首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the time-series variations in 222Rn activity at a fixed station in the Yeongsan River Estuary (YRE), Korea, where the upstream water is obstructed by an artificial dam, during November 18–24, 2008, and conducted a horizontal 222Rn survey in the Seomjin River Estuary (SRE), Korea, during December 16–18, 2008. In the YRE, we observed constantly low levels of 222Rn activity over the sampling period, relative to the summer in 2008. The 222Rn variations and 222Rn mass-balance modeling results indicate that the submarine groundwater discharge (SGD) in the YRE was relatively low and constant over the sampling period and that the temporal SGD variations were not related to tides or to the water elevation in the dam upstream. This low and constant SGD appears to be due to the lower water level in the dam relative to the local sea level during the study period, resulting in the SGD mostly from the surrounding land areas rather than from the dam. In the SRE, higher 222Rn activities were observed at upstream stations of the river (salinity: <5) and decreased as the salinity increased, but there were marked increases of 222Rn, together with dissolved inorganic silicate (DSi), at stations close to the river mouth (salinity: ~33). This suggests that the river has major groundwater inputs from the two extreme upstream and downstream areas. Because most chemical flux estimations via river discharge do not account for groundwater inputs from the downstream high-salinity zone, our results suggest that there is an important unaccounted source of river-driven chemical fluxes. Overall, our study shows that the continuous 222Rn monitoring system provides high-resolution information on SGD over different locations and times.  相似文献   

2.
222Rn was measured in the near-bottom waters of the continental slope of the Mid-Atlantic Bight. Separate measurements of the 222Rn supported by dissolved 226Ra allowed the excess 222Rn that is derived from the underlying sediments to be distinguished. Measurements of production of 222Rn by the sediments were used to calculate fluxes of 222Rn from sediments that would be expected as a result of molecular diffusion. On the upper slope and on the lower slope excess 222Rn standing crops were, respectively, greater than and consistent with fluxes of radon from sediments by molecular diffusion as are typical of most ocean environments. On the middle slope, however, observed excess 222Rn concentrations and standing crops were significantly lower than what would be expected from the calculated fluxes from the underlying sediments. This unusual feature of low radon concentrations on the middle slope is referred to as the low-radon zone (LRZ). This LRZ was always present over several years and seasons, but was variable in intensity (excess-radon concentration and standing crop) and in location on the slope. Low concentrations of suspended particulate matter and low current velocities observed by others in the same region are consistent with low mixing as a possible cause of the LRZ. Radon profile shapes and recent work by others on near bottom mixing due to interactions between topography and internal waves, however, suggest that high mixing due to internal waves is a more likely cause of the LRZ.  相似文献   

3.
Observations of primary productivity, 234Th, and particulate organic carbon (POC) were made from west to east across the northern North Pacific Ocean (from station K2 to Ocean Station Papa) during September–October 2005. Primary productivities in this region varied longitudinally from approximately 236 to 444 mgC m−2d−1 and clearly indicate the West High East Low (WHEL) trend. We estimated east-west variations in the POC flux from the surface layer (0–100 m) by using 234Th as a tracer. POC fluxes in the western region (44–53 mgC m−2d−1) were higher than those in the eastern region (21–34 mgC m−2d−1). However, the export ratios (e-ratios) ranged from approximately 8% to 16% and did not show the WHEL trend. Contrary to our expectation, no relation between POC flux (or e-ratio) and diatom biomass (or dominance) was apparent in autumn in the northern North Pacific.  相似文献   

4.
Temporal changes in cesium-137 (137Cs) concentrations in the surface (0–10 cm) layer of seabed sediment were quantified from continuous observation data at 71 stations within a 150-km radius of the Fukushima Daiichi Nuclear Power Plant, and the primary processes affecting temporal changes were identified. From March 2011 to the end of 2015, about 80% of the initially deposited 137Cs in the surface sediment in the coastal region (bottom depth ≤100 m) region has dissipated (radioactive decay is not included). Such a remarkable change in the 137Cs concentration was not observed in the offshore (>100 m) region. This paper focuses on the following three processes that affected the decrease in the 137Cs concentrations, and assesses their relative importance; (1) resuspension and transport of 137Cs-bound sediment, (2) desorption of 137Cs from the sediment, and (3) dilution of 137Cs by vertical mixing of sediment. Consequently, it was estimated that the first two processes together have potentially contributed to reduce the 137Cs inventory in the top 10 cm of the coastal region by at most 35%. Furthermore, by applying a pulse input sediment mixing model to the observed vertical distribution of sedimentary 137Cs, it was also estimated that more than 43% of the 137Cs in the surface sediment was transported to deeper sediment layers by vertical mixing of the sediment. This indicates that the decrease of 137Cs concentrations in coastal sediments was mainly affected by mixing of 137Cs-bound surface sediment with less contaminated sediment in the deeper layers.  相似文献   

