首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regional source tsunamis pose a potentially devastating hazard to communities and infrastructure on the New Zealand coast. But major events are very uncommon. This dichotomy of infrequent but potentially devastating hazards makes realistic assessment of the risk challenging. Here, we describe a method to determine a probabilistic assessment of the tsunami hazard by regional source tsunamis with an “Average Recurrence Interval” of 2,500-years. The method is applied to the east Auckland region of New Zealand. From an assessment of potential regional tsunamigenic events over 100,000 years, the inundation of the Auckland region from the worst 100 events is modelled using a hydrodynamic model and probabilistic inundation depths on a 2,500-year time scale were determined. Tidal effects on the potential inundation were included by coupling the predicted wave heights with the probability density function of tidal heights at the inundation site. Results show that the more exposed northern section of the east coast and outer islands in the Hauraki Gulf face the greatest hazard from regional tsunamis in the Auckland region. Incorporating tidal effects into predictions of inundation reduced the predicted hazard compared to modelling all the tsunamis arriving at high tide giving a more accurate hazard assessment on the specified time scale. This study presents the first probabilistic analysis of dynamic modelling of tsunami inundation for the New Zealand coast and as such provides the most comprehensive assessment of tsunami inundation of the Auckland region from regional source tsunamis available to date.  相似文献   

2.
The effectiveness of simulating surge inundation using the Eulerian–Lagrangian circulation (ELCIRC) model over multi-scale unstructured grids was examined in this study. The large domain model grid encompasses the western North Atlantic Ocean, the Gulf of Mexico, and the Caribbean Sea to appropriately account for remote and resonance effects during hurricane events and simplify the specification of the open boundary condition. The U.S. East and Gulf Coasts were divided into 12 overlapping basins with fine-resolution (up to 30 × 30 m) grids to model overland surge flooding. These overlapping basins have different fine-resolution grids near the coastal region, but have an identical coarse-resolution grid in the offshore region within the large model domain. Thus, the storm surge prediction can be conducted without reducing computation efficiency by executing multiple model runs with local fine-resolution grids where potential hurricane landfalls may occur. The capability of the multi-scale approach was examined by simulating storm surge caused by Hurricanes Andrew (1992) and Isabel (2003) along the South Florida coast and in the Chesapeake Bay. Comparisons between simulated and observed results suggest that multi-scale models proficiently simulated storm surges in the Biscayne Bay and the Chesapeake Bay during two hurricanes. A series of sensitivity tests demonstrated that the simulation of surge flooding was improved when LiDAR topographic data and special bottom drag coefficient values for mangrove forests were employed. The tests also showed that appropriate representation of linear hydrologic features is important for computing surge inundation in an urban area.  相似文献   

3.
We apply a recently developed and validated numerical model of tsunami propagation and runup to study the inundation of Resurrection Bay and the town of Seward by the 1964 Alaska tsunami. Seward was hit by both tectonic and landslide-generated tsunami waves during the $M_{\rm W}$ 9.2 1964 megathrust earthquake. The earthquake triggered a series of submarine mass failures around the fjord, which resulted in landsliding of part of the coastline into the water, along with the loss of the port facilities. These submarine mass failures generated local waves in the bay within 5?min of the beginning of strong ground motion. Recent studies estimate the total volume of underwater slide material that moved in Resurrection Bay to be about 211?million m3 (Haeussler et?al. in Submarine mass movements and their consequences, pp 269?C278, 2007). The first tectonic tsunami wave arrived in Resurrection Bay about 30?min after the main shock and was about the same height as the local landslide-generated waves. Our previous numerical study, which focused only on the local landslide-generated waves in Resurrection Bay, demonstrated that they were produced by a number of different slope failures, and estimated relative contributions of different submarine slide complexes into tsunami amplitudes (Suleimani et?al. in Pure Appl Geophys 166:131?C152, 2009). This work extends the previous study by calculating tsunami inundation in Resurrection Bay caused by the combined impact of landslide-generated waves and the tectonic tsunami, and comparing the composite inundation area with observations. To simulate landslide tsunami runup in Seward, we use a viscous slide model of Jiang and LeBlond (J Phys Oceanogr 24(3):559?C572, 1994) coupled with nonlinear shallow water equations. The input data set includes a high resolution multibeam bathymetry and LIDAR topography grid of Resurrection Bay, and an initial thickness of slide material based on pre- and post-earthquake bathymetry difference maps. For simulation of tectonic tsunami runup, we derive the 1964 coseismic deformations from detailed slip distribution in the rupture area, and use them as an initial condition for propagation of the tectonic tsunami. The numerical model employs nonlinear shallow water equations formulated for depth-averaged water fluxes, and calculates a temporal position of the shoreline using a free-surface moving boundary algorithm. We find that the calculated tsunami runup in Seward caused first by local submarine landslide-generated waves, and later by a tectonic tsunami, is in good agreement with observations of the inundation zone. The analysis of inundation caused by two different tsunami sources improves our understanding of their relative contributions, and supports tsunami risk mitigation in south-central Alaska. The record of the 1964 earthquake, tsunami, and submarine landslides, combined with the high-resolution topography and bathymetry of Resurrection Bay make it an ideal location for studying tectonic tsunamis in coastal regions susceptible to underwater landslides.  相似文献   

