首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
基于SVM的泥石流危险度评价研究   总被引:5,自引:4,他引:1  
原立峰 《地理科学》2008,28(2):296-300
选取泥石流一次(可能)最大冲出量(L1)、泥石流发生频率(L2)、流域面积(S1)、主沟长度(S2)、流域最大相对高差(S3)、流域切割密度(S6)和泥沙补给段长度比(S9)7个因子作为泥石流沟谷危险度评价因子,运用支持向量机理论,以云南省37条泥石流沟的259个基础数据为样本进行学习训练和测试,建立泥石流危险度评价的支持向量机模型,通过实例验证,取得良好效果。  相似文献   

2.
泥石流危险度评价中若干问题的探讨   总被引:2,自引:0,他引:2  
马清文  崔春龙 《山地学报》2004,22(3):383-384
通过对目前公认的泥石流危险度评价公式的分析,提出新的危险度评价因子泥石流损失和评价模式危险度(H)=规模(M)×频率(F)×损失(S),其中,到达受灾区的泥石流规模。  相似文献   

3.
以北京军都山区实测泥石流沟谷数为基准,基于因子叠加、信息量模型和FCM-粗糙集三种方法,分别获得了泥石流灾害发生的危险性等级分布,结果表明:①各分区单位面积内泥石流沟谷数都随着危险性评价等级的提高而增多;②因子叠加法和信息量模型法可得出五级泥石流灾害危险性分级,而粗糙集法只得出三级分级;③以实际泥石流沟谷落在评价区数目为标准,信息量模型法有90%以上的泥石流沟谷在危险性高和极高区域;粗糙集法得到危险区域覆盖了63.72%的泥石流沟谷分布;④从单位面积泥石流沟谷数与泥石流沟谷分布比率可得,信息量模型法评价精度较高,因子叠加法没有形成良好的梯度,而粗糙集法计算等级结果与其他方法存在差异,故须在其他区域进行进一步研究。  相似文献   

4.
正反负矩阵权重分析法在西藏泥石流危险性分区中的应用   总被引:2,自引:0,他引:2  
介绍了正反负矩阵权重分析法的基本原理和分析过程。结合西藏地区泥石流发育分布规律,建立了泥石流危险性区划判别模型。模型中选取地质构造、地貌和气候条件(包括降水强度、年均地温和冰川水文)为影响因子,同时考虑到研究区内基础资料少的限制,再选取既能表征影响因子强度又能直接获取得因子参数进行研究。通过对各影响因子的分区赋值,利用G IS空间分析技术,对西藏地区泥石流危险性分区进行了研究。结果表明,西藏东南部泥石流危险度最强,从整个西藏地区来看危险等级由东南向西北递减。  相似文献   

5.
泥石流沟判别与危险度评价研究   总被引:20,自引:0,他引:20  
朱静 《干旱区地理》1995,18(3):63-71
以云南泥石流形环境的区域调查为基础,提出了以11项因素作为泥石流沟判别与危险度评价预测的背景参数,依据关联性序列分析确定了因素的权重分析,应用数量化理论建立了泥石流沟判别模式和危险度评价预测的计算方法,实际应用结果表明该法可靠、简便和实用,适用蚶类泥石流沟判定与危险度的评价预测。  相似文献   

6.
我国泥石流研究   总被引:2,自引:0,他引:2  
泥石流是一种突发性的自然灾害现象,多见于半干旱和半湿润山区以及处于退缩阶段的高山冰川(特别是海洋性冰川)的边缘地区。有些山区,地震活动过程中也伴生有泥石流。泥石流是产生在沟谷中或坡地上的一种饱含大量泥沙石块和巨砾的固液两相流  相似文献   