5.
Stable isotopes, tritium, radium isotopes, radon, trace elements and nutrients data were collected during two sampling campaigns in the Ubatuba coastal area (south-eastern Brazil) with the aim of investigating submarine groundwater discharge (SGD) in the region. The isotopic composition (δD, δ18O, 3H) of submarine waters was characterised by significant variability and heavy isotope enrichment. The stable isotopes and tritium data showed good separation of groundwater and seawater groups. The contribution of groundwater in submarine waters varied from a few % to 17%. Spatial distribution of 222Rn activity concentration in surface seawater revealed changes between 50 and 200 Bq m−3 which were in opposite relationship with observed salinities. Time series measurements of 222Rn activity concentration in Flamengo Bay (from 1 to 5 kBq m−3), obtained by in situ underwater gamma-spectrometry showed a negative correlation between the 222Rn activity concentration and tide/salinity. This may be caused by sea level changes as tide effects induce variations of hydraulic gradients, which increase 222Rn concentration during lower sea level, and opposite, during high tides where the 222Rn activity concentration is smaller. The estimated SGD fluxes varied during 22–26 November between 8 and 40 cm d−1, with an average value of 21 cm d−1 (the unit is cm3/cm2 per day). The radium isotopes and nutrient data showed scattered distributions with offshore distance and salinity, which implies that in a complex coast with many small bays and islands, the area has been influenced by local currents and groundwater–seawater mixing. SGD in the Ubatuba area is fed by coastal contaminated groundwater and re-circulated seawater (with small admixtures of groundwater), which claims for potential environmental concern with implications on the management of freshwater resources in the region.  相似文献   

6.
Dissolved and particulate 234Th activities in surface seawater were determined at 27 stations along the coastline of western Taiwan during 19–23 November 2004. Contrasting scavenging settings were observed between the northern and southern regimes of the nearshore water off western Taiwan, separated by the Cho-Shui River. The northern regime is characterized by a large quantity of suspended load contributed by northward transport of a suspension plume from the Cho-Shui River, while the southern regime, low in suspended load and high in chlorophyll concentration, is a system controlled by biological activity. A scavenging model that takes account of the physical transport was used to estimate the 234Th budget in order to estimate the scavenging and removal rates from the nearshore water. The scavenging and removal rates ranged from 21 to 127 dpm m−3d−1 and from 36 to 525 dpm m−3d−1, for dissolved and particulate 234Th, respectively. The removal fluxes of particulate organic carbon (POC) and particulate organic nitrogen (PON) were estimated by multiplying the particulate 234Th removal flux to the organic carbon/234Th and nitrogen/234Th ratios in suspended particles, which ranged from 4.5 to 275.2 mmol-C m−2d−1 and from 1.3 to 50.1 mmol-N m−2d−1, respectively. These fluxes resulted in residence times of 1∼20 days for the POC in the surface water of nearshore water off western Taiwan.  相似文献   

