首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对2015年尼泊尔MS8.1地震的地壳均衡背景及其引起的地表形变特征进行了研究,结果表明:(1)尼泊尔MS8.1地震震中以南的印度板块岩石圈有效弹性厚度大约为9km,加载主要来自地幔;地震以北的拉萨地块岩石圈有效弹性厚度大约为2km,加载主要来自地表.(2)尼泊尔MS8.1地震震中以南地区的地壳均衡异常大约为-100mGal(10-5 m·s-2),但其北部的地壳均衡异常则为300~400mGal,尼泊尔MS8.1地震发生在地壳均衡负异常向正异常过渡的高梯度带上.(3)尼泊尔MS8.1地震使震中周围地区的地壳整体向南运动,最大水平位移超过1.5m,分布在震中东南.震中以北的同震垂向位移总体为负值,最大下降幅度超过0.5m,同震重力变化总体为正值,最大超过60μGal(10-8 m·s-2);震中以南的垂向位移总体为正值,最大升幅超过0.7m,同震重力变化总体为负值,最大降幅超过-120μGal.(4)尼泊尔MS8.1地震使"世界屋脊"喜马拉雅山脉产生沉降,最大同震降幅超过120mm,震后松弛效应将使"世界屋脊"持续缓慢下降.该强震使世界最高峰珠穆朗玛峰降低了2~3mm,有可能被GPS、InSAR等现代大地测量工具检测到.  相似文献   

2.
基于九寨沟MS7.0地震的破裂模型及均匀弹性半空间模型,本文计算了该地震在周围主要活动断层上产生的库仑应力变化、在周围地区产生的应力场和位移场和同震库仑应力变化对余震的触发.结果表明:(1)九寨沟地震造成虎牙断裂中段库仑破裂应力有较大增加,已经超过0.01 MPa的阈值,虎牙断裂北段、塔藏断裂中段和岷江断裂北段北部的库仑破裂应力有较大降低,因此尤其要注意虎牙断裂中段的危险性.(2)水平面应力场在该地震震中东西两侧增加(拉张),张应力起主要作用.在震中南北两侧降低(压缩),压应力起主要作用.从水平主压和主张应力方向来看,均呈现出条形磁铁的磁场形态.从剖面上的应力场来看,在上盘的面膨胀区域内,大部分点的主张应力方向与地表是垂直的,在其他区域内,主张应力和主压应力均以震中为中心,向外呈辐射状.(3)从地表水平位移场来看,震中东西两侧物质朝震中位置汇聚,南北两侧物质向外流出,在震中处的最大水平位移量达43 mm.从地表垂直位移场来看,震中南北两侧出现明显的隆升,隆升最大值达56.8 mm.震中东西两侧出现明显的沉降,沉降最大值达74.5 mm.从剖面的位移场来看,九寨沟地震为左旋走滑地震,且有一定的正断成分.由分析可以推测该断层破裂在大致22~26 km的深度上就截止了.并推测下盘物质运动的动力来自震源北东东方向(四川块体)深度在6~30 km的下盘下层物质,上盘物质运动的动力来自震源北西西方向(巴颜喀拉块体)深度在0~6 km的上盘上层物质.(4)通过计算不同深度上主震对余震的触发作用可知,主震后的最大余震受到了主震的触发作用,多数其他余震也受到主震的触发作用.主震的发生促使了库仑应力增加地区余震的发生,抑制了一部分库仑应力减少地区余震的发生.  相似文献   