7.
四川德昌茨达“8·24”群发性滑坡型泥石流之地形条件   总被引:1,自引:0,他引:1  
2004-08-24,四川省德昌县茨达乡暴发了群发性滑坡型泥石流,给当地居民生活和生产造成了严重的损失。此次群发性泥石流范围较小,地质和水文条件比较接近,由此认为地形条件是控制泥石流发育的关键因素。在分析地形条件对滑坡型泥石流形成的影响基础上,从其形成机理出发,选取研究区各沟谷流域面积A,沟床比降J,沟谷两侧斜坡25°~45°坡度所占百分比S等3个重要地形因子进行研究,对比相互关系,建立起此次泥石流暴发的临界曲线和综合地形因子G,G=S×(A/A0)0.15×J0.8,得出在地质和降雨条件都相近似的情况下,地形因子G越大,地形条件越好,越容易暴发泥石流。因此可用G因子划分区域内沟谷泥石流的易发等级,并为滑坡型泥石流的危险性评价和预警预报提供了新的研究思路。  相似文献   

8.
泥石流危险性评价的问题   总被引:16,自引:2,他引:14  
李泳 《山地学报》1999,17(4):305-311
分析了现行泥石流危险性评价方法在因子选择,权重确定,危险度计算,区划原则和区划结果方面存在的问题,提出对泥石流危险性应进行三个层次的评价;泥石流存在环境的质量评价,泥石流活动性的评价和泥石流破坏能力的评价,并以势函数定义了泥石流危险度的统一形式,它可以满足不同目的的危险性评价。  相似文献   

9.
余承君  刘希林 《热带地理》2012,32(4):344-351
广东省地质灾害较为常见,崩塌、滑坡、泥石流是其中比较严重的3种类型。基于现有的泥石流危险度评价原理和方法,建立了可用于广东省崩塌、滑坡、泥石流灾害危险性的评价模型。以全省88个县级评价单元为基础,根据崩塌、滑坡、泥石流灾害危险度评价结果,将广东省共分为3个危险等级区,其中高度危险区8个县,占总数的9.1%;中度危险区60个县,占总数的68.2%;低度危险区20个县,占总数的22.7%,据此制成广东省崩塌、滑坡、泥石流灾害危险等级图。高度危险区主要位于粤北山区,危险度数值介于0.6~0.72之间;中度危险区连片分布,是全省崩塌、滑坡、泥石流灾害的主体部分,危险度数值介于0.4~0.6之间;低度危险区集中分布在平原区及低平台地区,危险度数值介于0.31~0.4之间。采用1994―2009年广东省防灾减灾年鉴和广东省地质灾害防治规划(2001―2015年)中的统计数据,验证了本文的研究成果与实际情况具有较高的一致性。  相似文献   

10.
刘希林  陈宜娟 《地理科学》2010,30(4):558-565
以川西地区60个县(市、区)为基本评价单元,在自然灾害风险评估基本框架下,基于国内现有区域泥石流危险度和易损度评价方法,结合研究区实际,对区域泥石流危险度8项评价指标中的3项进行了调整,用年平均降雨量取代洪灾发生频率,用流域相对高差取代≥25°坡地面积百分比,在多雨地区雅安市所属的8个评价单元中用年平均暴雨日数取代大雨日数。通过采集研究区15 a来自然、经济、人口和土地利用的基础数据,运用ArcGIS 9.0的成图技术,得出川西地区泥石流危险度、易损度和风险区划系列图。研究表明,川西地区泥石流高风险区共24个县(市、区),是四川省泥石流风险的重点防范区。  相似文献   

11.
泥石流风险评价中若干问题的探讨   总被引:23,自引:5,他引:18  
刘希林 《山地学报》2000,18(4):341-345
介绍了自然灾害风险评价的一般主泥石流危险性和泥石流区域易损性的评价方法。探讨了危险度的指标选择及其量值表达,以及风险度和易损度的异同。论述了风险评价和环境评价的关系,并对有关文献中的危险性和易损性评价问题进行了讨论。  相似文献   

12.
为分析不同因素对泥石流灾害危险性的影响程度,基于对舟曲南屿沟泥石流灾害影响因素调查结果总结和分析,利用灰色理论分析了泥石流灾害危险性与影响因素间关联程度,并建立了其预判模型。结果表明:沟岸坡度、沟道堵塞程度及冲淤变幅,沟道平均纵坡降和长度,沟道内植被覆盖率、流域面积及人口密度,松散固体物源量和灾害点密度等因素的影响程度较接近;相同区域内不同沟道泥石流灾害危险性程度受沟岸坡度、沟道堵塞程度、冲淤变幅、沟道平均纵坡降及长度等因素影响显著;基于自然和人为因素建立了泥石流灾害易发程度预估模型,其能够为区域内泥流灾害防治工作部署提供依据。  相似文献   