4.
Japan’s 2011 Tohoku-Oki earthquake and the accompanying tsunami have reminded us of the potential tsunami hazards from the Manila and Ryukyu trenches to the South China and East China Seas. Statistics of historical seismic records from nearly the last 4 decades have shown that major earthquakes do not necessarily agree with the local Gutenberg-Richter relationship. The probability of a mega-earthquake may be higher than we have previously estimated. Furthermore, we noted that the percentages of tsunami-associated earthquakes are much higher in major events, and the earthquakes with magnitudes equal to or greater than 8.8 have all triggered tsunamis in the past approximately 100 years. We will emphasize the importance of a thorough study of possible tsunami scenarios for hazard mitigation. We focus on several hypothetical earthquake-induced tsunamis caused by M w 8.8 events along the Manila and Ryukyu trenches. We carried out numerical simulations based on shallow-water equations (SWE) to predict the tsunami dynamics in the South China and East China Seas. By analyzing the computed results we found that the height of the potential surge in China’s coastal area caused by earthquake-induced tsunamis may reach a couple of meters high. Our preliminary results show that tsunamis generated in the Manila and Ryukyu trenches could pose a significant threat to Chinese coastal cities such as Shanghai, Hong Kong and Macao. However, we did not find the highest tsunami wave at Taiwan, partially because it lies right on the extension of an assumed fault line. Furthermore, we put forward a multi-scale model with higher resolution, which enabled us to investigate the edge waves diffracted around Taiwan Island with a closer view.  相似文献   

5.
The present study focuses on evaluation of the maximum and minimum water levels caused by tsunamis as risk factors for operation and management at nuclear power facilities along the coastal area of Japan. Tsunamis generated by submarine earthquakes are examined, basing literature reviews and databases of information on historical tsunami events and run-up heights. For simulation of water level along the coast, a numerical calculation system should be designed with computational regions covering a particular site. Also the calculation system should be verified by comparison of historical and calculated tsunami heights. At the beginning of the tsunami assessment, the standard faults, their locations, mechanisms and maximum magnitudes should be carefully estimated by considering historical earthquake-induced tsunamis and seismo-tectonics at each area. Secondly, the range of errors in the model parameters should be considered since earthquakes and tsunamis are natural phenomena that involve natural variability as well as errors in estimating parameters. For these reasons, uncertainty-induced errors should be taken into account in the process of tsunami assessment with parametric study of the tsunami source model. The element tsunamis calculated by the standard fault models with the errors would be given for the design. Then, the design tsunami can be selected among the element tsunamis with the most significant impact, maximum and minimum water levels, on the site, bearing in mind the possible errors in the numerical calculation system. Finally, the design tsunami is verified by comparison with the run-up heights of historical tsunamis, ensuring that the design tsunami is selected as the highest of all historical and possible future tsunamis at the site.  相似文献   

