首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
This paper employs a numerical model of tsunami propagation together with documented observations and field measurements of the evidence left behind by the tsunami in December 2004, to identify and interpret the factors that have contributed to the significant spatial variability of the level of tsunami impact along the coastal belt of the eastern province of Sri Lanka. The model results considered in the present analysis include the distribution of the amplitude of the tsunami and the pattern of wave propagation over the continental shelf off the east coast, while the field data examined comprise the maximum water levels measured at or near the shoreline, the horizontal inundation distances and the number of housing and other buildings damaged. The computed maximum amplitude of the tsunami at water points nearest the shoreline along the east coast shows considerable variation ranging from 2.2 m to 11.4 m with a mean value of 5.7 m; moreover, the computed amplitudes agree well with the available field measurements. We also show that the shelf bathymetry off the east coast, particularly the submarine canyons at several locations, significantly influences the near-shore transformation of tsunami waves, and consequently, the spatial variation of the maximum water levels along the coastline. The measured values of inundation also show significant variation along the east coast and range from 70 m to 4560 m with a median value of 700 m. Our analyses of field data also show the dominant influence of the coastal topography and geomorphology on the extent of tsunami inundation. Furthermore, the measured inundation distances indicate no apparent correlation with the computed tsunami heights at the respective locations. We also show that both the computed tsunami heights and the measured inundation distances for the east coast closely follow the log-normal statistical distribution.  相似文献   

2.
In the aftermath of the 26 December, 2004 tsunami, several quantitative predictions of inundation for historic events were presented at international meetings differing substantially from the corresponding well-established paleotsunami measurements. These significant differences attracted press attention, reducing the credibility of all inundation modeling efforts. Without exception, the predictions were made using models that had not been benchmarked. Since an increasing number of nations are now developing tsunami mitigation plans, it is essential that all numerical models used in emergency planning be subjected to validation—the process of ensuring that the model accurately solves the parent equations of motion—and verification—the process of ensuring that the model represents geophysical reality. Here, we discuss analytical, laboratory, and field benchmark tests with which tsunami numerical models can be validated and verified. This is a continuous process; even proven models must be subjected to additional testing as new knowledge and data are acquired. To date, only a few existing numerical models have met current standards, and these models remain the only choice for use for real-world forecasts, whether short-term or long-term. Short-term forecasts involve data assimilation to improve forecast system robustness and this requires additional benchmarks, also discussed here. This painstaking process may appear onerous, but it is the only defensible methodology when human lives are at stake. Model standards and procedures as described here have been adopted for implementation in the U.S. tsunami forecasting system under development by the National Oceanic and Atmospheric Administration, they are being adopted by the Nuclear Regulatory Commission of the U.S. and by the appropriate subcommittees of the Intergovernmental Oceanographic Commission of UNESCO.  相似文献   

3.
The tsunami in the Indian Ocean caused by the earthquake of December 26, 2004, near Sumatra Island had catastrophic consequences in coastal areas of many countries in this region. Notwithstanding extensive investigations of this phenomenon at various laboratories of the world, the focal mechanism of the aftershock remains unclear. The paper analyzes possible seafloor movements in the source area of the earthquake on the basis of the keyboard model of tsunamigenic earthquakes and describes numerical simulation of the generation, propagation, and runup of water surface waves in terms of this model involving vertical displacements of seafloor “keyboard-blocks.” It is shown that generated tsunami waves are essentially dependent on the combination of keyboard-block movements, which results in an irregular distribution of maximum runups along the shoreline. If the oblique nature of the subduction zone associated with the Sumatra-Andaman earthquake of December 26, 2004, is taken into account, the model results fit well the runup values observed at the Thailand shoreline. It is noted that this model of the subduction zone accounts more adequately for the tsunami wave field pattern in both areas of the Indian Ocean and other water areas such as the region of the Kurile-Kamchatka Island Arc and the Sea of Okhotsk.  相似文献   