13.
Xilin Liu  Junzhong Lei 《Geomorphology》2003,52(3-4):181-191
Based on the definitions of the United Nations, the assessment of risk involves the evaluation of both hazard and vulnerability. This forms the basis of a generalized assessment model of debris flow risk. Hazard is a measure of the threatening degree of an extreme event and is expressed theoretically as a function of event magnitude and frequency of occurrence. Mathematically, it is the definite integral area under the magnitude–frequency curve. Based on the need for a model applicable in regions that lack data, a new method that incorporates theoretical concepts with empirical analysis is presented to calculate the regional hazardousness of debris flows. Debris flow hazard can be estimated from gully density, mean annual rainfall and percentage of cultivated land on steep slope. Vulnerability is defined as the potential total maximum losses due to a potential damaging phenomenon for a specified area and during a reference period. On a regional scale, it is dependent on the fixed assets, gross domestic product, land resources and population density, as well as age, education and wealth of the inhabitants. A nonlinear, power-function model to compute the vulnerability degree is presented. An application of the proposed method to Zhaotong prefecture of Yunnan province, SW China, provides high accuracy and reasonable risk estimates. The highest risk of debris flow is in Zhaotong county with a value of 0.48; the lowest risk of debris flow is in Yanjin county with a value of 0.16. The other counties have debris flow risks ranging from 0.22 to 0.46. This provides an approach for assessing the regional debris flow risk and a basis for the formulation of a regional risk management policy in Zhaotong prefecture.  相似文献   

14.
泥石流警报技术探索   总被引:1,自引:0,他引:1  
泥石流警报是减轻泥石流灾害,尤其是减少人员伤亡和贵重财物损失的重要手段.泥石流警报划分为4个类型:提示性警报、形成性警报、非成灾性警报和成灾性警报.泥石流警报的监测机构,划分为4个级别:泥石流预警一级监测站、二级监测站、三级监测站和预警简易监测点.泥石流预警一级监测站主要承担泥石流可能造成的特大灾和超特大灾的警报监测任务,二级监测站主要承担泥石流可能造成的大灾的警报监测任务,三级监测站主要承担泥石流可能造成的中灾的警报监测任务,泥石流预警简易监测点主要承担泥石流可能造成的小灾的警报监测任务.泥石流警报的监测项目:专业监测包括降水、气象其他要素、泥石流次声、地声、泥位、流速、重度、粘度、沟道冲淤变化和次生灾害等,简易监测包括泥石流暴发的前兆现象、降水、水(泥)位与泥沙变化状态和泥石流次声等.泥石流警报的监测数据包括降水、气象其他要素、泥位、流速、重度、粘度、次声、地声、沟道冲淤变化和次生灾害数据等.泥石流成灾性警报分为4等14级,讨论并给出了各等级成灾性警报的临界指标.监测数据的整理分析包括:降水监测的实时降水量要不断地整理为10 min、1 h和1 d的滑动降水量(强度),并不断地与当地以往暴发泥石流的10 min、1 h和1 d降水量(强度)相比较;断面监测数据中的泥石流泥位应转化为泥石流流动的断面面积,并与断面监测数据中的泥石流流速数据结合,通过公式Qc=Wc×Vc转换为泥石流流量.泥石流一旦堵断主河(沟)形成堰塞湖,应立即测量壅塞体的高度,并据此量测和计算堰塞湖的淹设范围及堰塞湖的积蓄水量,评估壅塞体溃决时可能形成的最大流量及其危害范围.泥石流警报的时间提前量t(单位:s),由公式t=L/Vc确定.  相似文献   

15.
泥石流流域的形态特征   总被引:6,自引:0,他引:6  
泥石流是特殊的流域侵蚀作用,同其他流域过程一样,密切联系着流域的形态特征.一般说来,泥石流都发生在小流域(102km2以下),而经典的流域形态研究所涉及的流域范围却达到107km2的尺度.我们想知道泥石流小流域是否具有特殊的数量特征.通过流域特征量的统计,我们看到,与一般流域相比,泥石流小流域的特征参数之间的关系形式上相同,而在数值上不同,这从一个方面肯定了流域演化存在着普遍规律(如自组织临界性),同时也证明泥石流是流域演化历史的"特殊一幕".  相似文献   