7.
Export fluxes of particulate organic carbon (POC) were estimated from the 234Th/238U disequilibrium in the Ulleung Basin1 (UB) of the East/Japan Sea1 (EJS) over four seasons. The fluxes were calculated by multiplying the average POC/234Th ratio of sinking particles larger than 0.7 μm at 100- and 200-m water depths to 234Th fluxes by the integrated 234Th/238U disequilibrium from the surface to 100-m water depth. In spring, the 234Th profiles changed dramatically with sampling time, and hence a non-steady-state 234Th model was used to estimate the 234Th fluxes. The 234Th flux estimated from the non-steady-state model was an order of magnitude higher than that estimated from the steady-state model. The 234Th fluxes estimated using the steady-state model showed distinct seasonal variation, with high values in summer and winter and low values in autumn. In spring, the phytoplankton biomass had the highest value, and primary production was higher than in summer and autumn, but the 234Th fluxes were moderate. However, these values might have been significantly underestimated, as the 234Th fluxes were estimated using the steady-state model. The POC export fluxes estimated in autumn were about four times lower than those in other seasons when they were rather similar. The annually averaged POC flux was estimated to be 161 ± 76 mgC m−2 day−1, which was somewhat lower than that in highly productive coastal areas, and higher than that in oligotrophic regions. The export/primary production (ThE) ratios ranged from 7.0 to 56.1%, with higher values in spring and summer and lower values in autumn and winter. In summer, a high ThE ratio of 48.4 ± 7.0% was measured. This may be attributed to the mass diatom sinking event following nitrate depletion. In the UB1, the annually averaged ThE ratio was estimated to be 34.4 ± 12.9%, much higher than that in oligotrophic oceans. The high ThE ratio may have contributed to the high organic carbon accumulation in the UB1.  相似文献   

8.
In order to estimate the deposition rate of extraterrestrial material onto a manganese crust in a search for supernova debris, we analyzed the contents of 10Be, 230Th, 231Pa, and 239,240Pu in a sample of manganese crust collected from the North Pacific Ocean. On the basis of the depth profile of 10Be, the growth rate of the manganese crust was determined to be 2.3 mm Myr−1. The uptake rates of 10Be, 230Th, and 231Pa onto the manganese crust were estimated to be 0.22–0.44%, 0.11–0.73%, and 1.4–4.5%, respectively, as compared to the deposition rates onto the deep-sea sediments near the sampling station, while that for 239,240Pu was 0.14% as compared to the total inventory of seawater and sediment column. Assuming that sinking particles represent 0.11–4.5% of the uptake rates, the deposition rate of extraterrestrial material onto the manganese crust was estimated to be 2–800 μg cm−2Myr−1 according to the uptake of 10Be onto the manganese crust. Further, our estimate is similar to the value of 9–90 μg cm− 2Myr−1 obtained using the integrated global production rate of 10Be and the deposition rate of 10Be onto the manganese crust.  相似文献   

9.
We utilized 234Th, a naturally occurring radionuclide, to quantify the particulate organic carbon (POC) export rates in the northern South China Sea (SCS) based on data collected in July 2000 (summer), May 2001 (spring) and November 2002 (autumn). Th-234 deficit was enhanced with depth in the euphotic zone, reaching a subsurface maximum at the Chl-a maximum in most cases, as commonly observed in many oceanic regimes. Th-234 was in general in equilibrium with 238U at a depth of ∼100 m, the bottom of the euphotic zone. In this study the 234Th deficit appeared to be less significant in November than in July and May. A surface excess of 234Th relative to 238U was found in the summer over the shelf of the northern SCS, most likely due to the accumulation of suspended particles entrapped by a salinity front. Comparison of the 234Th fluxes from the upper 10 m water column between 2-D and traditional 1-D models revealed agreement within the errors of estimation, suggesting the applicability of the 1-D model to this particular shelf region. 1-D model-based 234Th fluxes were converted to POC export rates using the ratios of bottle POC to 234Th. The values ranged from 5.3 to 26.6 mmol C m−2d−1 and were slightly higher than those in the southern SCS and other oligotrophic areas. POC export overall showed larger values in spring and summer than in autumn, the seasonality of which was, however, not significant. The highest POC export rate (26.6 mmol C m−2d−1) appeared at the shelf break in spring (May), when Chl-a increased and the community structure changed from pico-phytoplankton (<2 μm) dominated to nano-phytoplankton (2–20 μm) and micro-phytoplankton (20–200 μm) dominated.  相似文献   