4.
The importance of accurate tsunami simulation has increased since the 2004 Sumatra-Andaman earthquake and the Indian Ocean tsunami that followed it, because it is an important tool for inundation mapping and, potentially, tsunami warning. An important source of uncertainty in tsunami simulations is the source model, which is often estimated from some combination of seismic, geodetic or geological data. A magnitude 8.3 earthquake that occurred in the Kuril subduction zone on 15 November, 2006 resulted in the first teletsunami to be widely recorded by bottom pressure recorders deployed in the northern Pacific Ocean. Because these recordings were unaffected by shallow complicated bathymetry near the coast, this provides a unique opportunity to investigate whether seismic rupture models can be inferred from teleseismic waves with sufficient accuracy to be used to forecast teletsunami. In this study, we estimated the rupture model of the 2006 Kuril earthquake by inverting the teleseimic waves and used that to model the tsunami source. The tsunami propagation was then calculated by solving the linear long-wave equations. We found that the simulated 2006 Kuril tsunami compared very well to the ocean bottom recordings when simultaneously using P and long-period surface waves in the earthquake source process inversion.  相似文献   

5.
Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast   总被引:2,自引:0,他引:2  
During the devastating 11 March 2011 Japanese tsunami, data from two tsunami detectors were used to determine the tsunami source within 1.5 h of earthquake origin time. For the first time, multiple near-field tsunami measurements of the 2011 Japanese tsunami were used to demonstrate the accuracy of the National Oceanic and Atmospheric Administration (NOAA) real-time flooding forecast system in the far field. To test the accuracy of the same forecast system in the near field, a total of 11 numerical models with grids telescoped to 2 arcsec (~60 m) were developed to hindcast the propagation and coastal inundation of the 2011 Japanese tsunami along the entire east coastline of Japan. Using the NOAA tsunami source computed in near real-time, the model results of tsunami propagation are validated with tsunami time series measured at different water depths offshore and near shore along Japan’s coastline. The computed tsunami runup height and spatial distribution are highly consistent with post-tsunami survey data collected along the Japanese coastline. The computed inundation penetration also agrees well with survey data, giving a modeling accuracy of 85.5 % for the inundation areas along 800 km of coastline between Ibaraki Prefecture (north of Kashima) and Aomori Prefecture (south of Rokkasho). The inundation model results highlighted the variability of tsunami impact in response to different offshore bathymetry and flooded terrain. Comparison of tsunami sources inferred from different indirect methods shows the crucial importance of deep-ocean tsunami measurements for real-time tsunami forecasts. The agreement between model results and observations along Japan’s coastline demonstrate the ability and potential of NOAA’s methodology for real-time near-field tsunami flooding forecasts. An accurate tsunami flooding forecast within 30 min may now be possible using the NOAA forecast methodology with carefully placed tsunameters and large-scale high-resolution inundation models with powerful computing capabilities.  相似文献   

6.
Sumatra tsunami: lessons from modeling   总被引:1,自引:0,他引:1  
The need for the combination of seismic data with real-time wave height information for an effective prediction of tsunami impact is emphasized in the paper. A preliminary, but comprehensive study of arrival times, wave heights and run-up values at a number of locations and tide gage stations throughout the Indian Ocean seaboard is presented. Open ocean wave height data from satellite observations are analyzed and used in the reconstruction of a tsunami source mechanism for the December 26, 2004 event. The reconstructed source is then used to numerically estimate tsunami impact along the Indian Ocean seaboard, including wave height, and arrival times at 12 tide gage stations, and inundation at 3 locations on the coast of India. The December 2004, as well as the March 28, 2005 tsunamis are investigated and their differences in terms of tsunami generation are analyzed and presented as a clear example of the need for both, seismic and real-time tsunami data for a reliable tsunami warning system in the Indian Ocean.  相似文献   

7.
2004年12月26日苏门答腊岛安达曼海附近海域发生的9.0级地震和2005年3月28日苏门答腊岛明打威群岛北附近海域的8.7级地震,在构造环境、震级、震源深度、地震类型都相似的情况下,为何前者引发海啸,后者不引发的海啸?对此进行了对比分析,认为9.0级地震发生时,在其震源体附近的两板块相交的海沟两侧陡坡蕴育着滑坡体或和崩塌体(或者两者都有),9.0级地震发生时,强烈的地震波,促使滑坡体的滑动或崩塌体的崩塌,推压和扰动海水,引发诲啸。而8.7级地震发生时、在其震源体附近的两板块相交的海沟两侧陡坡无滑坡体或和崩塌体,或先存滑坡体或崩塌体在9.0级地震发生时已滑坡或崩塌殆尽,当8.7地震发生时,无滑坡体滑动或崩塌体崩塌,不可能对海水有较大的扰动,故不可能引发海啸。  相似文献   

