio branch current in the Luzon Strait is assumed to have a constant volume transport of 12 Sv (1 Sv = 106 m3/s), and the outflow from the open boundary to the east of Taiwan is adjusted to ensure the net volume transport through all open boundaries is zero at any instant. The model reveals that a cyclonic circulation exists all year round in the northern South China Sea. During the winter time this cyclonic eddy is located off the northwest of Luzon, coinciding with the region of positive wind stress curl in this season. This cyclonic eddy moves northward in spring due to the weakening of the northeast winds. The cyclonic circulation becomes weak and stays in the continental slope region in the northern South China Sea in the summer period. The southwest wind can raise the water level along the west coast of Luzon, but there is no anticyclonic circulation in the northern South China Sea. After the onset of the northeast monsoon winds in fall, the cyclonic eddy moves back to the region off the west coast of Luzon. In the southern South China Sea and off the Vietnam coast, the model predicts a similar flow structure as in the previous related studies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
黑潮通过吕宋海峡入侵南海呈现明显的瞬态特征。以往的研究通常将黑潮在吕宋海峡附近的流态分为几种不同类型。本文基于表层地转流计算得到的有限时间李雅普诺夫指数场(FTLE),展示了拉格朗日视角下的吕宋海峡上层水交换特征。从FTLE场提取的拉格朗日拟序结构(LCSs)很好地识别了吕宋海峡附近的典型流态和旋涡活动。此外,这些LCSs还揭示了吕宋海峡周围复杂的输运路径和流体域,这些特征得到了卫星跟踪浮标轨迹的验证,且从流速场中是无法直接识别的。FTLE场显示,吕宋海峡附近表层水体的输运形态主要可分为四类。其中,黑潮直接向北流动的“跨越”形态和顺时针旋转的“流套”形态的发生频次明显高于直接进入南海的黑潮分支“渗入”形态和南海水流出至太平洋的“外流”形态。本文还进一步分析了黑潮在吕宋海峡处的涡旋脱落事件,突出强调了LCSs在评估涡旋输运方面的重要性。反气旋涡旋的脱落个例表明,这些涡旋主要源自黑潮“流套”,涡旋脱落之前可有效地俘获黑潮水。LCS所指示的输运通道信息有助于预测最终被反气旋涡所挟卷水体在上游的位置。而在气旋涡的形成过程中,LCS的分布特征表明,大部分气旋涡并未与黑潮水的输运路径相连通。因此,气旋涡对从太平洋到南海的上层水交换的贡献较小。  相似文献   

3.
Intrusion of the Kuroshio into the South China Sea,in September 2008   总被引:8,自引:0,他引:8  
Using widespread conductivity–temperature–depth (CTD) data in the Philippine Sea and northern South China Sea near the Luzon Strait together with altimeter data, we identified an intrusion of water from the Kuroshio into the South China Sea (SCS) through the Luzon Strait in September 2008. The Kuroshio water obviously intruded into the SCS from 20 to 21°N, and existed mainly in the upper 300 m. The intrusion water extended as far west as 117°E, then looped around in an anticyclonic eddy and returned to the Philippine Sea further north. The dynamics of the Kuroshio intrusion are discussed using a 1.5-layer nonlinear shallow-water reduced-gravity model. The analysis suggests that the strong cyclonic eddy to the east of the Kuroshio in September 2008 was of benefit to the intrusion event.  相似文献   

4.
Eddy Shedding from the Kuroshio Bend at Luzon Strait   总被引:16,自引:1,他引:16  
TOPEX/POSEDIENT-ERS satellite altimeter data along with the mean state from the Parallel Ocean Climate Model result have been used to investigate the variation of Kuroshio intrusion and eddy shedding at Luzon Strait during 1992–2001. The Kuroshio penetrates into the South China Sea and forms a bend. The Kuroshio bend varies with time, periodically shedding anticyclonic eddies. Criteria of eddy shedding are identified: 1) When the shedding event occurs, there are usually two centers of high Sea Surface Height (SSH) together with negative geostrophic vorticity in the Kuroshio Bend (KB) area. 2) Between the two centers of high SSH there usually exists positive geostrophic vorticity. These criteria have been used to determine the eddy shedding times and locations. The most frequent eddy shedding intervals are 70, 80 and 90 days. In both the winter and summer monsoon period, the most frequent locations are 119.5°E and 120°E, which means that the seasonal variation of eddy shedding location is unclear.  相似文献   