3.
2015年尼泊尔强震序列对中国大陆的应力影响   总被引:11,自引:3,他引:8       下载免费PDF全文
基于2015年尼泊尔地震序列的破裂模型及均匀弹性半空间模型,计算了该地震序列传递到中国西藏境内发生在定日县地震和聂拉木县地震的应力.2015年尼泊尔地震序列导致定日县地震和聂拉木地震节面和滑动方向的库仑应力增加(2~3)×103 Pa和(2.4~3.1)×105 Pa,表明这两个地震受到尼泊尔地震序列的触发.其次,我们计算了2015年尼泊尔地震序列在中国大陆及其附近主要活动断层上产生的库仑应力变化.喜马拉雅主山前逆冲断裂和青藏高原内部的拉张正断层上的库仑应力有较大的增加,而青藏高原的走滑断裂,如阿尔金断裂、东昆仑断裂、玉树玛曲断裂、班公错断裂西部、嘉黎断裂的库仑应力有较大的降低.天山南北两侧的断裂库仑应力降低.而华北及东北、华南地区的库仑应力变化几乎可以忽略不计.最后,计算了该地震序列造成的水平应力变化.水平面应力在2015年尼泊尔地震序列北向(青藏高原大部和新疆区域)增加(拉张),而在地震序列东侧的西藏南部和川滇地区南部降低(压缩),在华北和东北仅有少许增加,在华南地区有少许降低.在中国西部,主压应力表现为以2015年地震序列为圆心的向外辐射状,而主张应力方向与同心圆切线方向大体一致.水平主压应力方向在东北地区为北东向,在华北地区为北东东向,在华南地区为南东东向.这种模式与现今构造应力场方向相似,表现了2015尼泊尔地震序列所代表的印度板块和欧亚板块的碰撞是中国大陆构造变形的主要动力来源.  相似文献   

4.
利用精河M_W6.3地震有限断层破裂模型,计算了精河地震产生的位移场、应力场、周围主要断层上的静态库仑应力变化以及主震对余震的触发作用。结果表明:(1)精河地震产生的地表隆升最大值约为6.6cm,沉降最大值约为1.8cm;水平位移方向呈现震中南北侧向震中汇聚、震中东西侧向外"流出"的特点。(2)精河地震产生的水平面应力场展布南北侧物质主要受到指向震中的拉张力作用,东西两侧物质主要受到因震中过剩物质东西向排出而导致的东西向挤压力作用。(3)震中西侧距震中约20km的库松木契克山前断裂中段和震中东北部距震中约50km的四棵树-古尔图南断裂西段的库仑应力加载均大于0.01MPa,即2处为地震危险区。(4)在震源深度为8~12km的余震事件中,约有85.5%处于库仑应力加载区,即受到主震的的触发作用;在深度为4~8km的余震事件中,约有87%受到主震的应力触发作用。  相似文献   

5.
Based on the rupture models of the 2015 Pishan MW6.4 earthquake and half space homogeneous elastic model, the Coulomb stress changes generated by the earthquake are calculated on the active faults near the earthquake region. The horizontal stress changes and the displacement field are estimated on the area around the epicenter. Results show that:(1)The Coulomb stress is decreased in the west of the western Kunlun frontal thrust fault(9.5×103Pa), and increased in the east of the western Kunlun frontal thrust fault and the middle of the Kangxiwa faults. More attention should be taken to the seismic rick of the east of the western Kunlun frontal thrust fault; (2)Based on the analysis on the location of the aftershocks, it is found that most of the aftershocks are triggered by the earthquake. In the region of increased Coulomb attraction, the aftershock distribution is more intensive, and in the area of the Coulomb stress reduction, the distribution of aftershocks is relatively sparse; (3)The horizontal area stress increases in the north and south of the earthquake(most part of the Qaidam Basin and the northwest of the Qinghai-Tibet plateau), and decreases in the east and west of the earthquake(northern part of the Qinghai-Tibet plateau and eastern part of the Pamir Mountains). In the epicenter area, the principal compressive stress presents nearly NS direction and the principal extensional stress presents nearly EW direction. The principal compressive stress shows an outward radiation pattern centered on the epicenter with the principal extensional stress along the direction of concentric circles. The principal compressive stress presents NW direction to the west of the epicenter, and NE to the east of the epicenter. With the increase of radius, the stress level gradually decays with 107Pa in the epicenter and hundreds Pa in the Maidan Fault which is in the north of the Qaidam Basin.  相似文献   

6.
张北-尚义地震与大同-阳高地震地震活动对比研究   总被引:4,自引:0,他引:4       下载免费PDF全文
邓志辉  楚全芝 《地震地质》1998,20(2):77-178
张北-尚义地震与大同-阳高地震虽然相距不远,但在地震活动性上有较大的差异。大同-阳高地震前,区域地震活动、断裂带附近微震活动、震源邻区地震活动趋势、地震活动空区展布和余震分布都与北东或北西向这组共轭构造一致;张北-尚义地震前,区域地震活动、断裂带附近微震活动、震源邻区地震活动趋势、地震活动空区展布和余震分布则与近南北或近东西向这组共轭构造平行。产生这种方向差异的原因可能是构造条件的差异以及附加应力场的不同  相似文献   

