首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A decade of widespread increases in surface water concentrations of total organic carbon (TOC) in some regions has raised questions about longer term patterns in this important constituent of water chemistry. This study uses near-infrared spectroscopy (NIRS) to infer lake water TOC far beyond the decade or two of observational data generally available. An expanded calibration dataset of 140 lakes across Sweden covering a TOC gradient from 0.7 to 24.7 mg L−1 was used to establish a relationship between the NIRS signal from surface sediments (0–0.5 cm) and the TOC concentration of the water mass. Internal cross-validation of the model resulted in an R 2 of 0.72 with a root mean squared error of calibration (RMSECV) of 2.6 mg L−1. The TOC concentrations reconstructed from surface sediments in four Swedish lakes were typically within the range of concentrations observed in the monitoring data during the period represented by each sediment layer. TOC reconstructions from the full sediment cores of four lakes indicated that TOC concentrations were approximately twice as high a century ago.  相似文献   

2.
We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and cost-effective technique and only small sediment samples are needed (0.01 g). Statistically significant models were developed using sediment samples from northern Sweden and were applied to sediment records from Sweden, northeast Siberia and Macedonia. The correlation between FTIRS-inferred values and amounts of biogeochemical constituents assessed conventionally varied between r = 0.84–0.99 for TOC, r = 0.85–0.99 for TIC, and r = 0.68–0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology.  相似文献   

3.
The relationships between diatoms (Bacillariophyceae) in surface sediments of lakes and summer air temperature, pH and total organic carbon concentration (TOC) were explored along a steep climatic gradient in northern Sweden to provide a tool to infer past climate conditions from sediment cores. The study sites are in an area with low human impact and range from boreal forest to alpine tundra. Canonical correspondence analysis (CCA) constrained to mean July air temperature and pH clearly showed that diatom community composition was different between lakes situated in conifer-, mountain birch- and alpine-vegetation zones. As a consequence, diatoms and multivariate ordination methods can be used to infer past changes in treeline position and dominant forest type. Quantitative inference models were developed to estimate mean July air temperature, pH and TOC from sedimentary diatom assemblages using weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regression. Relationships between diatoms and mean July air temperature were independent of lake-water pH, TOC, alkalinity and maximum depth. The results demonstrated that diatoms in lake sediments can provide useful and independent quantitative information for estimating past changes in mean July air temperature (R2 jack = 0.62, RMSEP = 0.86 °C; R2 and root mean squared error of prediction (RMSEP) based on jack-knifing), pH (R2 jack = 0.61, RMSEP = 0.30) and TOC (R2 jack = 0.49, RMSEP = 1.33 mg l-1). The paper focuses mainly on the relationship between diatom community composition and mean July air temperature, but the relationships to pH and TOC are also discussed.  相似文献   

4.
Sediments are typically analyzed for C, N, and P for characterization, sediment quality assessment, and in nutrient and contaminant studies. Cost and time required for analysis of these constituents by conventional chemical techniques can be limiting factors in these studies. Determination of these constituents by near-infrared reflectance spectroscopy (NIRS) may be a rapid, cost-effective method provided the technology can be applied generally across aquatic ecosystems. In this study, we explored the feasibility of using NIRS to predict total C, CO3 –2 organic C, N, and P in deep-water sediment cores from four Canadian lakes varying over 19 degrees of latitude. Concentration ranges of constituents in the samples (dry weight basis) were total C, 12-55; CO3 –2, 6-26; organic C, 7-31; N, 0.6-3.1; and P, 0.22-2.1 mg g–1. Coefficients of determination, r2, between results from conventional chemical analysis and NIR-predicted concentrations, based on calibrations across all the four lakes, were 0.97-0.99 for total C, organic C, and N. Prediction for CO3 –2 was good for the hard water lake from a calibration across all four lakes, but this constituent in the three soft water lakes was better predicted by a calibration across the soft water lakes. The NIR calibration for P fell below acceptable levels for the technique, but proved useful in the identification of outliers from the chemical method that were later removed with the re-analysis of several samples. This study demonstrated that NIRS is useful for rapid, simultaneous, cost-effective analysis of total C, CO3 –2, organic C, N, and P in dried sediments from lakes at widely varying latitudes. Also, this study showed that NIRS is an independent analytical tool useful for the identification of outliers that may be due to error during the analysis or to distinctive composition of the samples.  相似文献   