10.
Transport between pore waters and overlying surface waters of Flamengo Bay near Ubatuba, Brazil, was quantified using natural and artificial geochemical tracers, 222Rn, Cl, and SF6, collected from multi-level piezometers installed along a transect perpendicular to the shore. Eight sampling ports positioned along the length of the piezometers allowed sampling of pore waters at discrete depth intervals from 10 to 230 cmbsf (centimeters below seafloor). Small volume samples were collected from the piezometers using a peristaltic pump to obtain pore water depth profiles. Pore water 222Rn is deficient in shallow sediments, allowing application of a diffusion-corrected 222Rn exchange rate. This model estimates the magnitude of pore water exchange rates to be about 130–419 cm/day. An SF6-saturated fluorescein dye tracer was gently pumped into deep pore waters and exchange rates estimated from this method range from 29 to 185 cm/day. While absolute rates are higher using 222Rn than SF6, rates are of similar magnitudes and the trends with distance from shore are the same – flow is greatest 6 m from shore and decreases by more than 50% further offshore. A Cl mass balance indicates the greatest fraction of fresh SGD occurs along an apparent preferential flow path in sediments within 5–7 m of the shoreline (87%). Recirculating bay waters through sediments dominate pore water advection at 10 m offshore where only 4% of the flow can be attributed to a freshwater source. Both fresh and marine sources combine to make up submarine groundwater discharge to coastal water bodies. The magnitude of fresh aquifer discharge is often a spatially variable and minor component of the total discharge.  相似文献   

11.
海底地下水排放对典型红树林蓝碳收支的影响   总被引:1,自引:0,他引:1  
海底地下水排放(Submarine Groundwater Discharge,SGD)是陆海相互作用的重要表现形式之一,其携带的物质对近岸海域生源要素的收支有重要影响。本文利用222Rn示踪技术估算了我国典型红树林海湾—广西珍珠湾在2019年枯季(1月)SGD携带的碳通量。调查发现,地下水中222Rn活度、溶解无机碳(DIC)和溶解有机碳(DOC)的平均浓度均高于河水和湾内表层海水。利用222Rn质量平衡模型估算得到珍珠湾SGD速率为(0.36±0.36) m/d,SGD输入到珍珠湾的DIC和DOC通量分别为(2.41±2.63)×107 mol/d和(1.96±2.20)×106 mol/d。珍珠湾溶解碳的源汇收支表明,SGD携带的DIC和DOC分别占珍珠湾总DIC和总DOC来源的91%和89%。因此,SGD携带的DIC和DOC是珍珠湾DIC和DOC的主要来源,是海岸带蓝碳收支和生物地球化学循环过程中的重要组成。  相似文献   

12.
We used more than 25,000 nutrient samples to elucidate for the first time basin-scale distributions and seasonal changes of surface ammonium (NH4 +) and nitrite (NO2 ?) concentrations in the Pacific Ocean. The highest NH4 +, NO2 ?, and nitrate (NO3 ?) concentrations were observed north of 40°N, in the coastal upwelling region off the coast of Mexico, and in the Tasman Sea. NH4 + concentrations were elevated during May–October in the western subarctic North Pacific, May–December in the eastern subarctic North Pacific, and June–September in the subtropical South Pacific. NO2 ? concentrations were highest in winter in both hemispheres. The seasonal cycle of NH4 + was synchronous with NO2 ?, NO3 ?, and satellite chlorophyll a concentrations in the western subtropical South Pacific, whereas it was synchronous with chlorophyll-a but out of phase with NO2 ? and NO3 ? in the subarctic regions.  相似文献   

13.
A total of 21 surface water samples were collected on the east side of the East China Sea (ECS) (3 sites) and at the Tsushima Strait (1 site), and 226Ra and 228Ra activities were measured using low-background γ-spectrometry. The 228Ra/226Ra ratios among the samples exhibited notable seasonal variation (228Ra/226Ra = 0.2–2.6) accompanying changes of salinity (31.7–34.7). Seasonal water circulation within the ECS is hypothesized to cause the change by altering the mixing ratio of 228Ra-rich continental shelf water and 228Ra-poor Kuroshio water.  相似文献   