6.
Stromboli is an Italian volcanic island known for its persistent state of activity, which leads to frequent mass failures and consequently to frequent tsunamis ranging from large (and rare) catastrophic events involving the entire southern Tyrrhenian Sea to smaller events with, however, extremely strong local impact. Most of tsunamigenic landslides occur in the Sciara del Fuoco (SdF) zone, which is a deep scar in the NW flank of the volcano, that was produced by a Holocene massive flank collapse and that is the accumulation area of all the eruptive ejecta from the craters. Shallow-water bathymetric surveys around the island help one to identify submarine canyons and detachment scars giving evidence of mass instabilities and failures that may have produced and might produce tsunamis. The main purpose of this paper is to call attention to tsunami sources in Stromboli that are located outside the SdF area. Further, we do not touch on tsunami scenarios associated with gigantic sector collapses that have repeat times in the order of several thousands of years, but rather concentrate on intermediate size tsunamis, such as the ones that occurred in December 2002. Though we cannot omit tsunamis from the zone of the SdF, the main emphasis is on the elaboration of preliminary scenarios for three more possible source areas around Stromboli, namely Punta Lena Sud, Forgia Vecchia and Strombolicchio, with the aim of purposeful contributing to the evaluation of the hazard associated with such events and to increase the knowledge of potential threats affecting Stromboli and the nearby islands of the Aeolian archipelago. The simulations show that tsunami sources outside of the SdF can produce disastrous effects. As a consequence, we recommend that the monitoring system that is presently operating in Stromboli and that is focussed on the SdF source area be extended in order to cover even the other sources. Moreover, a synoptic analysis of the results from all the considered tsunami scenarios leads to a very interesting relation between the tsunami total energy and the landslide potential energy, that could be used as a very effective tool to evaluate the expected tsunami size from estimates of the landslide size.  相似文献   

7.
The accumulation of data sets of past tsunamis is the most basic but reliable way to prepare for future tsunamis because the frequency of tsunami occurrence and their magnitude can be estimated by historical records of tsunamis. Investigation of tsunami deposits preserved in geological layers is an effective measure to understand ancient tsunamis that occurred before historical records began. However, the areas containing tsunami deposits can be narrower than the area of tsunami inundation, thus resulting in underestimation of the magnitude of past tsunamis. A field survey was conducted after the 2010 Chile tsunami and 2011 Japan tsunami to investigate the chemical properties of the tsunami-inundated soil to examine the applicability of tsunami inundation surveys considering water-soluble salts in soil. The soil and tsunami deposits collected in the tsunami-inundated areas are rich in water-soluble ions (Na+, Mg2+, Cl?, Br? and SO 4 2? ) compared with the samples collected in the non-inundated areas. The analytical result that the ratios of Na+, Mg2+, Br? and SO 4 2? to Cl? are nearly the same in the tsunami deposits and in the tsunami-inundated soil suggests that the deposition of these ions resulting from the tsunami inundation does not depend on whether or not tsunami deposits exist. Discriminant analysis of the tsunami-inundated areas using the ion contents shows the high applicability of these ions to the detection of tsunami inundation during periods when the amount of rainfall is limited. To examine the applicability of this method to palaeotsunamis, the continuous monitoring of water-soluble ions in tsunami-inundated soil is needed as a future study.  相似文献   

