首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
调谐质量阻尼器系统控制结构地震反应的若干问题   总被引:18,自引:3,他引:18  
本文研究调谐质量阻尼器(TunedMassDamper,以下简称TMD)用作抗震结构的防御体系时的一些问题,包括TMD在结构上的最佳位置,TMD频率的最佳值,TMD对非调谐结构振型的影响和TMD参数的灵敏度分析,这些问题的解决将为研究设置TMD的结构的抗震设计方法提供理论依据。  相似文献   

2.
调谐质量阻尼器的优化分析   总被引:7,自引:0,他引:7  
本文根据双自由度系统的随机反应,推导了设置调谐质量阻尼器的单自由度系统的运动方程,求出了白噪声基底输入时,设置TMD的单自由度系统的反应方差与未设置TMD的单自由度系统的反应方差之比,并采用模式搜索法对其进行优化方法,得到了TMD系统的最佳减振效果以及相应的TMD的参数取值,本文的分析表明,TMD系统对减小白噪声基底输入的单自由度系统的随机反应是十分有效的。  相似文献   

3.
装有调谐质量阻尼器的高架桥梁的减震分析   总被引:1,自引:0,他引:1  
调谐质量阻尼器(TMD)是结构控制中发展起来的一种较成熟的控制装置。本文将TMD减振技术运用于高架桥梁,建立了安装有TMD的桥梁体系的分析计算模型,获得了其动力反应计算公式;探讨了TMD装置对桥梁减震的有效性,并分析了TMD动力参数对桥梁减震的影响。  相似文献   

4.
高层建筑地震反应全反馈主动TMD控制理论研究   总被引:6,自引:2,他引:6  
本文应用最近提出的全反馈主动控制法对高层建筑地震反应进行了全反馈主动TMD(调谐质量阻尼器)控制的理论研究,考虑了实时控制过程中控制力的时间滞后效应,并通过数值模拟分析了不同的反馈形式以及不同的时间滞后量对主动TMD控制效果的影响。最后得出结论:对高层建筑地震反应实施全反馈主动TMD控制,既能更有效地降低结构的位移反应和速度反应,又能大幅度地降低结构的加速度反应;且当控制力时间滞后量较大时,对主动  相似文献   

5.
A STUDY ON VIBRATION REDUCTION IN HIGH-RISE STRUCTURES BY MULTI-TLDs   总被引:2,自引:0,他引:2  
本文研究高层建筑利用调液阻尼器(TLD)减小地震反应的方法。首先探讨了激励频率比、调谐频率比对减震效果的影响。在此基础上建立了具有不同TLD设置方式的高层建筑体系的学模型和运动方程,首次提出了利用多个TLD减小高层建筑多个振型的方法。最后通过数值算例验证了本文方法的有效性。  相似文献   

6.
根据高耸造粒结构具有旋转壳外形的特点,提出了一种环状半主动可控调频质量阻尼器(TMD)系统,并以旋转壳理论编制了有限元程序,对TMD系统的振动参数进行了计算。结果表明,可控TMD系统具有显著的减震效果,为结构震后修复提供了一种经济,方便,适用,快捷的新途径。  相似文献   

7.
桥染结构MTMD被动控制的理论研究和实桥分析   总被引:4,自引:0,他引:4  
采用频域分析法考虑TMD在多自由度结构中的位置,推导了具有MTMD的多自由度结构受控振型广义坐标的频率响应方程,据此进行了MTMD的参数优化和设计。算例表明,只要MTMD设计正确,它就可以有产地减小结构在地震作用下的动力响应。  相似文献   

8.
利用多个调液阻尼器减小高层建筑地震反应的研究   总被引:3,自引:1,他引:3  
本文研究高层建筑利用财液阻尼器减小地震反应的方法,首先探讨了激励频率比,调谐频率比对减震效果的影响。在此基础上建立了具有不同TLD设置方式的高层寻找体系的力学模型和运动方程首次提出了利用多个TLD减小高层建筑多个振型的方法,最后通过数值算例验证了本文方法的有效性。  相似文献   