14.
The input of groundwater-borne nutrients to Adelaide's (South Australia) coastal zone is not well known but could contribute to the ongoing decline of seagrass in the area. As a component of the Adelaide Coastal Waters Study (ACWS), the potential for using the radium quartet (223Ra, 224Ra, 226Ra and 228Ra) and 222Rn to evaluate submarine groundwater discharge (SGD) was evaluated. Potential isotopic signatures for SGD were assessed by sampling groundwater from three regional aquifers potentially contributing SGD to the ACWS area. In addition, intertidal groundwater was sampled at two sand beach sites. In general, the regional groundwaters were enriched in long-lived Ra isotopes (226Ra and 228Ra) and in 222Rn relative to intertidal groundwater. Radium activity (but not 222Rn activity) was positively correlated to salinity in groundwater from one of the regional aquifers and in intertidal groundwater. Radium isotope ratios (223Ra/226Ra, 224Ra/226Ra and 228Ra/226Ra) were less variable than individual Ra isotope activities within potential SGD sources. Recirculated seawater (estimated from the intertidal groundwater samples with seawater-like salinities) also had distinctly higher Ra isotope ratios than the regional groundwaters. The activities for all radioisotopes were relatively low in seawater. The activity of the short-lived 223Ra and 224Ra were highest at the shoreline and declined exponentially with distance offshore. In contrast, 228Ra and 226Ra activities had a weak linear declining trend with distance offshore. Rn-222 activity was at or near background in all seawater samples. The pattern of enrichment in short-lived Ra isotopes and the lack of 222Rn in seawater suggest that seawater recirculation is the main contributor to SGD in the ACWS area. Preliminary modeling of the offshore flux of 228Ra and 226Ra suggest that the SGD flux to the ACWS area ranges between 0.2 and 3 · 10− 3 m3 (m of shoreline)− 1 s− 1.  相似文献   

15.
In 2014 and 2015, we examined the spatial distribution of cesium-134 (half-life: 2.06 years) from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) in marine sediments within coastal–basin areas (water depths of 40–520 m) off central Honshu Island (the main island of Japan) in the Sea of Japan. The 134Cs concentrations in both the surface sediment (0–1 cm depth) and whole-core inventory exhibited wide variations, and were highest at the site closest to the Agano River Estuary area (6.7 Bq/kg-dry and 886 Bq/m2, respectively). This indicates that 134Cs in coastal areas was delivered by riverine suspended solids (SS). Given the spatial variation in 134Cs concentrations, we believe that 134Cs partially migrated northeastward within ~50 km along Honshu Island (at water depths shallower than ~140 m), and southwestward, including the Sado Basin area. This is predominantly attributable to the transport of SS by bottom currents and unsteady downward delivery onto the steep slopes of the basin. The total amount of 134Cs in the study area in 2014 was estimated at approximately 0.6 TBq (decay-corrected to March 11, 2011, date of FDNPP accident).  相似文献   

16.
Relations between short-term variations in the concentrations of aerosol (PM10) and carbon monoxide (CO) and meteorological characteristics are considered for the episodes of severe atmospheric pollution in the region of Moscow in the summer of 2010. The assumption is made and substantiated that the observed (in late June) severe aerosol pollution of the atmosphere over Moscow was caused by air masses arrived from soil-drought regions of southern Russia. In August, during the episodes of advection of forest-fire products, the maximum surface concentrations of pollutants were observed in Moscow mainly at 11:00–12:00 under a convective burst into the atmospheric boundary layer and at night in the presence of local wind-velocity maxima or low-level jet streams within the inversion layer. On the basis of results from an analysis of these air-pollution episodes before and after fires, it is concluded that the shearing instability of wind velocity favors the surface-air purification under ordinary conditions and an increase in the surface concentrations of pollutants during their advection (long-range transport, natural-fire plumes, etc.). It is shown that the pollution of the air basin over the megapolis with biomass-combustion products in 2010 led to an increase in the thermal stability of the atmospheric surface layer and in the duration of radiation inversions, as well as to an attenuation of the processes of purification in the urban heat island.  相似文献   

17.
The behavior of heavy-metal cations in ore minerals of cobalt-rich ferromanganese crusts from the Marcus Wake seamount in aqueous solutions of metal salts was studied in experiments. The Zn2+ and Cd2+ cations showed high reactivity and Ва2+ and Pb2+ showed low reactivity. It was found that Zn2+ and Cd2+ cations within the ore mineral composition are mainly absorbed (up to 66%) whereas Pb2+ and Ва2+ are chemically bound (up to 70%). Ore minerals in the crusts are characterized by sorption properties and high ionexchange capacity by these cations (1.94–2.62 mg-equiv/g). The capacity values by heavy-metal cations for ore minerals of the crusts from different areas of the Marcus Wake seamount are close to each other.  相似文献   