5.
Altimeter data and output from the HYbrid Coordinate Ocean Model global assimilation run are used to study the seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait. The results suggest that most eddy shedding events occur from December through March, and no eddy shedding event occurs in June, September, or October. About a month before eddy shedding, the Kuroshio intrusion extends into the South China Sea and a closed anticyclonic eddy appears inside the Kuroshio loop which then detaches from the Kuroshio intrusion. Anticyclonic eddies detached from December through February move westward at a speed of about 0.1 m s−1 after shedding, whereas eddies detached in other months either stay at the place of origin or move westward at a very slow speed (less than 0.06 m s−1). The HYCOM outputs and QuikSCAT wind data clearly show that the seasonal variation of eddy shedding is influenced by the monsoon winds. A comparison between eddy volume and integrated Ekman transport indicates that, once the integrated Ekman transport exceeds 2 × 1012 m3 (which roughly corresponds to the volume of an eddy), the Kuroshio intrusion expands and an eddy shedding event occurs within 1 month. We infer that the Ekman drift of the northeasterly monsoon pushes the Kuroshio intrusion into the SCS, creates a net westward transport into the Strait, and leads to an eddy detachment from the Kuroshio.  相似文献   

6.
The influences of mesoscale eddies on variations of the Kuroshio path south of Japan have been investigated using time series of the Kuroshio axis location and altimeter-derived sea surface height maps for a period of seven years from 1993 to 1999, when the Kuroshio followed its non-large meander path. It was found that both the cyclonic and anticyclonic eddies may interact with the Kuroshio and trigger short-term meanders of the Kuroshio path, although not all eddies that approached or collided with the Kuroshio formed meanders. An anticyclonic eddy that revolves clockwise in a region south of Shikoku and Cape Shionomisaki with a period of about 5–6 months was found to propagate westward along about 30°N and collide with the Kuroshio in the east of Kyushu or south of Shikoku. This collision sometimes triggers meanders which propagate over the whole region south of Japan. The eddy was advected downstream, generating a meander on the downstream side to the east of Cape Shionomisaki. After the eddy passed Cape Shionomisaki, it detached from the Kuroshio and started to move westward again. Sometimes the eddy merges with other anticyclonic eddies traveling from the east. Coalescence of cyclonic eddies, which are also generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region south of Japan, into the Kuroshio in the east of Kyushu, also triggers meanders which mainly propagate only in a region west of Cape Shionomisaki. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The surface circulation of northern South China Sea (hereafter SCS) for the period 1987–2005 was studied using the data of more than 500 satellite-tracked drifters and wind data from QuikSCAT. The mean flow directions in the northern SCS except the Luzon Strait (hereafter LS) during the periods October~March was southwestward, and April~September northeastward. A strong northwestward intrusion of the Kuroshio through the LS appears during the October~March period of northeasterly wind, but the intrusion became weak between April and September. When the strong intrusion occurred, the eddy kinetic energy (EKE) in the LS was 388 cm2/s2 which was almost 2 times higher than that during the weak-intrusion season. The volume transport of the Kuroshio in the east of the Philippines shows an inverse relationship to that of the LS. There is a six-month phase shift between the two seasonal phenomena. The volume transport in the east of the Philippines shows its peak sis-month earlier faster than that of the LS. The strong Kuroshio intrusion is found to be also related to the seasonal variation of the wind stress curl generated by the northeasterly wind. The negative wind stress curl in the northern part of LS induces an anticyclonic flow, while the positive wind stress curl in the southern part of LS induces a cyclonic flow. The northwestward Kuroshio intrusion in the northern part of LS happened with larger negative wind stress curl, while the westward intrusion along 20.5°N in the center of the LS occurred with weaker negative wind stress curl.  相似文献   