8.
We apply a recently developed and validated numerical model of tsunami propagation and runup to study the inundation of Resurrection Bay and the town of Seward by the 1964 Alaska tsunami. Seward was hit by both tectonic and landslide-generated tsunami waves during the $M_{\rm W}$ 9.2 1964 megathrust earthquake. The earthquake triggered a series of submarine mass failures around the fjord, which resulted in landsliding of part of the coastline into the water, along with the loss of the port facilities. These submarine mass failures generated local waves in the bay within 5?min of the beginning of strong ground motion. Recent studies estimate the total volume of underwater slide material that moved in Resurrection Bay to be about 211?million m3 (Haeussler et?al. in Submarine mass movements and their consequences, pp 269?C278, 2007). The first tectonic tsunami wave arrived in Resurrection Bay about 30?min after the main shock and was about the same height as the local landslide-generated waves. Our previous numerical study, which focused only on the local landslide-generated waves in Resurrection Bay, demonstrated that they were produced by a number of different slope failures, and estimated relative contributions of different submarine slide complexes into tsunami amplitudes (Suleimani et?al. in Pure Appl Geophys 166:131?C152, 2009). This work extends the previous study by calculating tsunami inundation in Resurrection Bay caused by the combined impact of landslide-generated waves and the tectonic tsunami, and comparing the composite inundation area with observations. To simulate landslide tsunami runup in Seward, we use a viscous slide model of Jiang and LeBlond (J Phys Oceanogr 24(3):559?C572, 1994) coupled with nonlinear shallow water equations. The input data set includes a high resolution multibeam bathymetry and LIDAR topography grid of Resurrection Bay, and an initial thickness of slide material based on pre- and post-earthquake bathymetry difference maps. For simulation of tectonic tsunami runup, we derive the 1964 coseismic deformations from detailed slip distribution in the rupture area, and use them as an initial condition for propagation of the tectonic tsunami. The numerical model employs nonlinear shallow water equations formulated for depth-averaged water fluxes, and calculates a temporal position of the shoreline using a free-surface moving boundary algorithm. We find that the calculated tsunami runup in Seward caused first by local submarine landslide-generated waves, and later by a tectonic tsunami, is in good agreement with observations of the inundation zone. The analysis of inundation caused by two different tsunami sources improves our understanding of their relative contributions, and supports tsunami risk mitigation in south-central Alaska. The record of the 1964 earthquake, tsunami, and submarine landslides, combined with the high-resolution topography and bathymetry of Resurrection Bay make it an ideal location for studying tectonic tsunamis in coastal regions susceptible to underwater landslides.  相似文献   

9.
This paper presents the results from an extensive field data collection effort following the December 26, 2004 earthquake and tsunami in Banda Aceh, Sumatra. The data were collected under the auspices of TSUNARISQUE, a joint French-Indonesian program dedicated to tsunami research and hazard mitigation, which has been active since before the 2004 event. In total, data from three months of field investigations are presented, which detail important aspects of the tsunami inundation dynamics in Banda Aceh. These include measurements of runup, tsunami wave heights, flow depths, flow directions, event chronology and building damage patterns. The result is a series of detailed inundation maps of the northern and western coasts of Sumatra including Banda Aceh and Lhok Nga. Among the more important findings, we obtained consistent accounts that approximately ten separate waves affected the region after the earthquake; this indicates a high-frequency component of the tsunami wave energy in the extreme near-field. The largest tsunami wave heights were on the order of 35 m with a maximum runup height of 51 m. This value is the highest runup value measured in human history for a seismically generated tsunami. In addition, our field investigations show a significant discontinuity in the tsunami wave heights and flow depths along a line approximately 3 km inland, which the authors interpret to be the location of the collapse of the main tsunami bore caused by sudden energy dissipation. The propagating bore looked like a breaking wave from the landward side although it has distinct characteristics. Patterns of building damage are related to the location of the propagating bore with overall less damage to buildings beyond the line where the bore collapsed. This data set was built to be of use to the tsunami community for the purposes of calibrating and improving existing tsunami inundation models, especially in the analysis of extreme near-field events.  相似文献   