5.
Measurements of Fourier transform infrared spectroscopy (FTIRS) in the mid-infrared (MIR) region were conducted on sedimentary records from Lake El’gygytgyn, NE Siberia, and Lake Ohrid, Albania/Macedonia. Calibration models relating FTIR spectral information to biogeochemical property concentrations were established using partial least squares regression (PLSR). They showed good statistical performance for total organic carbon (TOC), total nitrogen (TN), and biogenic silica (opal) in the sediment record from Lake El’gygytgyn, and for TOC, total inorganic carbon (TIC), TN, and opal in sediments from Lake Ohrid. In both cases, the calibration models were successfully applied for down-core analysis. The results, in combination with the small amount of sample material needed, negligible sample pre-treatments, and low costs of analysis, demonstrate that FTIRS is a promising, cost-effective tool that allows high-resolution paleolimnological studies.  相似文献   

6.
The zooplankton community structure in lakes is highly influenced by size-selective predation by fish, with small zooplankton species dominating at high predation pressure. Remains of cladocerans are preserved in the sediment and may be used to trace historical changes in fish predation. We determined how contemporary data on planktivorous fish were related to the size of Daphnia ephippia (dorsal length) in the surface sediment (0-1 cm) of 52 mainly shallow lakes with contrasting densities of fish and nutrients (TP: 0.002-0.60 mg P l-1). Density of fish expressed as catch per unit effort, in terms of numbers in multiple mesh-sized gill nets (CPUEn), decreased significantly with increasing mean size of ephippia. The relationship was improved by adding TP as an independent variable, now explaining 90% of the variation in CPUEn on the full data set covering lakes in Denmark, Greenland and New Zealand, and 78% if only data on Danish lakes were used. CPUE by weight of planktivorous fish and mean weight of Daphnia in the pelagial during summer were also related to ephippial size. By including contemporary data on established relationships between the sizes of egg-bearing female Daphnia and ephippia, we inferred changes in the CPUEn, mean size of ephippia-bearing Daphnia and summer mean body weight of Daphnia from ephippial size in four lakes during the past 1-2 centuries. In a hypertrophic lake subject to periodic fish kills, Daphnia mean body weight was high and CPUEn was low compared with those in two eutrophic lakes, while CPUEn was low and Daphnia body weight was high in the least eutrophic, clearwater lake. Estimated CPUEn and Daphnia mean weight in the surface sediment of these four lakes corresponded well with contemporary data. Only small changes in ephippial size with time were observed in the clearwater lake and in one of the lakes that had suffered early eutrophication, while major changes occurred in the two other lakes that had been subjected to a major increase in nutrient input or fish kills. We conclude that Daphnia ephippia preserved in the surface sediments of lakes may be a useful and efficient method to quantify the present-day abundance of planktivorous fish and Daphnia mean size. The method is particularly valid in surveys aimed to give a general picture of the fish stock and the ecological state in a set of lakes in a region rather than a precise estimate for a single lake. Though some evidence is provided, more work is needed to evaluate whether the equations are valid for hind-casting in down-core palaeoecological studies.  相似文献   

7.
Sediment focusing in six small lake basins is inferred from sedimentary radionuclide profiles. The activities of137Cs and9+240Pu do not decrease to zero above the sub-surface maximum but tail off gradually. Similar behavior is observed in the sediments of three lakes for134Cs and60Co, which were added only to the lake. This upward tailing is not caused by bioturbation or erosion from the watershed. Sediment focusing is the likely cause, further substantiated by inventories in deep sediments of9+240Pu and210Pb that are twice as high as expected from atmospheric fallout. Inventories in deep sediments of137Cs are in several cases lower than expected from atmospheric fallout, and cannot be explained by hydraulic flushing from the lakes, as this would require unreasonable flushing rates. The low137Cs inventories and the sedimentary profiles of the137Cs/9+240Pu ratio are consistent with137Cs removal from the water column by boundary scavenging to shallow sediments. The profiles and inventories of all three nuclides could be reproduced with a simple three box model, assuming focusing of shallow sediments (50–60% of total sediment area) to deep sediments with a rate constant of 5–10% yr–1.This is the seventh of a series of papers to be published by this journal following the 20 th anniversary of the first application of210Pb dating of lake sediment. Dr P. G. Appleby is guest editing this series.  相似文献   