8.
On the basis of hydrographic data obtained from 28 November to 27 December, 1998, the three-dimensional structure of circulation in the South China Sea (SCS) is computed using a three-dimensional diagnostic model. The combination of sea surface height anomaly from altimeter data and numerical results provides a consistent circulation pattern for the SCS, and main circulation features can be summarized as follows: in the northern SCS there are a cold and cyclonic circulation C1 with two cores C1-1 and C1-2 northwest of Luzon and an anticyclonic eddy (W1) near Dongsha Islands. In the central SCS there is a stronger cyclonic circulation C2 with two cores C2-1 and C2-2 east of Vietnam and a weaker anticyclonic eddy W2 northwest of Palawan Island. A stronger coastal southward jet presents west of the eddy C2 and turns to the southeast in the region southwest of eddy C2-2, and it then turns to flow eastward in the region south of eddy C2-2. In the southern SCS there are a weak cyclonic eddy C3 northwest of Borneo and an anti-cyclonic circulation W3 in the subsurface layer. The net westward volume transport through section CD at 119.125°E from 18.975° to 21.725°N is about 10.3 × 106 m3s−1 in the layer above 400 m level. The most important dynamic mechanism generating the circulation in the SCS is a joint effect of the baroclinicity and relief (JEBAR), and the second dynamical mechanism is an interaction between the wind stress and relief (IBWSR). The strong upwelling occurs off northwest Luzon.  相似文献   

9.
综述东海和琉球群岛以东海域若干气旋型和反气旋型涡旋的研究.对东海陆架、200m以浅海域,主要讨论了东海西南部反气旋涡、济州岛西南气旋式涡和长江口东北气旋式冷涡.东海两侧和陆坡附近出现了各种不同尺度的涡旋,其动力原因之一是与东海黑潮弯曲现象有很大关系,其次也与地形、琉球群岛存在等有关.东海黑潮有两种类型弯曲:黑潮锋弯曲和黑潮路径弯曲.黑潮第一种弯曲出现了锋面涡旋,评述了锋面涡旋的存在时间尺度与空间尺度和结构等;也指出了黑潮第二种弯曲,即路径弯曲时在其两侧出现了中尺度气旋式和反气旋涡,讨论了它们的变化的特性.特别讨论了冲绳北段黑潮弯曲路径和中尺度涡的相互作用,着重指出,当气旋式涡在冲绳海槽北段成长,并充分地发展,其周期约在1~3个月时,它的空间尺度成长到约为200km(此尺度相当于冲绳海槽的纬向尺度)时,黑潮路径从北段转移到南段.也分析了东海黑潮流量和其附近中尺度涡的相互作用.最后指出在琉球群岛以东、以南海域,经常出现各种不同的中尺度反气旋式和气旋式涡,讨论了它们在时间与空间尺度上变化的特征.  相似文献   