16.
泥石流灾害水文气象联合预报   总被引:1,自引:0,他引:1  
由于降雨型泥石流是我国泥石流灾害的主要类型,所以以往对泥石流灾害的预测预报主要通过对雨量数据的分析来实现。但是由于雨量站记录雨量和灾害发生雨量并不一致,这就极大的影响了单纯依赖雨量数据预测预报的准确性。在分析环境因素影响的基础上,将水文和气象资料结合起来,用于泥石流灾害的预测预报。通过比较灾害发生前、发生时和发生后的河流洪峰流量、日降雨量和小时降雨量,发现洪峰流量和小时降雨量对灾害发生有很好的指示作用。经过在辽宁省岫岩满族自治县的试验,得到洪峰流量1 800 m3/s和小时降雨量50~60 mm这两个该县泥石流灾害发生临界值。结果表明水文和气象资料的联合应用,会大大改进泥石流灾害的预测预报效果。  相似文献   

17.
通过对金沙江向家坝库区长约150km范围内的55条泥石流沟发育状况统计显示。自库首至库尾。泥石流沟的数目、发育密度及规模均呈逐渐增强趋势。同时泥石流沟的流域面积、主沟长度及纵坡平均坡降均存在明显的分形特征,它们与沟道数目之间有良好的非线性关系,并在一定程度上揭示了这些泥石流沟谷形态演变的非均匀性和自相似性。  相似文献   

18.
Mass transfers triggered by a rare rainfall event on 20–21 July, 2004, with 58.4 mm of rain within 24 h and 71.7 mm of rain within 48 h in the Latnjavagge catchment (9 km2 , 950–1440 m a.s.l.; 68°20'N, 18°30'E) in the higher Abisko mountain region (Swedish Lapland), are quantified and analysed in direct comparison with mean annual mass transfers in this drainage basin. In years without rare rainfall events the Latnjavagge catchment is characterized by restricted sediment availability resulting in low mechanical denudation and mass transfers. During the rare rainfall event of 20–21 July, 2004, major stability thresholds on the slope systems (triggering debris flows and slides) and in the channel systems (break‐up of channel debris pavements and step–pool systems) in the Latnjavagge catchment were passed and mass transfers by debris flows, slides and fluvial debris transport in creeks and channels were several times higher than the mean annual mass transfers in Latnjavagge. In the calculation of longer‐term mass transfers and sediment budgets, rare events like the 20–21 July, 2004 rainfall event have to be considered as essential components. A reliable estimation of the recurrence intervals of such rare events is especially problematic. The general problem of defining an adequate length of process monitoring programmes is pointed out.  相似文献   

19.
According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destructive strength, the debris flow torrent, high sand-carrying capacity flush flood torrent and common flush flood by the techniques. In this paper, the classification indices system and the quantitative rating methods are presented. Based on torrent classification, debris flow torrent hazard zone mapping techniques by which the debris flow disaster early-warning object can be ascertained accurately are identified. The key techniques of building the debris flow disaster neural network (NN) real time forecasting model are given detailed explanations in this paper, including the determination of neural node at the input layer, the output layer and the implicit layer, the construction of knowledge source and the initial weight value and so on. With this technique, the debris flow disaster real-time forecasting neural network model is built according to the rainfall features of the historical debris flow disasters, which includes multiple rain factors such as rainfall of the disaster day, the rainfall of 15 days before the disaster day, the maximal rate of rainfall in one hour and ten minutes. It can forecast the probability, critical rainfall of eruption of the debris flows, through the real-time rainfall monitoring or weather forecasting. Based on the torrent classification and hazard zone mapping, combined with rainfall monitoring in the rainy season and real-time forecasting models, the debris flow disaster early-warning system is built. In this system, the GIS technique, the advanced international software and hardware are applied, which makes the system's performance steady with good expansibility. The system is a visual information system that serves management and decision-making, which can facilitate timely inspect of the variation of the torrent type and hazardous zone, the torrent management, the early-warning of disasters and the disaster reduction and prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号