8.
We used statistical analyses to determine which subset of 36 environmental variables best explained variations in surface sediment δ13C and δ15N from 50 lakes in western Ireland that span a human-impact gradient. The factors controlling lake sediment δ13C and δ15N depended on whether organics in the lake sediment were mostly derived from the lake catchment (allochthonous) or from productivity within the lake (autochthonous). Lake sediments with a dominantly allochthonous organic source (high C:N ratio sediments) produced δ13C and δ15N measurements similar to values from catchment vegetation. δ13C and δ15N measurements from lake sediments with a dominantly autochthonous organic source (low C:N ratio sediments) were influenced by fractionation in the lake and catchment leading up to assimilation of carbon and nitrogen by lacustrine biota. δ13C values from lake sediment samples in agricultural catchments were more negative than δ13C values from lake sediment samples in non-impacted, bogland catchments. Hypolimnetic oxygen concentrations and methane production had a greater influence on δ13C values than fractionation due to algal productivity. δ15N from lake sediment samples in agricultural catchments were more positive than δ15N in non-impacted bogland catchments. Lower δ15N values from non-impacted lake catchments reflected δ15N values of catchment vegetation, while higher δ15N values in agricultural catchments reflected the high δ15N values of cattle manure and inorganic fertilisers. The influence of changing nitrogen sources and lake/catchment fractionation processes were more important than early diagenesis for lake sediment δ15N values in this dataset. The results from this study suggest a possible influence of bound inorganic nitrogen on the bulk sediment δ15N values. We recommend using a suitable method to control for bound inorganic nitrogen in lake sediments, especially when working with clay-rich sediments. This study confirms the usefulness of δ13C and δ15N from bulk lake sediments, as long as we are mindful of the multiple factors that can influence these values. This study also highlights how stable isotope datasets from lake surface sediments can complement site-specific isotope source/process studies and help identify key processes controlling lake sediment δ13C and δ15N in a study area.  相似文献   

9.
We developed an inference model to infer dissolved organic carbon (DOC) in lakewater from lake sediments using visible-near-infrared spectroscopy (VNIRS). The inference model used surface sediment samples collected from 160 Arctic Canada lakes, covering broad latitudinal (60–83°N), longitudinal (71–138°W) and environmental gradients, with a DOC range of 0.6–39.6 mg L−1. The model was applied to Holocene lake sediment cores from Sweden and Canada and our inferences are compared to results from previous multiproxy paleolimnological investigations at these two sites. The inferred Swedish and Canadian DOC profiles are compared, respectively, to inferences from a Swedish-based VNIRS-total organic carbon (TOC) model and a Canadian-based diatom-inferred (Di-DOC) model from the same sediment records. The 5-component Partial Least Squares (PLS) model yields a cross-validated (CV) RCV2 R_{CV}^{2}  = 0.61 and a root mean squared error of prediction (RMSEP CV ) = 4.4 mg L−1 (11% of DOC gradient). The trends inferred for the two lakes were remarkably similar to the VNIRS-TOC and the Di-DOC inferred profiles and consistent with the other paleolimnological proxies, although absolute values differed. Differences in the calibration set gradients and lack of analogous VNIRS signatures in the modern datasets may explain this discrepancy. Our results corroborate previous geographically independent studies on the potential of using VNIRS to reconstruct past trends in lakewater DOC concentrations rapidly.  相似文献   