10.
Various kinds of datasets, such as satellite-derived sea surface temperature (SST), sea surface height, surface velocity produced by combining surface drifter and satellite altimeter data, and hydrographic data, led to the discovery of an anticyclonic eddy with lower SST than those of surrounding waters in the Kuroshio recirculation region south of Shikoku, as if the eddy were cyclonic. This anticyclonic eddy was formed east of Kyushu in late August to early September 1999 from the merger of two anticyclonic eddies which had migrated in the recirculation region to the sea south of Japan from the east. After the merger, the anticyclonic eddy strengthened abruptly and began to exhibit the low SST. In October, this eddy coalesced with the Kuroshio and moved swiftly eastward, accompanied by an amplitude growth of the Kuroshio meander. In mid November, off the Kii Peninsula, the eddy detached from the meandering Kuroshio. It then moved southwestward and again slowly propagated westward along the 30°N line. During this period, at least from late October 1999 to January 2000, SSTs over the anticyclonic eddy were found to be continuously lower than those of surrounding waters. This case tells us that we have to pay careful attention to the interpretation of mesoscale SST distributions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
为了探究东海黑潮周边涡旋分布、形成机理及运动规律,基于法国国家空间研究中心(CNES)卫星海洋学存档数据中心(AVISO)的中尺度涡旋数据集展开了研究。首先,统计了近27年东海黑潮周边的涡旋分布,发现在黑潮弯曲海域产生了650个涡旋,在黑潮中段海域产生了271个涡旋,其中直径100~150 km之间的涡旋数量最多,涡旋振幅主要集中在2~6 cm。其次,分析了东海黑潮的运动路径和涡运动过程,结果表明,黑潮气旋式弯曲海域内侧易产生气旋涡,且移动路径较长,如台湾东北海域黑潮流轴气旋式弯曲处产生的涡旋,其平均位移达到了87.6 km;当反气旋式弯曲海域内侧产生反气旋涡时,涡旋往往做徘徊运动。黑潮中段海域的涡旋呈现出气旋涡在黑潮主轴西侧、反气旋涡在黑潮主轴东侧的极性对称分布特征,两类涡都沿黑潮主轴向东北方向移动。最后,结合再分析的流场、海面高度数据,讨论了涡旋运动规律和生成机制。黑潮弯曲处涡旋的生成与黑潮流体边界层分离有关,奄美大岛南部到冲绳岛西侧的黑潮逆流对黑潮中段海域涡的极性对称分布起到了关键作用,涡旋在运动过程中通常经历生长、成熟和衰变三个阶段。  相似文献   

12.
Satellite-tracked Lagrangian drifters are used to investigate the transport pathways of near-surface water around the Luzon Strait. Particular attention is paid to the intrusion of Pacific water into the South China Sea(SCS).Results from drifter observations suggest that except for the Kuroshio water, other Pacific water that carried by zonal jets, Ekman currents or eddies, can also intrude into the SCS. Motivated by this origin problem of the intrusion water, numerous simulated trajectories are constructed by altimeter-based velocities. Quantitative estimates from simulated trajectories suggest that the contribution of other Pacific water to the total intrusion flux in the Luzon Strait is approximately 13% on average, much smaller than that of Kuroshio water. Even so, over multiple years and many individual intrusion events, the contribution from other Pacific water is quite considerable. The interannual signal in the intrusion flux of these Pacific water might be closely related to variations in a wintertime westward current and eddy activities east of the Luzon Strait. We also found that Ekman drift could significantly contribute to the intrusion of Pacific water and could affect the spreading of intrusion water in the SCS. A case study of an eddy-related intrusion is presented to show the detailed processes of the intrusion of Pacific water and the eddy-Kuroshio interaction.  相似文献   

13.
1998年春夏南海温盐结构及其变化特征   总被引:11,自引:2,他引:11  
利用1998年5~8月“南海季风试验”期间“科学1”号和“实验3”号科学考察船两个航次CTD资料,分析了1998年南海夏季风暴发前后南海主要断面的温盐结构及其变化特征.观测发现,南海腹地基本被典型的南海水团所控制,但在南海东北部尤其是吕宋海峡附近,表层和次表层水明显受到西太平洋水的影响.季风暴发以后,南海北部表面温度有显著升高,升幅由西向东递减,而南海中部和南部表面温度基本没变,这使得南海北部东西向温度梯度和整个海盆南北向温度梯度均减小.北部断面表层盐度普遍由34以上降低到34以下,混合层均有所发展,是季风暴发后降水和风力加剧的结果.观测期间黑潮水跨越吕宋海峡的迹象明显但变化剧烈.4~5月,黑潮次表层水除在吕宋海峡中北部出现外,在吕宋岛以西亦有发现,表明有部分黑潮水从吕宋海峡南端沿岸向西进而向南进入南海.6~7月,次表层高盐核在吕宋海峡中北部有极大发展,但在吕宋岛以西却明显萎缩;虽然看上去黑潮水以更强的流速进、出南海,但对南海腹地动力热力结构的影响未必更大.一个超过34.55的表层高盐水体于巴拉望附近被发现,似与通过巴拉望两侧水道入侵南海的西太平洋水有关.  相似文献   