8.
The coast of California was significantly impacted by two recent teletsunami events, one originating off the coast of Chile on February 27, 2010 and the other off Japan on March 11, 2011. These tsunamis caused extensive inundation and damage along the coast of their respective source regions. For the 2010 tsunami, the NOAA West Coast/Alaska Tsunami Warning Center issued a state-wide Tsunami Advisory based on forecasted tsunami amplitudes ranging from 0.18 to 1.43 m with the highest amplitudes predicted for central and southern California. For the 2011 tsunami, a Tsunami Warning was issued north of Point Conception and a Tsunami Advisory south of that location, with forecasted amplitudes ranging from 0.3 to 2.5 m, the highest expected for Crescent City. Because both teletsunamis arrived during low tide, the potential for significant inundation of dry land was greatly reduced during both events. However, both events created rapid water-level fluctuations and strong currents within harbors and along beaches, causing extensive damage in a number of harbors and challenging emergency managers in coastal jurisdictions. Field personnel were deployed prior to each tsunami to observe and measure physical effects at the coast. Post-event survey teams and questionnaires were used to gather information from both a physical effects and emergency response perspective. During the 2010 tsunami, a maximum tsunami amplitude of 1.2 m was observed at Pismo Beach, and over $3-million worth of damage to boats and docks occurred in nearly a dozen harbors, most significantly in Santa Cruz, Ventura, Mission Bay, and northern Shelter Island in San Diego Bay. During the 2011 tsunami, the maximum amplitude was measured at 2.47 m in Crescent City Harbor with over $50-million in damage to two dozen harbors. Those most significantly affected were Crescent City, Noyo River, Santa Cruz, Moss Landing, and southern Shelter Island. During both events, people on docks and near the ocean became at risk to injury with one fatality occurring during the 2011 tsunami at the mouth of the Klamath River. Evaluations of maximum forecasted tsunami amplitudes indicate that the average percent error was 38 and 28 % for the 2010 and 2011 events, respectively. Due to these recent events, the California tsunami program is developing products that will help: (1) the maritime community better understand tsunami hazards within their harbors, as well as if and where boats should go offshore to be safe, and (2) emergency managers develop evacuation plans for relatively small “Warning” level events where extensive evacuation is not required. Because tsunami-induced currents were responsible for most of the damage in these two events, modeled current velocity estimates should be incorporated into future forecast products from the warning centers.  相似文献   

9.
On 11 March 2011, a moment magnitude M w = 9.0 earthquake occurred off the Japan Tohoku coast causing catastrophic damage and loss of human lives. In the immediate aftermath of the earthquake, we conducted the reconnaissance survey in the city of Rikuzentakata, Japan. In comparison with three previous historical tsunamis impacting the same region, the 2011 event presented the largest values with respect to the tsunami height, the inundation area and the inundation distance. A representative tsunami height of 15 m was recorded in Rikuzentakata, with increased heights of 20 m around rocky headlands. In terms of the inundation area, the 2011 Tohoku tsunami exceeded by almost 2.6 times the area flooded by the 1960 Chilean tsunami, which ranks second among the four events compared. The maximum tsunami inundation distance was 8.1 km along the Kesen River, exceeding the 1933 Showa and 1960 Chilean tsunami inundations by factors of 6.2 and 2.7, respectively. The overland tsunami inundation distance was less than 2 km. The tsunami inundation height linearly decreased along the Kesen River at a rate of approximately 1 m/km. Nevertheless, the measured inland tsunami heights exhibit significant variations on local and regional scales. A designated “tsunami control forest” planted with a cross-shore width of about 200 m along a 2 km stretch of Rikuzentakata coastline was completely overrun and failed to protect the local community during this extreme event. Similarly, many designated tsunami shelters were too low and were overwashed by tsunami waves, thereby failing to provide shelter for evacuees—a risk that had been underestimated.  相似文献   

