首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
利用日本ALOS-2和欧空局Sentinel-1A卫星获得的尼泊尔地震同震形变场,结合GPS同震位移数据,联合反演了断层滑动分布特征和空间展布.结果表明:尼泊尔地震的同震形变场主要集中在150km×100km的范围内,且分为南北两个相邻的形变中心,南形变中心的视线向抬升量约为1.2m,北形变中心的视线向沉降量约为0.8m,均位于发震断层上盘.位于形变抬升区的KKN4和NAST两个GPS站,抬升量和南向运动量均达到了m级,而远离震区的其他GPS台水平和垂直观测量均在1cm以内.联合反演得到的断层位错分布主要集中在沿走向150km,沿倾向70km的范围内,最大滑动量为5.59m,平均滑动量为0.94m.断层面倾角在浅部约为7°,随着深度增加,倾角逐渐变大,到垂直深度20km时倾角接近12°;5月12日MW7.2级余震位于主震破裂区的"凹"型滑动缺损区域;主震破裂区的上边界与MBT空间位置十分吻合,主震破裂区主要集中的MBT以北50~60km处,垂直深度为8~9km,倾角为9°,继续向北时主震破裂面以10°~12°的倾角向深延伸,在18~20km可能与MHT交汇.因此,初步判定MBT为此次地震的发震断层.  相似文献   

2.
采用DInSAR技术和欧空局2014年新发射的Sentinel-1A/IW数据,获取了2015年4月25日尼泊尔M_W7.8地震的InSAR同震形变场.所用InSAR数据扫描范围东西长约500 km,南北宽约250 km,覆盖了整个变形区域,揭示了形变场的全貌及其空间连续变化形态.此次地震造成的地表形变场总体呈现为中部宽两端窄的纺锤形,从震中向东偏南约20°方向延伸,主要形变区东西长约160 km,南北宽约110 km,由规模较大的南部隆升区和规模较小的北部沉降区组成,南部最大LOS向隆升量达1.1 m,北部最大LOS向沉降量约在0.55 m.在隆升和沉降区之间干涉纹图连续变化,没有出现由于形变梯度过大或地表破裂而导致的失相干现象,表明地震断层未破裂到地表.基于InSAR形变场和部分GPS观测数据,利用弹性半空间低倾角单一断层面模型进行了滑动分布单独反演和联合反演,三种反演结果均显示出一个明显的位于主震震中以东的滑动分布集中区,向外围衰减很快,主要滑动发生于地下7~23 km的深度范围内.InSAR单独反演的破裂范围,特别是东西向破裂长度大于GPS单独反演的破裂长度,而InSAR单独反演的最大滑动量则低于GPS单独反演的滑动量.因此认为联合反演结果更为可靠.联合反演的破裂面长约150 km,沿断层倾向宽约70 km,最大滑移量达到4.39 m,矩震级为M_W7.84,与之前用地震波数据和GPS数据反演的结果一致.  相似文献   

3.
根据喜马拉雅断裂系的构造形态,采用缓倾角反铲型断层模型模拟MHT上地震破裂部分的坡坪式发震构造。利用Alos-2及Sentinel-1获取的InSAR数据,反演获得了2015年尼泊尔Gorkha地震及其最大余震Kodari地震的同震滑动分布模型。与单独利用Alos-2或Sentinel-1 InSAR数据的反演结果相比,利用Alos-2和Sentinel-1 InSAR数据联合反演能够提供Gorkha地震破裂的更多细节信息,尤其对深部信息的约束更加明显。联合反演得到的破裂深度最大可达24km,穿过了该区域的闭锁线,到达了闭锁和蠕滑的转换区域。反演的断层模型倾角在3°~10°之间,最大滑动量出现在地下17km处,约4.5m。Gorkha地震和Kodari地震发震性质相似,都是发生在MHT断层上的低角度逆冲型地震,其中Gorkha地震略带右旋分量。反演结果还显示,Gorkha地震与Kodari地震的破裂滑动在空间上存在互补性,Kodari地震就发生在Gorkha地震的破裂空区内。通过计算Gorkha地震对Kodari地震发震断层的库仑破裂应力加载,发现Kodari地震震中恰位于库伦破裂应力正负交界区域,库仑破裂应力加载达0.4MPa,表明Kodari地震可能受到了Gorkha地震的触发。  相似文献   