14.
本文使用基于热成风速度的涡旋识别拓展方法,通过海表面温度数据对黑潮延伸体区域50-100公里涡旋进行研究,发现50-100公里涡旋主要分布在黑潮延伸体流轴两侧,气旋涡和反气旋涡的寿命、半径分布具有一致性。气旋涡多出现在35°N以北,反气旋涡在35°N以南比较集中,与尺度较小的中尺度涡旋分布特征较为相似。冬夏两季涡旋地理分布存在一定差异,主要与不同季节该区域海表温度梯度及风应力旋度的变化有关。35°N以南50-100公里涡旋数量的季节性变化与风速大小的季节性变化存在明显的正相关性。35°N以南50-100公里涡旋三倍半径内风速异常和风应力旋度归一化表明,气旋涡对应风速负异常而反气旋涡对应风速正异常,反气旋涡的产生依赖于风应力负旋度,气旋涡的生成与风应力正旋度有关。  相似文献   

15.
Wind-induced Kuroshio intrusion into the South China Sea   总被引:14,自引:0,他引:14  
The Kuroshio flows north along the east coasts of the Philippines and Taiwan. Between these two land masses lies the Luzon Strait which connects the Pacific Ocean to the South China Sea. The Kuroshio usually flows north past this strait, but at times part or all of it flows west through the strait into the South China Sea forming a loop current. It has been suggested that the loop current forms when the northeast monsoon deflects the Kuroshio through the Luzon Strait. In this study, satellite-derived sea-surface temperature images are used to observe the Kuroshio in the Luzon Strait region. Together with wind data from the region, these observations indicate a loop-current development process which is largely determined by an integrated supercritical wind stress parameter. The loop current grows when a four-day average of the local wind-stress component directed to the south exceeds 0.08 Nm–2. When this average wind-stress component drops below the critical value, the Kuroshio returns to its northward path.  相似文献   

16.
南海东北部是寡营养海域,夏季浮游植物叶绿素浓度较低,热带气旋“风泵”效应带来的上层海洋扰动可能引起表层浮游植物的显著增长。以往的研究通常关注热带气旋风应力和海洋中尺度涡对上层海洋浮游植物的影响,本文利用航次CTD、实测叶绿素a浓度、Argo温盐剖面和遥感数据,探讨了台风“风泵”和黑潮共同作用下真光层内浮游植物的变化特征及其成因。结果表明,2015年台风“莲花”过境1周后产生向吕宋海峡西北侧南海海域(A区)入侵的黑潮流套,该入侵的黑潮流套使台风前原有的气旋涡消失,抑制了台风产生的上升流对表层(0~40 m)营养盐供给,使次表层(60~90 m)营养盐富集,进而抑制了表层的叶绿素a增长,促进了次表层叶绿素a的增长;吕宋海峡西侧南海海域(B区)表层的浮游植物叶绿素a浓度增加不仅是源于叶绿素最大层浮游植物的向上输运,更是由于浮游植物的繁殖增长;A区台风引起的流套式的黑潮入侵,促进了B区台风后气旋式流场的形成,产生的持续增强的气旋涡为B区表层叶绿素持续增长提供了充足的营养盐供给。  相似文献   

17.
The complicated flow pattern in the intermediate layer of the Luzon Strait could directly affect the efficiency of the water and energy exchange between the South China Sea (SCS) and the North Pacific. Here we present a subsurface anticyclonic eddy in the Luzon Strait deduced using observations conducted in October 2005. On the basis of the hydrographic and current measurements, an anticyclonic eddy was found in the intermediate layer, i.e., about 26.8–27.3σθ, 500–900 m. It captures part of the SCS Intermediate Water outflow in the northern Luzon Strait, and carries it to flow southward and then westward back into the SCS in the southern Luzon Strait, with volume transport of about 1.9 × 106 m3 s−1. The simulated results from Hybrid Coordinate Ocean Model also suggest the existence of this anticyclonic eddy that develops and lingers for a month long.  相似文献   