10.
Macrophytes are a critical component of lake ecosystems affecting nutrient and contaminant cycling, food web structure, and lake biodiversity. The long-term (decades to centuries) dynamics of macrophyte cover are, however, poorly understood and no quantitative estimates exist for pre-industrial (pre-1850) macrophyte cover in northeastern North America. Using a 215 lake dataset, we tested if surface sediment diatom assemblages significantly differed among lakes that have sparse (<10% cover; group 1), moderate (10–40% cover; group 2) or extensive (>40% cover; group 3) macrophyte cover. Analysis of similarity indicated that the diatom assemblages of these a priori groups of macrophyte cover were significantly different from one another (i.e., difference between: groups 1 and 3, R statistic = 0.31, P < 0.001; groups 1 and 2, R statistic = 0.049, P < 0.01; groups 3 and 2, R statistic = 0.112, P < 0.001). We then developed an inference model for macrophyte cover from lakes classified as sparse or extensive cover (145 lakes) based on the surface sediment diatom assemblages, and applied this model using the top-bottom paleolimnological approach (i.e., comparison of recent sediments to pre-disturbance sediments). We used the second axis of our correspondence analysis, which significantly divided sparse and extensive macrophyte cover sites, as the independent variable in a logistic regression to predict macrophyte cover as either sparse or extensive. Cross validation, using 48 randomly chosen sites that were excluded from model development, indicated that our model accurately predicts macrophyte cover 79% of the time (r 2 = 0.32, P < 0.001). When applied to the top and bottom sediment samples, our model predicted that 12.5% of natural lakes and 22.4% of reservoirs in the dataset have undergone a ≥30% change in macrophyte cover. For the sites with an inferred change in macrophyte cover, the majority of natural lakes (64.3%) increased in cover, while the majority of reservoirs (87.5%) decreased in macrophyte cover. This study demonstrates that surface sediment diatom assemblages from profundal zones differ in lakes based on their macrophyte cover and that diatoms are useful indicators for quantitatively reconstructing changes in macrophyte cover.  相似文献   

11.
Copepods (Class Crustacea, Order Copepoda) are rarely included in paleoecological studies of lakes because they lack long-lasting exoskeletal remains. We describe the remains of eggs (egg shells) from Hesperodiaptomus copepods that are well preserved and abundant in alpine lake sediments. We demonstrate that the egg shells are the remains of Hesperodiaptomus eggs based on (i) the similar size and morphology of egg shells collected from sediments and those produced from the hatching of eggs obtained from laboratory-maintained Hesperodiaptomus, and (ii) the finding that diapausing eggs collected from lake sediments and hatched in the laboratory produced copepod nauplii that were morphologically indistinguishable from those hatched from eggs produced by laboratory-maintained Hesperodiaptomus. Egg shells were approximately two orders of magnitude more abundant in sediment cores than were viable diapausing eggs, making egg shells superior to viable diapausing eggs for quantifying the historical presence and abundance of Hesperodiaptomus. These results have important implications for alpine lake restoration as egg shells can be used to identify lakes in which Hesperodiaptomus was eliminated by fish introductions but has failed to return after fish eradication, lakes in which the pre-disturbance conditions are likely to be restored only by reintroductions of this important taxon.  相似文献   

12.
Total organic carbon (TOC), total nitrogen (TN), stable carbon and nitrogen isotopes (δ13C, δ15N), total phosphorus (TP) and organic phosphorus (OP) were measured in surface sediments and two short cores (DU-3 and WS-4) from Lake Nansihu, China to infer historical changes in anthropogenic nutrient inputs and corresponding shifts in lake primary productivity. Results indicate that organic matter preserved in the sediments is mainly autochthonous and that analyzed sediment variables were affected little by post-burial diagenesis. Increasing TOC, TN, OP and TP concentrations since the 1940s reflect increased P loading and elevated lake productivity. The δ13C values varied from ?21.5 to ?26.6‰ in the two sediment cores. Values were relatively more negative before the 1940s, but thereafter increased until the mid-1980s, reflecting elevated lake productivity. Since the mid-1980s, δ13C values remained relatively constant in core WS-4 and decreased in core DU-3, perhaps reflecting a change in the phytoplankton community. The δ15N values ranged from ?0.5 to 1.3‰ in core DU-3 and from 1.2 to 2.5‰ in core WS-4 before the mid-1980s, and increased to between 2.1 and 8.0‰ and 5.2 and 7.8‰, respectively, thereafter. Topmost sediments in the two cores display δ15N values similar to those recorded in the surface sediments (5.5–7.5‰). Higher δ15N values in recent deposits correspond to greater nitrogen concentration in water, and likely indicate anthropogenic nitrogen input, mainly from human and animal wastes.  相似文献   