10.
It was observed that in some closed inland lakes sediment transport was dominated by wind-induced currents, and the sediment resuspension was primarily driven by wind-induced waves. This paper presents the development and application of a three-dimensional numerical model for simulating cohesive sediment transport in water bodies where wind-induced currents and waves are important. In the model, the bottom shear stresses induced by currents and waves were calculated, and the processes of resuspension (erosion), deposition, settling, etc. were considered. This model was first verified by a simple test case consisting of the movement of a non-conservative tracer in a prismatic channel with uniform flow, and the model output agreed well with the analytical solution. Then it was applied to Deep Hollow Lake, a small oxbow lake in Mississippi. Simulated sediment concentrations were compared with available field observations, with generally good agreement. The transport and resuspension processes of cohesive sediment due to wind-induced current and wave in Deep Hollow Lake were also discussed.  相似文献   

11.
Foraminiferal tests are commonly found in tsunami deposits and provide evidence of transport of sea floor sediments, sometimes from source areas more than 100 m deep and several kilometers away. These data contribute to estimates of the physical properties of tsunami waves, such as their amplitude and period. The tractive force of tsunami waves is inversely proportional to the water depth at sediment source areas, whereas the horizontal sediment transport distance by tsunami waves is proportional to the wave period and amplitude. We derived formulas for the amplitudes and periods of tsunami waves as functions of water depth at the sediment source area and sediment transport distance based on foraminiferal assemblages in tsunami deposits. We applied these formulas to derive wave amplitudes and periods from data on tsunami deposits in previous studies. For some examples, estimated wave parameters were reasonable matches for the actual tsunamis, although other cases had improbably large values. Such inconsistencies probably reflect: (i) local amplification of tsunami waves by submarine topography, such as submarine canyons; and (ii) errors in estimated water depth at the sediment source area and sediment transport distance, which mainly derive from insufficient identification of foraminiferal tests.  相似文献   

12.
This paper presents a framework and data for spatially distributed assessment of tsunami inundation models. Our associated validation test is based upon the 2004 Indian Ocean tsunami, which affords a uniquely large amount of observational data for events of this kind. Specifically, we use eyewitness accounts to assess onshore flow depths and speeds as well as a detailed inundation survey of Patong City, Thailand to compare modelled and observed inundation. Model predictions matched well the detailed inundation survey as well as altimetry data from the JASON satellite, eyewitness accounts of wave front arrival times and onshore flow speeds. Important buildings and other structures were incorporated into the underlying elevation model and are shown to have a large influence on inundation extent.  相似文献   

13.
A numerical simulation of the 26th December, 2004 Indian Ocean tsunami of the Tamil Nadu coastal zone is presented. The simulation approach is based on a fully nonlinear Boussinesq tsunami propagation model and included an accurate computational domain and a robust coseismic source. The simulation is first confronted to available tide gauge and runup observations. The agreement between observations and the predicted wave heights allowed a reasonable validation of the simulation. As a result, a full picture of the tsunami impact is provided over the entire coastal zone Tamil Nadu. The processes responsible for coastal vulnerability are discussed.  相似文献   

14.
A robust numerical model to simulate propagation and runup of tsunami waves in the framework of non-linear shallow water theory is developed. The numerical code adopts a staggered leapfrog finite-difference scheme to solve the shallow water equations formulated for depth-averaged water fluxes in spherical coordinates. A temporal position of the shoreline is calculated using a free-surface moving boundary algorithm. For large scale problems, the developed algorithm is efficiently parallelized employing a domain decomposition technique. The developed numerical model is benchmarked in an exhaustive series of tests suggested by NOAA. We conducted analytical and laboratory benchmarking for the cases of solitary wave runup on simple beaches, runup of a solitary wave on a conically-shaped island, and the runup in the Monai Valley, Okushiri Island, Japan, during the 1993 Hokkaido-Nansei-Oki tsunami. In all conducted tests the calculated numerical solution is within an accuracy recommended by NOAA standards. We summarize results of numerical benchmarking of the model, its strengths and limits with regards to reproduction of fundamental features of coastal inundation, and also illustrate some possible improvements.  相似文献   