9.
用于控制高柔结构振动的POD技术   总被引:5,自引:0,他引:5  
本文通过模型试验和理论分析研究了一种控制高柔结构振动的新方法---POD(摆、油阻尼器)减振系统。文中详细分析了其减震原理,并提出了与试验结果相吻合的三角形非缄性滞回模型。试验结果表明,在接近调谐状态下POD法可减振48%。数据计算的结果也表明,POD不仅减振效果比TMD高得多,而且有效频带也宽得多。POD系统具有造价低、易安装、占用空间小、免维护等优点,可用于风可于震等荷载引起的电视塔、悬索桥塔  相似文献   

10.
本文设计并完成了考虑土与结构相互作用的结构减震控制大型振动台模型试验。通过对四种结构形式的对比试验,探讨了土与结构相互作用(SSI)效应对结构地震反应的影响以及调谐质量阻尼器(TMD)在刚性和柔性地基条件下对主体结构的减震效应。通过比较同一地震动作用下主体结构在刚性和柔性两种地基条件下的地震反应,可知:SSI效应具有降低和提高结构减震控制效果的双重作用,其综合效果与输入地震动的频谱特性、加速度峰值大小有关。由于SSI效应在结构地震反应中发挥着双重的作用,因而使得基于刚性地基假定下设计的TMD减震控制系统在柔性地基条件下的控制效果不太理想,甚至会出现负面效应。本文还探讨了在柔性地基条件下影响结构减震控制效果的一些因素。  相似文献   

11.
研究了非对称结构扭转振动多重调谐质量阻尼器(MTMD)控制的最优位置。本文采用的MTMD具有相同的刚度、阻尼,但质量不同。基于导出的设置MTMD时非对称结构扭转角位移传递函数,建立了扭转角位移动力放大系数解析式。MTMD最优参数的评价准则定义为:非对称结构最大扭转角位移动力放大系数的最小值的最小化。MTMD的有效性评价准则定义为:非对称结构最大扭转角位移动力放大系数的最小值的最小化与未设置MTMD时非对称结构最大扭转角位移动力放大系数的比值。基于定义的评价准则,研究了非对称结构的标准化偏心系数(NER)和扭转对侧向频率比(TTFR)对不同位置MTMD最优参数和有效性的影响。  相似文献   