18.
More than 14,000 measurements of surface water xCO2 were obtained during two cruises, 3 weeks apart in June 2000, along 155°E between 34 and 44°N in the western North Pacific Ocean. Based on the distributions of salinity and sea surface temperature (SST), the region has been divided into 6 subregions; Oyashio, Oyashio front, Transition, Kuroshio front, and Kuroshio extension I and II zones, from north to south. The surface waters were always undersaturated with respect to atmospheric CO2. The Oyashio water was the least undersaturated: its xCO2 decreased slightly by 7 ppm, while SST increased by 2°C. The xCO2 normalized to a constant temperature decreased considerably. In the two frontal zones, a large drawdown of 30–40 ppm was observed after 18–19 days. In the Kuroshio extension zones, the xCO2 increased, but the normalized xCO2 decreased considerably. The Transition zone water may be somewhat affected by mixing with the subsurface water, as indicated by the smallest SST rise, an undecreased PO4 concentration, and a colder and less stable surface layer than the Oyashio front water. As the uncertainty derived from the air-sea CO2 flux was not large, the xCO2 data allowed us to calculate the net biological productivity. The productivities around 60 mmol C m−2d−1 outside the Transition zone indicate that the northwestern North Pacific, especially the two frontal zones, can be regarded as one of the most productive oceans in the world.  相似文献   

19.
Investigations including a bathymetric survey, sonic prospecting, and vibrocoring were performed to understand the horizontal and vertical distribution of 137Cs in seabed sediments in shallow seas with depths less than 30 m near the Fukushima Daiichi Nuclear Power Plant. Especially, features of 137Cs distributions in deeper sections of the seabed sediments were studied to evaluate the vertical heterogeneity of 137Cs distribution in the seabed sediments in shallow seas. The distribution area of the seabed sediments was less than half of the investigation area, and the locations of the seabed sediments were divided into flat and terrace-like seafloors based on their topographical features. The thicknesses of the seabed sediment layers were mostly <2 m. The 137Cs inventories in the seabed sediments varied from 13 ± 1 to 3,510 ± 26 kBq m?2, and continuous distributions of 137Cs at depths greater than 81 cm were observed. The 137Cs distributions were not uniform; however, the 137Cs inventories tended to be larger near the base of the steeper ascending slopes than in the terrace-like seafloors themselves. Based on the relationship between the 137Cs inventories and mean shear stress, features of the seafloor topography were inferred to be significant control factors governing the horizontal and vertical distribution of 137Cs in the seabed sediments. Rapid changes and multiple peaks in the vertical profile of the 137Cs distributions suggest that they are related to pulse input caused by heavy-rain events. Change in the 137Cs inventories with depth in this study are larger than those reported in previous studies, indicating earlier results of 137Cs inventories per unit in seabed sediments in shallow seas, especially near the river mouth, which drains a radiologically highly-contaminated basin, were underestimated.  相似文献   

20.
We report the results of an experiment in which we measured 222Rn (15,000 observations), CH4 (40,000 observations), and associated variables in seawater nearly continuously at a coastal site in the Gulf of Mexico for almost two years. Significant correlations between 222Rn and CH4 imply that they are derived from a common source, most likely groundwater. However, we were unable to explain the overall tracer variability as a single function of groundwater table height, temperature, tidal range, and wind speed, indicating multiple, overlapping controls on SGD dynamics at this site. Methane and radon concentrations may vary 2-fold in a given well in the subterranean estuary over tidal time scales, demonstrating the complexity of determining SGD endmember concentrations and suggesting that unaccounted for temporal changes in groundwater may explain some of the patterns observed in seawater. Surprisingly, the variability of 222Rn and CH4 in seawater over short (e.g., hourly) time scales was generally comparable to or even more pronounced than fluctuations over much longer (e.g., monthly) scales. While high tracer concentrations usually occurred during low tide and low tracer concentrations during high tide, this pattern was occasionally inverted or absent indicating that no single model can be used to describe the entire data set. We also describe a sequence of events in which SGD tracers were depleted in coastal waters during storms and regenerated afterwards. We found no increase in radon activities immediately after the largest storm (75 mm rainfall) perhaps because of the short residence times of groundwater in contrast to the ingrowth time of radon. Marine controls appeared to be the most important SGD drivers with only minor influence relating to the shallow and deep aquifers. This implies that seasonal investigations of SGD tracers in the coastal ocean may be masked by short-term variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号