15.
Tsunami Sediment Characteristics at the Thai Andaman Coast   总被引:1,自引:0,他引:1  
This paper describes and summarizes the 2004 Indian Ocean tsunami sediment characteristics at the Thai Andaman coast. Field investigations have been made approximately 3 years after the 2004 Indian Ocean tsunami event. Seven transects have been examined at five locations. Sediment samples have been collected for grain-size analyses by wet-sieve method. Tsunami sediments are compared to three deposits from coastal sub-environments. The mean grain-size and standard deviation of deposits show that shoreface deposits are fine to very fine sand, poorly to moderately well sorted; swash zone deposits are coarse to fine sand, poorly to well sorted; berm/dune deposits are medium to fine sand, poorly to well sorted; and tsunami deposits are coarse to very fine sand, poorly to moderately well sorted. A plot of deposit mean grain-size versus sorting indicates that tsunami deposits are composed of shoreface deposits, swash zone deposits and berm/dune deposits as well. The tsunami sediment is a gray sand layer deposited with an erosional base on a pre-existing soil (rooted soil). The thickness of the tsunami sediment layer is variable. The best location for observation of the recent tsunami sediment is at about 50–200 m inland from the coastline. In most cases, the sediment layer is normally graded. In some cases, the sediment contains rip-up clasts of muddy soils and/or organic matter. The vertical variation of tsunami sediment texture shows that the mean grain-size is fining upward and landward. Break points of slope in a plot of standard deviation versus depth mark a break in turbulence associated with a transition to a lower or higher Reynolds number runup. This can be used to evaluate tsunami sediment main layer and tsunami sediment sub layers. The skewness of tsunami sediment indicates a grain size distribution with prominent finer-grain or coarse-grain particles. The kurtosis of tsunami sediment indicates grain-size distributions which are flat to peak distribution (or multi-modal to uni-modal distribution) upward. Generally, the major origins of tsunami sediment are swash zone and berm/dune zone sands where coarse to medium sands are the significant material at these locations. The minor origin of tsunami sediment is the shoreface where the significant materials are fine to very fine sands. However, for a coastal area where the shoreface slope is mild, the major origin of tsunami sediment is the shoreface. The interpretation of runup number from tsunami sediment characteristics gets three runups for the 2004 Indian Ocean tsunami at the Thai Andaman coast. It corresponds to field observations from local eyewitnesses. The 1st runup transported and deposited more coarse particles than the following runups. Overall, the pattern of onshore tsunami sediment transportation indicates erosion at swash zone and berm/dune zone, followed by dynamic equilibrium at an area behind the berm/dune zone and after that deposition at inland zone until the limit of sediment inundation. The total deposition is a major pattern in onshore tsunami sediment transportation at the deposition zone which the sediment must find in the direction of transport.  相似文献   

16.
The Andaman-Sumatra Tsunami of Dec. 26, 2004, was by far the largest tsunami catastrophe in human history. An earthquake of 9 to 9.3 on the Richter scale, the extension of waves over more than 5000 km of ocean and run-ups up to 35 m are its key features. These characteristics suggest significant changes in coastal morphology and high sediment transport rates. A field survey along the west coast of Thailand (Phuket Island, Khao Lak region including some Similan Islands, Nang Pha mangrove areas and Phi Phi Don Islands) seven to nine weeks after the tsunami, however, discovered only small changes in coastal morphology and a limited amount of dislocated sediments, restricted to the lower meters of the tsunami waves. This is in striking contrast to many paleo-tsunami's events of the Atlantic region. Explanations for this discrepancy are sought in: a. Mechanics of the earthquake. A rather slow shock impulse on the water masses over the very long earthquake zone, b. Shallow water in the earthquake zone, and c. Bathymetry of the foreshore zone at the impacted sites. Shallow water west of Thailand has diminished wave energy significantly. The differences in geomorphological and sedimentological signatures of this tsunami compared with many paleo-tsunami worldwide makes it unsuitable to be used as a model for old and future tsunami imprints by an event of this extreme energy and extension.  相似文献   