10.
一直以来,海啸波特征作为表征海啸潜在破坏性的参数指标得到了广泛应用,特别是针对近场极端海啸事件造成的灾害来说,这种表征具有较好的适用性.然而总结分析历史海啸事件造成的损失发现:在远场近岸及港湾系统中,海啸诱导的强流却是造成损失的主要原因.陆架或港湾振荡导致海啸波幅快速升降诱发强流,可能促使港工设施受到威胁及损害,进而对海啸预警服务及海事应急管理提出了新的挑战.因此,全面理解与评估海啸在港湾中诱发的灾害特征,探索港湾中海啸流的数值模拟方法,发展针对港湾尺度的海啸预警服务指导产品尤为迫切.受限于海啸流验证数据的缺乏及准确模拟海啸流技术方法的诸多不确定性,大部分海啸数值模拟研究工作主要是针对水位特征的研究及验证,可能导致对港湾中海啸灾害危险性认识的曲解与低估.本研究基于非线性浅水方程,针对夏威夷群岛三个典型港湾建立了精细化海啸数值模型(空间分辨率达到10 m),并联合有限断层破裂模型计算分析了日本东北地震海啸在三个港湾及其邻近区域的海啸特征,波、流计算结果与实测结果吻合较好,精细化的海啸港湾模型模拟结果可信.模拟发现港湾中较小的波幅,同样可以产生强流.综合分析日本东北地震海啸波、流特征对输入条件不确定性的响应结果发现:港湾中海啸波-流能量的空间分布特征差异较大,这与港湾系统中海啸波的驻波特性相关;相比海啸波幅空间特征,海啸流特征具有更强的空间敏感性;海啸流时空分布特征对输入条件的不确定性响应比海啸波幅对这些不确定性的响应更强,海啸流的模拟与预报更有挑战性;不确定性对海啸流计算精度的影响会进一步传导放大港湾海啸流危险性的评估及对港工设施产生的应力作用的误差,合理的输入条件对海啸流的精确模拟至关重要.最后,希望通过本文的研究可以从海啸波-流特征角度更加全面认识近岸海啸灾害特征,拓展海啸预警服务的广度与深度,从而为灾害应急管理部门提供更加科学合理的辅助决策产品.  相似文献   

11.
— The unusual tsunami generated by the July 17, 1998 Papua New Guinea earthquake was investigated on the basis of various geophysical observations, including seismological data, tsunami waveform records, and on-land and submarine surveys. The tsunami source models were constructed for seismological high-angle and low-angle faults, splay fault, and submarine slumps. Far-field and near-field tsunamis computed from these models were compared with the recorded waveforms in and around Japan and the measured heights along the coast around Sissano Lagoon, respectively. In order to reproduce the far-field tsunami waveforms, small sources such as splay fault or submarine slump alone were not enough, and a seismological fault model was required. Relocated aftershock distribution and observed coastal subsidence were preferable for the low-angle fault, but the low-angle fault alone could not reproduce the large near-field tsunamis. The low-angle fault with additional source, possibly a submarine slump, is the most likely source of the 1998 tsunami, although other possibilities cannot be excluded. Computations from different source models showed that the far-field tsunami amplitudes are proportional to the displaced water volume at the source, and the comparison with the observed tsunami amplitudes indicated that the displaced water volume at the 1998 tsunami source was ~0.6 km3. The near-filed tsunami heights, on the other hand, are determined by the potential energy of displaced water, and the comparison with the observed heights showed that the potential energy was ~2 × 1012 J.  相似文献   

12.
Clifftop coastal boulders transported by storm waves or tsunamis have been reported around the world. Although numerical calculation of boulder transport is a strong tool for the identification of tsunami or storm boulders, and for estimation of the wave size emplacing boulders, models which can reasonably solve boulder transport from below a cliff or from a cliff-edge onto a cliff-top do not yet exist. In this study, we developed a new numerical formulation for cliff-top deposition of boulders from the cliff edge or below the cliff, with validation from laboratory tests. We then applied the model using storm and tsunami wave forcing to simulate the observed boulder deposits at the northwest coast of Hachijo Island, Japan. Using the model, the actual distribution of boulders was explained well using a reasonable storm wave height without assumption of anomalously high-water level by storm surge. Results show that boulder transport from the cliff edge or under the cliff onto the cliff-top was possible from a tsunami with periods of 5~10 min or storm waves with no storm surge. However, the actual distribution of boulders on the cliff was explained only by storm waves, but not by tsunami. Therefore, the boulders distributed at this site are likely of storm wave origin. Our developed model for the boulder transport calculation can be useful for identifying a boulder's origin and can reasonably calculate cliff-top deposition of boulders by tsunami and storm waves. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
海啸及风暴潮灾害简介   总被引:5,自引:0,他引:5  
地震海啸和风暴潮是严重的海洋灾害,2004年底印度洋大海啸更是震撼了全世界。本文对海啸和风暴潮的定义、性质、特征、历史上和近代的严重海啸及风暴潮灾害作了简单介绍。指出建立和完善海啸和风暴潮预警系统,可以在一旦海啸和风暴潮发生后,提前发出警报信息,争取到几十分钟甚至几十小时时间,从而极大地减轻海啸和风暴潮灾害。  相似文献   