12.
The dynamic response of tall civil structures due to earthquakes is very important to civil engineers. Structures exposed to earthquakes experience vibrations that are detrimental to their structural components. Structural pounding is an additional problem that occurs when buildings experience earthquake excitation. This phenomena occurs when adjacent structures collide from their out‐of‐phase vibrations. Many energy dissipation devices are presently being used to reduce the system response. Tuned mass dampers (TMD) are commonly used to improve the response of structures. The stiffness and damping properties of the TMD are designed to be a function of the natural frequency of the building to which it is connected. This research involves attaching adjacent structures with a shared tuned mass damper (STMD) to reduce both the structures vibration and probability of pounding. Because the STMD is connected to both buildings, the problem of tuning the STMD stiffness and damping parameters becomes an issue. A design procedure utilizing a performance function is used to obtain the STMD parameters to result in the best overall system response. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
The five MTMD models, with natural frequencies being uniformly distributed around their mean frequency, have been recently presented by the first author. They are shown to have the near‐zero optimum average damping ratio (more precisely, for a given mass ratio there is an upper limit on the total number, beyond which the near‐zero optimum average damping ratio occurs). In this paper, the eight new MTMD models (i.e. the UM‐MTMD1~UM‐MTMD3, US‐MTMD1~US‐MTMD3, UD‐MTMD1 and UD‐MTMD2), with the system parameters (mass, stiffness and damping coefficient) being, respectively, uniformly distributed around their average values, have been, for the first time here, proposed to seek for the MTMD models without the near‐zero optimum average damping ratio. The structure is represented by the mode‐generalized system corresponding to the specific vibration mode that needs to be controlled. Through minimization of the minimum values of the maximum dynamic magnification factors (DMF) of the structure with the eight MTMD models (i.e. through the implementation of Min.Min.Max.DMF), the optimum parameters and values of Min.Min.Max.DMF for these eight MTMD models are investigated to evaluate and compare their control performance. The optimum parameters include the optimum mass spacing, stiffness spacing, damping coefficient spacing, frequency spacing, average damping ratio and tuning frequency ratio. The six MTMD models without the near‐zero optimum average damping ratio (i.e. the UM‐MTMD1~UM‐MTMD3, US‐MTMD1, US‐MTMD2 and UD‐MTMD2) are found through extensive numerical analyses. Likewise, the optimum UM‐MTMD3 offers the higher effectiveness and robustness and requires the smaller damping with respect to the rest of the MTMD models in reducing the responses of structures subjected to earthquakes. Additionally, it is interesting to note, by comparing the optimum UM‐MTMD3 with the optimum MTMD‐1 recently investigated by the first author, that the effectiveness and robustness for the optimum UM‐MTMD3 is almost identical to that for the optimum MTMD‐1 (without inclusion of the optimum MTMD‐1 with the near‐zero optimum average damping ratio). Recognizing these performance benefits, it is preferable to employ the optimum UM‐MTMD3 or the optimum MTMD‐1 without the near‐zero optimum average damping ratio, when installing the MTMD for the suppression of undesirable oscillations of structures under earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Multiple tuned mass dampers (MTMD) consisting of many tuned mass dampers (TMDs) with a uniform distribution of natural frequencies are taken into consideration for attenuating undesirable vibration of a structure under the ground acceleration. A study is conducted to search for the preferable MTMD which performs better and is easily manufactured from the five available models (i.e. MTMD‐1 – MTMD‐5), which comprise various combinations of the stiffness, mass, damping coefficient and damping ratio in the MTMD. The major objective of the present study then is to evaluate and compare the control performance of these five models. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled by adopting the mode reduced‐order approach. The optimum parameters of the MTMD‐1 – MTMD‐5 are investigated to reveal the influence of the important parameters on their effectiveness and robustness using a numerical searching technique. The parameters include the frequency spacing, average damping ratio, tuning frequency ratio, mass ratio and total number. The criteria selected for the optimum searching are the minimization of the maximum value of the displacement dynamic magnification factor (DDMF) and that of the acceleration dynamic magnification factor (ADMF) of the structure with the MTMD‐1 – MTMD‐5 (i.e. Min.Max.DDMF and Min.Max.ADMF). It is demonstrated that the optimum MTMD‐1 and MTMD‐4 yield approximately the same control performance, and offer higher effectiveness and robustness than the optimum MTMD‐2, MTMD‐3, and MTMD‐5 in reducing the displacement and acceleration responses of structures. It is further demonstrated that for both the best effectiveness and robustness and the simplest manufacturing, it is preferable to select the optimum MTMD‐1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
基于定义的二类优化目标函数,评价双层多重调谐质量阻尼器(DMTMD)控制策略对漂移频率系数(DFR)摄动的鲁棒性。数值研究表明,使用第二类优化准则设计的DMTMD、双重调谐质量阻尼器(DTMD)和多重调谐质量阻尼器(MTMD)比使用第一类优化准则设计的DMTMD、DTMD和MTMD具有更高的对DFR摄动的鲁棒性。而且,使用第二类优化准则设计的总数为4的DMTMD、DTMD和总数为11的MTMD具有近似相同的对DFR摄动的鲁棒性。  相似文献   

16.
Multiple Tuned Mass Dampers (MTMD's) consisting of many tuned mass dampers (TMD's) with distributed natural frequencies are considered for suppressing effectively the harmonically forced single mode response of structures. The fundamental characteristics of MTMD's are investigated analytically with the parameters of the covering frequency range of MTMD's, the damping ratio of each TMD and the total number of TMD's. The effectiveness and the robustness of MTMD's are also discussed in comparison with those of the usual single TMD. It is found that there exists an optimum MTMD for the given total number of TMD's with the optimum frequency range and the optimum damping ratio and that the optimum MTMD is more effective than the optimum single TMD. As for the robustness, it is also clarified that a MTMD can be much more robust than a single TMD while keeping the same level of effectiveness as the optimum single TMD.  相似文献   