7.
朱森 《内陆地震》2014,(1):44-49
2008年10月5日在新疆乌恰地区39.50°N、73.64°E处发生MW6.7地震,用ROI_PAC软件处理4景日本ALOS卫星数据得到乌恰地震的三维同震形变场。距离向,断层北侧最大位移达39 cm,南侧最大位移达36 cm;方位向,北侧和南侧的最大位移分别为1.5 m和2 m。采用Okada弹性位错模型分析该地震的滑动分布,模拟得出的断层走滑角为48°,倾滑角为53°,深度为10.5 km,最大形变量2.5 m,分析得出该地震为向北逆冲兼左旋走滑。  相似文献   

8.
2015年4 月25 日尼泊尔MW7.8特大地震发生在喜马拉雅山南麓, 震源机制解表明该地震为低角度逆冲型地震.通过收集地震区的活动构造研究资料、卫星影像解释和野外实地考察,认为尼泊尔MW7.8地震区地表分布三条主要的逆冲断裂,由北向南分别为喜马拉雅主中央断裂(MCT)、喜马拉雅主边界断裂(MBT)和喜马拉雅主前缘断裂(MFT).主边界断裂和主前缘断裂为晚更新世以来的活动断裂,但至今为止也没有发现喜马拉雅主中央断裂晚第四纪活动的依据.野外调查未发现尼泊尔MW7.8地震在喜马拉雅山南麓的主要断裂上形成地震地表破裂带.喜马拉雅山南麓的构造特征为薄皮构造,表现为浅部陡倾断坡-深部缓倾断坪(7°左右)-深部断坡(11°左右)的构造样式.深部断坡-断坪又称为主喜马拉雅断裂(MHT),其中的深部断坡是尼泊尔地震主震(MW7.8)和最大余震(MW7.3)的发震构造.余震大致沿北西向的高喜马拉雅山前缘呈条带状分布,主要分布在低喜马拉雅山区内.剖面上,余震大致分布在主喜马拉雅断裂的上盘推覆体内,推测尼泊尔MW7.8地震时深部断坡发生错动,其地震位移沿深部断坡-断坪向南传播引起上盘的褶皱带缩短变形,进而触发低喜马拉雅和次喜马拉雅褶皱带内产生次级破裂从而产生余震.  相似文献   

9.
北京时间2022年1月8日1点45分,在我国青海省门源县发生了6.9级地震.通过震中附近陆态网络GNSS连续观测数据得到的同震位移场显示,距离震中最近的QHME站同震位移最大,EW向达到20.31 mm,SW向达到-35.45 mm,震中附近五个站的同震位移反映出此次地震的左旋同震破裂特征;GNSS站间基线时间序列结果...  相似文献   

10.
周卓群  夏晨  李震  戚承志 《地震工程学报》2022,44(3):727-734,743
中国青海省门源县于2022年1月8日发生6.9级地震。依据该地震震源断层信息设置4种不同的位错分布模式,基于Okada提出的地表位移解析解分别计算4种模式下地表同震位移场,结合现场观测数据,探讨发震断层的滑动形式及其对周边地表产生的影响。结果表明,此次地震发震断裂初步判断主要为冷龙岭断裂西侧延伸至托莱山断裂,以左旋走滑断层为主,断层面上最大位错量达到4 m左右;震中西南侧向NE方向运动,东南侧向SE方向运动,西北侧和东北侧分别向NW以及SW方向运动;震中附近小范围区域产生了超过1.5 m的地表水平位移,破裂带上存在竖向地表位移超过0.5 m的区域;现场监测到局部产生最大约2.1~2.3 m的水平位错,以及部分区段垂直位错量最大达到0.7 m;以震中位置为中心,断层引起的地表位移影响范围达到约30 km×36 km,此范围内产生的地表位移大于0.1m。研究为此次地震的震后恢复工作以及此区域后续的工程设防等提供参考。  相似文献   