17.
The problem of transport of suspended sediment after the break of a dam on an inclined bed is considered. To that end we use the shallow‐water approximation for arbitrary, constant slopes of the bottom, taking into consideration the effect of friction. The numerical technique and the frictional model are validated by comparison with available experimental data and asymptotic analytical solutions, with special attention to the numerical solution near the wetting front. The transport of suspended sediment down the inclined bed is obtained and discussed as a function of the slope of the bed for different values of the parameters characterizing the sediment and its transport properties. For sufficiently large times we always find the formation of roll waves near the water front, which affects the transport of sediments significantly. These strong oscillations are accurately computed with the numerical method used. The relative importance of the bed load (to the suspended load) sediment transport is also discussed as a function of the size of the sediment particles and the slope of the bed for different models on the initiation of sediment suspension from bed load. We also check the dilute sediment approach and characterize the conditions for its failure. Finally, the results of the present simplified model are intended to be used as tests of more complex numerical models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Records of the coastal mareographs during the December 26, 2004, tsunami are used to study the fine structure of the tsunami wave power spectra. It is shown that a series of maxima is observed in their spectra near the source in a range of internal gravity wave frequencies of 0.2–1.2 mHz, which coincides with the frequencies of the natural oscillations of the Earth. This experimental finding enables us to propose a possible physical mechanism for the formation of tsunami waves as a result of oscillations in the sea bottom at these frequencies. Internal gravity waves in the Earth’s atmosphere excited in this way are found in the variations of the total electron content that resulted from this powerful earthquake.  相似文献   

19.
Under natural conditions, barrier islands might grow vertically and migrate onshore under the influence of long‐term sea level rise. Sediment is transported onshore during storm‐induced overwash and inundation. However, on many Dutch Wadden Islands, dune openings are closed off by artificial sand‐drift dikes that prevent the influx of sediment during storms. It has been argued that creating openings in the dune row to allow regular flooding on barrier islands can have a positive effect on the sediment budget, but the dominant hydrodynamic processes and their influence on sediment transport during overwash and inundation are unknown. Here, we present an XBeach model study to investigate how sediment transport during overwash and inundation across the beach of a typical mesotidal Wadden Sea barrier island is influenced by wave, tide and storm surge conditions. Firstly, we validated the model XBeach with field data on waves and currents during island inundation. In general, the XBeach model performed well. Secondly, we studied the long‐term sediment transport across the barrier island. We distinguished six representative inundation classes, ranging from frequently occurring, low‐energy events to infrequent, high‐energy events, and simulated the hydrodynamics and sediment transport during these events. An analysis of the model simulations shows that larger storm events cause larger cross‐shore sediment transport, but the net sediment exchange during a storm levels off or even becomes smaller for the largest inundation classes because it is counteracted by larger mean water levels in the Wadden Sea that oppose or even reverse sediment transport during inundation. When taking into account the frequency of occurrence of storms we conclude that the cumulative effect of relatively mild storms on long‐term cross‐shore sediment transport is much larger than that of the large storm events. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

20.
— The Papua New Guinea (PNG) tsunami of 1998 is re-examined through a detailed review of the field survey as well as numerous numerical computations. The discussion of the field survey explores a number of possible misinterpretations of the recorded data. The survey data are then employed by a numerical model as a validation tool. A Boussinesq model and a nonlinear shallow water wave (NLSW) model are compared in order to quantify the effect of frequency dispersion on the landslide-generated tsunami. The numerical comparisons indicate that the NLSW model is a poor estimator of offshore wave heights. However, due to what appears to be depth-limited breaking seaward of Sissano spit, both numerical models are in agreement in the prediction of maximum water elevations at the overtopped spit. By comparing three different hot-start initial profiles of the tsunami wave, it is shown that the initial shape and orientation of the tsunami wave is secondary to the initial displaced water mass in regard to prediction of water elevations on the spit. These numerical results indicate that agreement between numerical prediction of runup values with field recorded values at PNG cannot be used to validate either a NLSW tsunami propagation model or a specific landslide tsunami hot-start initial condition. Finally, with the use of traditional tsunami codes, a new interpretation of the PNG runup measurements is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号