14.
In the last 15 years there have been 16 tsunami events recorded at tide stations on the Pacific Coast of Canada. Eleven of these events were from distant sources covering almost all regions of the Pacific, as well as the December 26, 2004 Sumatra tsunami in the Indian Ocean. Three tsunamis were generated by local or regional earthquakes and two were meteorological tsunamis. The earliest four events, which occurred in the period 1994–1996, were recorded on analogue recorders; these tsunami records were recently re-examined, digitized and thoroughly analysed. The other 12 tsunami events were recorded using digital high-quality instruments, with 1-min sampling interval, installed on the coast of British Columbia (B.C.) in 1998. All 16 tsunami events were recorded at Tofino on the outer B.C. coast, and some of the tsunamis were recorded at eight or more stations. The tide station at Tofino has been in operation for 100 years and these recent observations add to the dataset of tsunami events compiled previously by S.O. Wigen (1983) for the period 1906–1980. For each of the tsunami records statistical analysis was carried out to determine essential tsunami characteristics for all events (arrival times, maximum amplitudes, frequencies and wave-train structure). The analysis of the records indicated that significant background noise at Langara, a key northern B.C. Tsunami Warning station located near the northern end of the Queen Charlotte Islands, creates serious problems in detecting tsunami waves. That station has now been moved to a new location with better tsunami response. The number of tsunami events observed in the past 15 years also justified re-establishing a tide gauge at Port Alberni, where large tsunami wave amplitudes were measured in March 1964. The two meteorological events are the first ever recorded on the B.C. coast. Also, there have been landslide generated tsunami events which, although not recorded on any coastal tide gauges, demonstrate, along with the recent investigation of a historical catastrophic event, the significant risk that landslide generated tsunami pose to coastal and inland regions of B.C.  相似文献   

15.
The Gulf of Cadiz coasts are exposed to tsunamis. Emergency planning tools are now taking into account this fact, especially because a series of historical occurrences were strikingly significant, having left strong evidence behind, in the mareographic records, the geological evidence or simply the memory of the populations. The study area is a strip along the Algarve coast, south Portugal, an area known to have been heavily impacted by the 1 November 1755 event. In this study we use two different tsunami scenarios generated by the rupture of two thrust faults identified in the area, corresponding to 8.1?C8.3 magnitude earthquakes. Tsunami propagation and inundation computation is performed using a non-linear shallow water code with bottom friction. Numerical modeling results are presented in terms of flow depth and current velocity with maximum values of 7?m and 8?m/s for inundation depth and flow speed, respectively. These results constitute a valuable tool for local authorities, emergency and decision planners to define the priority zones where tsunami mitigation measures must be implemented and to develop tsunami-resilient communities.  相似文献   

16.
Regional source tsunamis represent a potentially devastating threat to coastal communities in New Zealand, yet are infrequent events for which little historical information is available. It is therefore essential to develop robust methods for quantitatively estimating the hazards posed, so that effective mitigation measures can be implemented. We develop a probabilistic model for the tsunami hazard posed to the Auckland region of New Zealand from the Kermadec Trench and the southern New Hebrides Trench subduction zones. An innovative feature of our model is the systematic analysis of uncertainty regarding the magnitude-frequency distribution of earthquakes in the source regions. The methodology is first used to estimate the tsunami hazard at the coastline, and then used to produce a set of scenarios that can be applied to produce probabilistic maps of tsunami inundation for the study region; the production of these maps is described in part II. We find that the 2,500 year return period regional source tsunami hazard for the densely populated east coast of Auckland is dominated by events originating in the Kermadec Trench, while the equivalent hazard to the sparsely populated west coast is approximately equally due to events on the Kermadec Trench and the southern New Hebrides Trench.  相似文献   