11.
The MW7.9 Nepal earthquake of 25 April 2015 had over 8, 500 fatalities and was the most destructive earthquake in Nepal since the Bihar-Nepal earthquake in 1934. In this study, we imaged the rupture process of this Nepal event by back-projecting the teleseismic P-wave energy recorded at the three regional networks in Alaska, Australia and Europe. The back-projection images of the three subarrays revealed that the Nepal earthquake propagated along the strike in a southeast direction over a distance of ~ 160–170 km with the duration of ~ 50–55 s. The rupture process was found to be a simple, unilateral event with a near constant velocity of 3.3 km/s. The beam power was mainly distributed in the geographic region just north of Kathmandu and the peak intensity for the source time function curve occurred at about 30 s. The earthquake was destructive due to its occurrence at shallow depth (~ 12–15 km) and the fact that the capital lies in a basin of soft sediment. Additionally, the resonance effect for the longer period waves that occurred in the Kathmandu valley led to destructive aggravation, impacting mainly the taller buildings.  相似文献   

12.
2017年8月8日四川阿坝州九寨沟发生M_W6.6地震,震源机制解显示该地震为左旋走滑型地震。对震中周围的GPS连续站观测资料进行处理,获得高频GPS动态形变和静态同震水平位移。震中100km范围内四川松潘和甘肃武都站观测到1 Hz动态形变。距离震中约69km的松潘站观测的同震水平位移为7.4mm。根据少量的GPS静态同震位移反演的同震破裂模型显示本次地震的最大滑动量为376mm,地震矩为7.25×1018 N·m,等效矩震级为M_W6.6。正演计算的同震三维形变场显示本次地震的最大水平位移可达4~5cm,垂直位移呈四象限分布,最大可达1.5cm,区域内10个流动GPS站可观测到同震形变。  相似文献   

13.
苏小宁  孟国杰 《地震》2017,37(4):1-9
2016年1月21日青海省门源县发生了MS6.4地震, 发震断裂为冷龙岭北侧断裂, 震中位置与1986年门源6.4级地震相同。 本文收集了本次地震震中及其周边区域1999—2015年GPS观测资料, 解算了GPS速度场、 跨断裂连续观测站基线时间序列和应变率场。 结果显示, 祁连山断裂带为一条宽度约60 km的连续变形带。 在断裂带南侧地壳运动以顺时针旋转为主, 运动量值没有显著差异; 跨过断裂带到达其北部之后, 地壳运动量值明显减小, 显示出该断裂带的强烈活动特征。 冷龙岭断裂左旋走滑速率为6.17±0.41 mm/a, 挤压速率为1.83±0.38 mm/a, 断层闭锁深度为22.1±3.1 km。 利用GPS连续观测站数据解算的地震同震位移显示, 震中西南侧26.8 km处的青海门源(QHME)测站记录到了明显同震位移, 其水平运动方向为北东向, 与逆冲为主的震源机制解一致。  相似文献   

14.
2015年4月25日尼泊尔爆发MW7.9地震,继而引发5月12日MW7.3级余震,GPS、InSAR监测到震源区及周边大范围同震形变.本文以国内外的GPS和InSAR同震形变为约束,考虑喜马拉雅断裂带岩石圈垂向分层和横向差异的影响,反演主喜马拉雅逆冲断裂在这次主震和余震中破裂面形状和滑动分布.结果显示,主震从USGS确定的震中位置向东偏南延伸100km以上,破裂地面迹线与主前缘逆冲断裂迹线基本一致.破裂面倾角约7°~11°,大部分破裂集中在深度8~20km,同余震分布深度一致.主震最大滑动量约6.0~6.6m,位于14km深处.余震破裂集中在震中附近30km范围内,填补了主震东部破裂空区,最大滑动约3.6~4.6 m,位于13km深.深度20km以下基本没有破裂.地壳介质不均匀性对破裂滑动分布的影响较大,介质不均匀模型的观测值不符值比各向同性弹性半空间模型降低10%以上.本文地震破裂模型特征与地震反射剖面、以及根据震间期大地测量数据反演的喜马拉雅深部蠕滑剖面极其相似.跨喜马拉雅断裂剖面的震间形变量与地震破裂滑移量直接相关.以此推算,尼泊尔中部大震原地复发周期在300年以上.  相似文献   