17.
Multiple tuned mass dampers (MTMDs) consisting of many tuned mass dampers (TMDs) with a uniform distribution of natural frequencies are considered for attenuating undesirable vibration of a structure. The MTMD is manufactured by keeping the stiffness and damping constant and varying the mass. The structure is represented by its mode‐generalized system in the specific vibration mode being controlled using the mode reduced‐order method. The optimum parameters of the MTMD are investigated to delineate the influence of the important parameters on the effectiveness and robustness of the MTMD by conducting a numerical searching technique in two directions. The parameters include: the frequency spacing, average damping ratio, mass ratio and total number. The criterion selected for the optimization is the minimization of the maximum value of the dynamic magnification factor (DMF) of the structure with MTMD (i.e. Min.Max.DMF). In this paper, for the sake of comparison, the MTMD(II), which is made by keeping the mass constant and varying the stiffness and damping coefficient, and a single TMD are also taken into account. It is demonstrated that the optimum frequency spacing of the MTMD is the same as that of the MTMD(II) and the optimum average damping ratio of the MTMD is a little larger than that of the MTMD(II). It is also found that the optimum MTMD is more effective than the optimum MTMD(II) and the optimum single TMD with equal mass. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
The increasing strength of new structural materials and the span of new structures,accompanied by aesthetic requirements for greater slenderness,are resulting in more applications of long-span structures.In this paper,serviceability control technology and its design theory are studied.First,a novel tuned mass damper(TMD)with controllable stiffness is developed.Second,methods for modeling human-induced loads are proposed,including standing up,walking,jumping and running,and an analysis method for long-span floor response is proposed based on a finite element model.Third,a design method for long-span floors installed with a multiple TMD(MTMD)system considering human comfort is introduced, largely based on a study of existing literature.Finally,a design,analysis and field test is conducted using several large scale buildings in China including the Beijing Olympic Park National Conference Center,Changsha New Railway Station and the Xi’an Northern Railway Station.The analytical and field test results show that the MTMD system designed using the proposed method is capable of effectively mitigating the vertical vibration of long-span floor structures.The study presented in this paper provides an important reference for the analysis of vibration serviceability of similar long-span floors and design of control system for these structures.  相似文献   

19.
Multiple Tuned Mass Dampers (MTMD) consist of a large number of small oscillators with natural frequencies distributed around the natural frequency of a controlled mode of the structure. In the present paper, the modal characteristics and efficiency of the MTMD are studied analytically. Perturbation solutions for the modal properties of the MTMD–structure system are obtained and the modal characteristics are discussed. An explicit formula to estimate the effectiveness of the MTMD subjected to harmonic forces is also derived. It is shown that the MTMD is efficient when at least one of the oscillators is strongly coupled with the structure in any mode. Based on this observation, a critical bandwidth of the natural frequencies of the MTMD to make the system multiply tuned is derived in a simple form, and furthermore a robustness criterion for the frequency tuning under a given bandwidth is proposed. It is shown that, when properly designed, the MTMD can be much more stable (robust) than a conventional single TMD while maintaining more or less the same efficiency. Numerical studies verify the accuracy of the perturbation solutions and the proposed formulas.  相似文献   

20.
This paper develops a two‐stage optimum design procedure for multiple tuned mass dampers (MTMD) to reduce structural dynamic responses with the limitation of MTMD's stroke. A new performance index, which is a linear combination of structural response ratio and MTMD stroke ratio by a weighting factor α, is proposed; α is in the range from 0 to 1.0. The larger the α, the more important the stroke. The case of α=1.0 indicates that MTMD is locked. The analytical results show that the MTMD's stroke can be significantly suppressed with little sacrifice of structural control effectiveness when an appropriate α is selected. To verify the design algorithm, a 360 kg‐MTMD composed of five TMD units arranged in parallel was fabricated. Shaking table tests of a large‐scale three‐story building with and without the MTMD under earthquake excitations were conducted at the National Center for Research on Earthquake Engineering (NCREE) in Taiwan. The experimental results show that MTMD is not only effective in mitigating the building responses but also is successful in suppressing its stroke. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号