18.
Wind data from NCEP and hydrographic data obtained from August 28 to September 10, 1994 have been used to compute circulation in the northern South China Sea and near Luzon Strait using three-dimensional diagnostic models with a modified inverse method. The numerical results are as follows: the main Kuroshio is located above 400 m levels near Taiwan’s eastern coast and above 800 m levels away from it. Near Luzon Strait above 400 m levels a branch of the Kuroshio joins with a part of the northward current, which comes from an area west of Luzon’s western coast and intrudes northwestward, then it branchs into western and eastern parts near 20°30′ N. The eastern part flows northward into an area east of Taiwan, while its western part continues to intrude northwestward, flowing through an area southwest of Taiwan. Net westward intruded volume transport through longitude Section AB at 121°00′ E from 19°00′ N to 21° 43′ N is about 3.5 × 106 m3s−1 in a layer above 400 m levels. The anticyclonic eddies W1 and W3 exist above 700 m levels east of Dongsha Islands and below 200 m levels in the eastern part of the region, respectively. The circulation in the middle region is dominated mainly by a basin-scale cyclonic gyre, and consists of three cyclonic eddies. Strong upwelling occurs in the middle region. The joint effect of baroclinity and relief and interaction between wind stress and relief both are important for real forcing of flow across contours of fH −1 in effecting the circulation pattern.  相似文献   

19.
In general, a mesoscale cyclonic (anticyclonic) eddy has a colder (warmer) core, and it is considered as a cold (warm) eddy. However, recently research found that there are a number of “abnormal” mesoscale cyclonic (anticyclonic) eddies associated with warm (cold) cores in the South China Sea (SCS). These “abnormal” eddies pose a challenge to previous works on eddy detection, characteristic analysis, eddy-induced heat and salt transports, and even on mesoscale eddy dynamics. Based on a 9-year (2000–2008) numerical modelling data, the cyclonic warm-core eddies (CWEs) and anticyclonic cold-core eddies (ACEs) in the SCS are analyzed. This study found that the highest incidence area of the “abnormal” eddies is the northwest of Luzon Strait. In terms of the eddy snapshot counting method, 8 620 CWEs and 9 879 ACEs are detected, accounting for 14.6% and 15.8% of the total eddy number, respectively. The size of the “abnormal” eddies is usually smaller than that of the “normal” eddies, with the radius only around 50 km. In the generation time aspect, they usually appear within the 0.1–0.3 interval in the normalized eddy lifespan. The survival time of CWEs (ACEs) occupies 16.3% (17.1%) of the total eddy lifespan. Based on two case studies, the intrusion of Kuroshio warm water is considered as a key mechanism for the generation of these “abnormal” eddies near the northeastern SCS.  相似文献   

20.
比较了准全球涡分辨率海洋模式(简记为LICOMH)及其海气耦合模式(简记为LICOMHC)中的黑潮入侵南海与观测中黑潮入侵的差异。我们发现在单独海洋模式中黑潮入侵与观测相比过强,而在其海气耦合模式中这一差异得到了改善。冬季的吕宋海峡输送(LST)在LICOMH中为-8.8×106 m3s-1,而在LICOMHC中则下降到-6.0×106 m3s-1 。进一步的研究表明是大尺度风场,局地风应力和吕宋海峡以东中尺度涡旋的共同作用导致了黑潮入侵在两个模式中的不同。LICOMH中吕宋岛东北部相对较强的气旋导致了较弱的黑潮输送及吕宋海峡处较强的黑潮入侵。以上三者共同作用造成的LST差异大约是2.0×106 m3s-1,与两个模式间的LST差异大小基本相当。进一步对LICOMH与LICOMHC中的EKE收支进行分析表明,LICOMH中更强的EKE输送及斜压转换项导致了黑潮以东存在更强的气旋,而海表风场对两个模式中的涡旋差异贡献极小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号