15.
单新建  柳稼航  马超 《地震学报》2004,26(5):474-480
利用差分干涉雷达测量技术获取的宏观震中区的同震形变场,结合对地震活动性、震源机制、野外考察等资料分析,对昆仑山口西8.1级地震同震形变场特征进行了研究. 结果表明:宏观震中位于库赛湖东北侧,宏观震中区发震断层可分为两个形变中心区域,其中西段长约42 km,东段长约48 km,整个发震断层主破裂段长90 km;由干涉形变条纹分布格局可清楚地判断出发震断层的左旋走滑特征;断层两盘变形特征不同,南盘变形程度明显大于北盘;宏观震中附近最大斜距向位移量为288.4 cm,最小斜距向位移量为224.0 cm,宏观震中发震断层最大左旋水平位错为738.1 cm,最小地面左旋水平位错为551.8 cm.   相似文献   

16.
以UNAVCO公布的阿拉斯加地区GPS 1 Hz和30 s采样观测数据为基础,采用双差定位方法分别对两种采样率的数据进行处理分析,获得2020年7月22日阿拉斯加MW7.8地震震时地表动态变形及同震三维形变场。结果显示,震中270 km范围内高频GPS震时波形明显,最大振幅达600 mm。根据各个GPS站的动态形变波形振幅及响应时间认为,其振幅和响应时间受地震的破裂传播方向和场地效应影响较大。静态同震位移矢量指向震中,同震位移大小基本符合随震中距离增大而减小的特征,除站点AC13外,其中距离震中最近站点的最大水平位移达26.7 cm。GPS测定的同震形变表明,2020年阿拉斯加地震是发生在阿拉斯加阿留申俯冲大断裂的一次逆冲型地震。  相似文献   

17.
熊维  谭凯  刘刚  乔学军  聂兆生 《地球物理学报》2015,58(11):4305-4316
2015年尼泊尔MW7.9地震重烈度区从震中向东延伸,致灾范围包括尼泊尔、印度北部、巴基斯坦、孟加拉和中国藏南地区,其应力调整对邻区和周边活动断裂可能产生重要影响.本文基于地震应力触发理论,采用岩石圈地壳分层黏弹性位错模型,计算了尼泊尔MW7.9地震引起的周边断裂,特别是青藏高原活动断裂的同震和震后库仑应力变化.结果显示,尼泊尔地震同震效应引起大部分震区库仑应力升高,余震主要分布在最大同震滑动等值线外部库仑应力升高区域;少量余震靠近最大滑动量区域,可能该区域积累的地震能量在主震期间没有完全释放.尼泊尔地震同震库仑应力对青藏高原,特别是中尼边境区域活动断裂有一定影响.亚东—谷露地堑南段、北喜马拉雅断裂西段、当惹雍错—定日断裂和甲岗—定结断裂同震库仑应力升高,其中当惹雍错—定日断裂南端,北喜马拉雅断裂西段同震库仑应力变化峰值超过0.01 MPa;帕龙错断裂、班公错断裂、改则—洞措断裂库仑应力降低,其地震发生概率有所降低.震后应力影响方面,未来40年内黏弹性松弛作用导致北喜马拉雅断裂、改则—洞措断裂和喀喇昆仑断裂整体应力卸载;藏南一系列正断层震后应力持续上升,其中帕龙错断裂南段受到震后黏弹性库仑应力影响,由应力阴影区逐渐转化为应力增强区,当惹雍错—定日断裂南段应力进一步加强,震后40年其南端应力变化峰值达到0.1345 MPa,亚东—谷露断裂南段应力亦持续增强.藏南正断层的地震活动性值得进一步关注.  相似文献   

18.
2008年5月12日汶川MS8.0地震的震中烈度为Ⅺ度,但位于地震烈度为Ⅹ度区边缘的绵竹县汉旺镇,无论是房屋毁坏情况还是遇难和失踪人员的数目,均高出周边地震烈度Ⅰ度,接近极震区的破坏程度。文中从汉旺镇周边地表地震破裂带展布方式的角度讨论了这种震害加重现象的原因,介绍了位于汉旺镇北面和南面出现的2条相距1.5km呈左阶斜列展布的地表破裂带。其中,位于汉旺镇北侧的地表破裂带,垂直位移1.4m,水平右旋位移0.44m;位于汉旺镇南侧的地表破裂带,垂直位移量由西向东递减,为3.0~0.2m。尽管这2条地表破裂带没有从汉旺镇中心通过,但汉旺镇正位于这2条地表破裂带夹持的左阶阶区,致使阶区内建筑物除遭受来自震源的振动外,又受到阶区内的挤压,由此加重了汉旺镇建筑物的破坏,也显示出地表破裂带对建筑物破坏形式的多样性。汉旺镇汶川MS8.0地震震害实例表明,地表破裂带的阶区,也是遭受地震时破坏加重的特殊构造部位  相似文献   