13.
Cladocera as indicators of trophic state in Irish lakes   总被引:1,自引:0,他引:1  
We examined the impact of lake trophic state on the taxonomic and functional structure of cladoceran communities and the role of nutrient loading in structuring both cladoceran and diatom communities. Surface sediment assemblages from 33 Irish lakes were analysed along a gradient of total phosphorus concentration (TP; 4.0–142.3 μg l−1), using a variety of statistical approaches including ordination, calibration and variance partitioning. Ordination showed that the taxonomic structure of the cladoceran community displayed the strongest response to changes in lake trophic state, among 17 measured environmental variables. Trophic state variables chlorophyll-a and TP explained about 20% of the variance in both cladoceran and diatom assemblages from a set of 31 lakes. Procrustes analysis also showed significant concordance in the structure of cladoceran and diatom communities (P < 0.001). Thus, lake trophic state affects the taxonomic structure of both primary and secondary producers in our study lakes. We also found a significant decrease in relative abundance of taxa associated with both macrophytes and sediments, or sediments only, along the TP gradient (r = −0.49, P = 0.006, n = 30), as well as an increase in the proportion of the planktonic group (r = 0.43, P = 0.017, n = 30). This suggests that cladoceran community structure may also be shaped by lake trophic state indirectly, by affecting habitat properties. We found no relationship between lake trophic state and the relative abundance of each of three cladoceran groups that display different body size. We compared community structure between bottom and top sediment samples in cores from six Irish lakes. Results revealed similar trajectories of nutrient enrichment over time, as well as a strong shift in cladoceran functional structure in most systems. This study confirms that Cladocera remains in lake sediments are reliable indicators of lake trophic state. This study also highlights the fact that taxonomic and functional structure should both be considered to account for the multiple factors that shape cladoceran communities.  相似文献   

14.
Aquatic invertebrates are intrinsically capable of rapid and sensitive response to changes in their lacustrine habitat. Fossil invertebrate assemblages preserved in the sediments of a climate-sensitive lake can thus produce high-resolution proxy records of past climate. In shallow lakes, however, a potential conflict exists between the sensitivity of biota to frequent habitat change in their fluctuating environment and the increased probability of disturbance of selected proxy records by bioturbation and physical mixing of sediments. I investigated this problem with tropical-African aquatic invertebrate faunas in a paleolimnological sensitivity study that incorporates both the response of biota to short-term habitat change and the taphonomic integrity of fossil assemblages in a small, shallow, and hydrologically closed lacustrine basin. Analysis of chironomid, cladoceran, and ostracode remains in a210Pb-dated short core from Lake Oloidien (Kenya) indicates that habitat changes accompanying the late 19th- and 20th-century fluctuations in lake level (Z max range: 3 to 18 m) and salinity (conductivity range:c. 400 toc. 2000–4000 µS cm–1) were sufficient to drastically alter the composition of local benthic and planktonic invertebrate faunas. This response remained relatively unaffected by taphonomic phenomena during its incorporation into the sediment record. Results indicate that tropical-African aquatic invertebrate faunas in suitable climate-sensitive lakes are a valuable tool to resolve paleoclimatic fluctuations on a timescale of decades.This paper was presented at the VI Palaeolimnology Symposium, held at Canberra in April 1993. Dr. Mark Brenner guest edited this contribution.  相似文献   