17.
A Probabilistic Tsunami Hazard Assessment for Western Australia   总被引:2,自引:0,他引:2  
The occurrence of the Indian Ocean Tsunami on 26 December, 2004 has raised concern about the difficulty in determining appropriate tsunami mitigation measures in Australia, due to the lack of information on the tsunami threat. A first step in the development of such measures is a tsunami hazard assessment, which gives an indication of which areas of coastline are most likely to experience tsunamis, and how likely such events are. Here we present the results of a probabilistic tsunami hazard assessment for Western Australia (WA). Compared to other parts of Australia, the WA coastline experiences a relatively high frequency of tsunami occurrence. This hazard is due to earthquakes along the Sunda Arc, south of Indonesia. Our work shows that large earthquakes offshore of Java and Sumba are likely to be a greater threat to WA than those offshore of Sumatra or elsewhere in Indonesia. A magnitude 9 earthquake offshore of the Indonesian islands of Java or Sumba has the potential to significantly impact a large part of the West Australian coastline. The level of hazard varies along the coast, but is highest along the coast from Carnarvon to Dampier. Tsunamis generated by other sources (e.g., large intra-plate events, volcanoes, landslides and asteroids) were not considered in this study.  相似文献   

18.
Tsunami deposits provide a basis for reconstructing Holocene histories of great earthquakes and tsunamis on the Pacific Coast of southwest Japan. The deposits have been found in the past 15 years at lakes, lagoons, outcrops, and archaeological excavations. The inferred tsunami histories span 3000 years for the Nankai and Suruga Troughs and nearly 10,000 years for the Sagami Trough. The inferred histories contain recurrence intervals of variable length. The shortest of these —100–200 years for the Nankai Trough, 150–300 years for the Sagami Trough — resemble those known from written history of the past 1000–1500 years. Longer intervals inferred from the tsunami deposits probably reflect variability in rupture mode, incompleteness of geologic records, and insufficient research. The region's tsunami history could be clarified by improving the geologic distinction between tsunami and storm, dating the inferred tsunamis more accurately and precisely, and using the deposits to help quantify the source areas and sizes of the parent earthquakes.  相似文献   

19.
This paper employs a numerical model of tsunami propagation together with documented observations and field measurements of the evidence left behind by the tsunami in December 2004, to identify and interpret the factors that have contributed to the significant spatial variability of the level of tsunami impact along the coastal belt of the eastern province of Sri Lanka. The model results considered in the present analysis include the distribution of the amplitude of the tsunami and the pattern of wave propagation over the continental shelf off the east coast, while the field data examined comprise the maximum water levels measured at or near the shoreline, the horizontal inundation distances and the number of housing and other buildings damaged. The computed maximum amplitude of the tsunami at water points nearest the shoreline along the east coast shows considerable variation ranging from 2.2 m to 11.4 m with a mean value of 5.7 m; moreover, the computed amplitudes agree well with the available field measurements. We also show that the shelf bathymetry off the east coast, particularly the submarine canyons at several locations, significantly influences the near-shore transformation of tsunami waves, and consequently, the spatial variation of the maximum water levels along the coastline. The measured values of inundation also show significant variation along the east coast and range from 70 m to 4560 m with a median value of 700 m. Our analyses of field data also show the dominant influence of the coastal topography and geomorphology on the extent of tsunami inundation. Furthermore, the measured inundation distances indicate no apparent correlation with the computed tsunami heights at the respective locations. We also show that both the computed tsunami heights and the measured inundation distances for the east coast closely follow the log-normal statistical distribution.  相似文献   

20.
Iran is located in one of the seismically active regions of the world. Due to the high probability of earthquakes throughout the country and the potential for tsunami inundation along the coasts and offshore, comprehensive studies on the interaction of these natural phenomena are necessary. In this study, the most conservative scenarios are determined for possible earthquakes within the Khark zone (Persian Gulf) based on experimental relations between the fault length, magnitude and displacement, which are parameters for determining tsunamigenic sources. Subsequently, the maximum height of tsunami waves are calculated based on the specifications of the seismic source and its distance from the shore as well as the coastal slope. A zoning map of tsunami hazard is finally presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号