19.
刘心恒  周郧生 《地震研究》1995,18(2):125-134
本文采用断裂力学观点,分析研究了一些临震预报实验结果与地电实际观测资料。发现在强震与部分中强震前,震中附近的台站,除能预测到有关地震的地电阻率日突变序列的短期异常变化外,在瞬时突变序上还能看到临震前明显的突变现象,还是震前三个月里的最大瞬时突变,从它的出现至发震所需的时间,将随震中距的减少而缩短,且与震级有关,对于强震多集中出现在震前一个月内,中强震为十天内,并有由外围向震中收缩的趋势,其平均收缩  相似文献   

20.
In recent years, strong earthquakes of MS8.0 Wenchuan and MS7.0 Lushan occurred in the central-southern part of Longmenshan fault zone. The distance between the two earthquakes is less than 80 kilometers. So if we can obtain the inner structure of the crust and upper mantle, it will benefit us to understand the mechanism of the two earthquakes. Based on the high resolution dataset of Bouguer gravity anomaly data and the initial model constrained by three-dimensional tomography results of P-wave velocity in Sichuan-Yunnan region, with the help of the preconditioned conjugate gradient(PCG)inversion method, we established the three dimensional density structure model of the crust and upper mantle of the central-southern segment of Longmenshan, the spatial interval of which is 10 kilometers along the horizontal direction and 5 kilometers along the depth which is limited to 0~65km, respectively. This model also provides a new geophysical model for studying the crustal structure of western Sichuan plateau and Sichuan Basin. The results show obvious differences in the crustal density structure on both sides(Songpan-Ganzê block and Sichuan Basin)of Longmenshan fault zone which is a boundary fault and controls the inner crustal structure. In Sichuan Basin, the sedimentary layer is represented as low density structure which is about 10km thick. In contrast, the upper crust of Songpan-Ganzê block shows a thinner sedimentary layer and higher density structure where bedrock is exposed. Furthermore, there is a wide scale low density layer in the middle crust of the Songpan-Ganzê block. Based on this, we inferred that the medium intensity of the Songpan-Ganzê block is significantly lower than that of Sichuan Basin. As a result, the eastward movement of material of the Qinghai-Tibet plateau, blocked by the Sichuan Basin, is inevitably impacted, resulting in compressional deformation and uplift, forming the Longmenshan thrust-nappe tectonic belt at the same time. The result also presents that the crustal structure has a distinct segmental feature along the Longmenshan fault zone, which is characterized by obviously discontinuous changes in crustal density. Moreover, a lot of high- and low-density structures appear around the epicenters of Wenchuan and Lushan earthquakes. Combining with the projection of the precise locating earthquake results, it is found that Longmenshan fault zone in the upper crust shows obvious segmentation, both Wenchuan and Lushan earthquake occurred in the high density side of the density gradient zone. Wenchuan earthquake and its aftershocks are mainly distributed in the west of central Longmenshan fault zone. In the south of Maoxian-Beichuan, its aftershocks occurred in high density area and the majority of them are thrust earthquake. In the north of Maoxian-Beichuan, its aftershocks occurred in the low density area and the majority of them are strike-slip earthquake. The Lushan earthquake and its aftershocks are concentrated near the gradient zone of crustal density and tend to the side of the high density zone. The aftershocks of Lushan earthquake ended at the edge of low-density zone which is in EW direction in the north Baoxing. The leading edge of Sichuan Basin, which has high density in the lower crust, expands toward the Qinghai-Tibet Plateau with the increase of depth, and is close to the west of the Longmenshan fault zone at the top of upper mantle. Our results show that there are a lot of low density bodies in the middle and lower crust of Songpan-Ganzê Block. With the increase of the depth, the low density bodies are moving to the south and its direction changed. This phenomenon shows that the depth and surface structure of Songpan-Ganzê Block are not consistent, suggesting that the crust and upper mantle are decoupled. Although a certain scale of low-density bodies are distributed in the middle and lower crust of Songpan-Ganzê, their connectivity is poor. There are some low-density anomalies in the floor plan. It is hard to give clear evidence to prove whether the lower crust flow exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号