15.
A combination of pollen and macrofossil analyses from six lakes at altitudes between 370 and 999 m above sea level (a.s.l.) in the Torneträsk area reflect the Holocene vegetation history. The main field study area has been the Abisko valley at altitudes around 400 m a.s.l. The largest lake, Vuolep Njakajaure has annually laminated (varved) sediments. The chronology and sedimentation rates in the pollen-influx calculations are based on varve yrs in this lake and on radiocarbon dated terrestrial plant macrofossils in the other lakes. A strong increase of mountain birch (Betula pubescens ssp. tortuosa) during the early Holocene with a tree-line c. 300 m above the present, indicates that the summer temperature was c. 1.5 °C higher than today, assuming that the land uplift has been 100 m since then. Scattered stands of pine (Pinus sylvestris) may have been growing in the area immediately after the deglaciation but a forest consisting of pine and mountain birch expanded first at low elevations and reached the eastern parts of the Torneträsk area at c. 8300 cal BP and the western parts at c. 7600 cal BP. The highest pine-birch forest limit was not reached until 6300 cal BP (110 m above present pine limit). Warm and dry conditions during the pine forest maximum led to lowering of the water level documented in Lake Badsjön in the Abisko valley about 1-1.5 m lower than today. Pine and mountain birch were growing at the maximum altitude until c. 4500 cal BP. Assuming that land uplift has been in the range of 20-40 m since the mid-Holocene, this implies that the temperature was then c. 1.5-2 °C higher than today. Rising lake-levels and lowering limits of pine and mountain birch since c. 4500 cal BP indicate a more humid and cool climate during the late Holocene.  相似文献   

16.
A 7.6-m lake sediment core from a marl lake, Lough Inchiquin, records variation in landscape evolution from 16,800 cal yrs B.P. to 5,540 cal yrs B.P. We observe significant variations (up to 12‰) in δ 13Corg and δ 13Ccalcite values that are interpreted to reflect secular changes in lake water δ 13CDIC values that result from a regional landscape transition from barren limestone bedrock to a forested ecosystem. Lake water δ 13CDIC values are therefore influenced by two isotopically distinct sources of carbon: terrestrial organic material (−27.1 to −31.2‰VPDB) via oxidized soil organic matter and weathered limestone bedrock (+3.4‰VPDB). Isotope excursions in lacustrine sediment records are forced not only by changes in productivity but also by changes in the terrestrial environment. This has profound implications for the interpretation of paleoclimate records derived from lacustrine sediment and suggests that selection of appropriate lakes can provide records of terrestrial change where other related records are not available.  相似文献   

17.
The surface sediment diatom and chrysophyte assemblages from 33 Sudbury lakes were added to our published 72 lake data set to expand and refine the diatom and chrysophyte-based inference models that we had earlier developed for this region. Our calibration data set now includes 105 lakes, representing gradients for multiple environmental variables (e.g., lakewater pH, metals, and transparency). The revised models are based on the weighted averaging calibration and regression approach and include bootstrap error estimates. The pH model was the strongest (r2 boot = 0.75, RMSE boot = 0.50). The chrysophyte-inferred pH model (r2 boot = 0.79, RMSE boot = 0.48) that we developed was as robust as the diatom pH model. Diatom and chrysophyte inferred pH models were then applied to top (surface sediments representing current conditions) and bottom (generally from > 30 cm deep representing pre-industrial conditions) sediment diatom and chrysophyte assemblages of 19 Killarney area lakes near Sudbury. The top and bottom inferred pH results were compared to early-1970s measured pH data. These data suggest that, although many of the poorly buffered Killarney lakes had experienced acidification, marked pH recovery has occurred in many lakes within the last 25 years. Despite the stunning pH recovery, the present-day diatom and chrysophyte assemblages are significantly different from assemblages present during pre-industrial times. Our results suggest that biological recovery may require more time than chemical recovery. It is also likely that these lakes may never recover biologically because other anthropogenic stressors (e.g., climate warming and increased exposure to UV-B radiation) may now have greater influence on biological communities in Killarney/Sudbury area lakes than acidification.  相似文献   

18.
Major components of lacustrine sediments, such as carbonates, organic matter, and biogenic silica, provide significant paleoenvironmental information about lake systems. Fourier transform infrared spectroscopy (FTIR) and scanning X-ray fluorescence (XRF) techniques are fast, cost effective, efficient methods to determine the relative abundances of these components. We investigate the potential of these techniques using sediments from two large lakes, Lake Malawi in Africa and Lake Qinghai in China. Our results show statistically significant correlations of conventionally measured concentrations of carbonate (%CaCO3), total organic carbon (%TOC), and biogenic silica (%BSi), with absorbance in the corresponding FTIR spectral regions and with XRF elemental ratios including calcium:titanium (Ca/Ti), incoherent:coherent X-ray scatter intensities (Inc/Coh), and silicon:titanium (Si/Ti), respectively. The correlation coefficients (R) range from 0.66 to 0.96 for comparisons of FTIR results and conventional measurements, and from 0.70 to 0.90 for XRF results and conventional measurements. Both FTIR and XRF techniques exhibit great potential for rapid assessment of inorganic and organic contents of lacustrine sediments. However, the relationship between XRF-ratios or FTIR-absorbances and abundances of corresponding sedimentary components can vary with sediment source and lithology.  相似文献   

19.
贵州麦岗水库沉积物的矿物磁性特征及其土壤侵蚀意义   总被引:2,自引:0,他引:2  
李春梅  汪美华  王红亚 《地理研究》2010,29(11):1971-1980
对取自贵州西南部紫云县麦岗水库的沉积物柱芯MG1-1进行了包括SIRM、ARM、χlf、χfd、IRM-20mT和IRM-100mT等磁性参数的矿物磁性测量,并计算了ARM/SIRM、HIRM和IRM-100mT/SIRM。根据沉积物的这些矿物磁性特征,并结合137Cs、粒度、TOC、C/N分析结果,推测了麦岗水库流域在1960~2007年(47年)间的土壤侵蚀变化情况。研究表明:麦岗水库流域的土壤侵蚀强度变化虽然存在一些波动,但整体上呈现由强到弱到强再到弱的变化过程。结合降水资料和土地利用/土地覆被变化情况,探讨了影响土壤侵蚀变化的主要原因。结果表明,降水量对流域土壤侵蚀变化的影响不大,而人类活动,特别是土地利用的变化可能是引起流域土壤侵蚀变化的主要原因。  相似文献   

20.
Pyrolysis–gas chromatography mass spectrometry (py-GC/MS) allows the characterisation of complex macromolecular organic matter. In lakes and wetlands this can potentially be used to assess the preservation/diagenesis and provenance of sediment organic matter. It can complement palaeoenvironmental investigations utilising ‘bulk’ sediment variables such as total organic carbon (TOC) and TOC/total nitrogen ratios. We applied py-GC/MS analyses to a ~32,000-year sediment record from the southern Cape coastline of South Africa. We used the results to evaluate the sources and extent of degradation of organic matter in this semi-arid environment. Marked down-core changes in the relative abundance of multiple pyrolysis products were observed. Correspondence analysis revealed that the major driver of this down-core variability in OM composition was selective preservation/degradation. Samples comprising highly degraded OM are primarily confined to the lower half of the core, older than ~12,000 years, and are characterised by suites of low-molecular-weight aromatic pyrolysis products. Samples rich in organic matter, e.g. surface sediments, are characterised by products derived from fresh emergent or terrestrial vegetation, which include lignin monomers, plant-derived fatty acids and long-chain n-alkanes. Pyrolysates from the late glacial-early Holocene period, approximately mid-way down the core are characterised by distinct suites of long-chain n-alkene/n-alkane doublets, which may reflect the selective preservation of recalcitrant aliphatic macromolecules and/or enhanced inputs of the algal macromolecule algaenan/polymerised algal lipids. Increased TOC, lower δ13C and increased abundance of more labile lignin and fatty acid products at the same depths suggest this period was associated with increased lake primary productivity and enhanced inputs of terrestrial OM. TOC is the only ‘bulk’ parameter correlated with the correspondence analysis axes extracted from the py-GC/MS data. Distinct fluctuations in TOC/total nitrogen ratio are not explained by variation in organo-nitrogen pyrolysis products. Notwithstanding, the study suggests that py-GC/MS has potential to complement palaeolimnological investigations, particularly in regions such as southern Africa, where other paleoenvironmental proxy variables in sediments may be lacking or equivocal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号