4.
2015年4月25日尼泊尔发生了MW7.8地震, 本文基于震前、 震后两景Sentinel-1A雷达影像, 采用D-InSAR两轨差分干涉法提取了此次地震的同震形变场。 结果显示, 同震形变场位于喜马拉雅造山带—主边界逆冲断裂(MBT)和主前锋逆冲断裂(MFT)附近, 形变场整体表现为自西北向往东南方向延伸近150 km的纺锤形包络状, 以大面积隆起抬升形变为主, 视线向最大隆升形变达1.18 m, 抬升区北侧存在一小沉陷区, 以InSAR观测值定位同震最大形变中心。 基于均匀介质弹性半空间模型(Okada模型)与InSAR观测数据反演了断层滑动分布。 反演结果表明该地震属于典型逆冲型地震, 发震断层为主喜马拉雅逆冲断裂(MHT), 同震破裂从主喜马拉雅逆冲断裂(MHT)向上沿着主前锋逆冲断裂(MFT)传递。 基于InSAR同震形变场局部形变细节, 结合震区地质背景、 断裂分布及断层运动特征, 获得了同震破裂拟出露地表迹线。  相似文献   

5.
2017年8月8日四川省九寨沟县发生M_s7.0地震.本文基于Sentinel-1 SAR影像,利用InSAR技术获取了此次地震的同震形变场,反演获得同震滑动分布,计算了同震位错对余震分布和周边断层的静态库仑应力变化,并对发震构造进行了分析讨论.结果表明:①InSAR同震形变场显示,九寨沟地震造成地表形变最大量级约为20 cm(雷达视线方向),同震形变存在非对称性分布特征.②同震位错以左旋走滑为主,主要发生在4~16 km深度,最大滑动量约为77 cm,位于9 km深处.反演得到的矩震级为Mw6.46.同震错动未破裂到地表.③大部分余震发生在库仑应力增加区.此次地震增加了震中周边地区一些断裂的库仑应力,如东昆仑断裂带东段、龙日坝断裂、虎牙断裂等.④东昆仑断裂东段的未来地震危险性值得关注.⑤九寨沟地震的发震断层为树正断裂,可能是虎牙断裂的北西延伸隐伏部分,此次地震是巴颜喀拉块体南东向运动受到华南块体的强烈阻挡过程中发生的一次典型构造事件.  相似文献   

6.
黄星  洪顺英  金红林  刘泰  董彦芳 《地震》2020,40(1):84-98
本文基于Sentinel-1A卫星影像数据提取了2015年皮山MW6.4地震的同震形变场, 震中北部以隆升为主, 最大抬升量为12.9 cm; 南部以沉降为主, 最大沉降量为5.5 cm。 采用基于单一断层滑动模型的多峰粒子群优化和蒙特卡罗算法, 以LOS向InSAR形变场为约束, 对发震断层的几何模型进行非线性反演。 在此基础上, 联合InSAR和GPS数据, 利用最速下降法反演断层滑动分布。 综合结果表明: 发震断层是顶部埋深约7.4 km的隐伏断裂, 断层面大小为48 km×35 km, 断层走向、 倾角、 断层滑动角分别为111°、 19°、 91°; 断层最大滑动量0.47 m, 位于深度为10.6 km的区域; 累计地震矩3.89×1018 N·m, 约合矩震级MW6.33。 最后, 依据主震断层滑移量计算了主震对周围中小断裂的库仑应力扰动变化, 结果显示距离震中最近的泽普断裂受主震影响的库仑应力明显增加; 震后3年内余震集中分布在泽普断裂库仑应力增加区域, 表明皮山地震主震对余震的发生可能具有一定的应力触发作用。  相似文献   

7.
模拟2015年尼泊尔地震(主震MW7.8及最大余震MW7.3) GPS/InSAR同震位移、远震体波、高频GPS位移波形和强震加速度记录,构建统一震源模型.统一模型分布特征主要由InSAR观测决定,地震矩释放过程则与P波模型相似,静态与高频GPS观测增加了对破裂时空特征的约束强度;各种比对表明,该模型对各基于单一类型反演模型具有很好的兼容性,棋盘测试展现其具有更优空间分辨率,最小可恢复20 km×20 km尺度的空间特征,压缩了非同震信号或误差导致的零散瑕疵,主、余震破裂具有更好的空间对应关系.主震展布范围为140 km×80 km;4 m以上破裂集中在加德满都以北30 km、深度15 km的狭长区域内,最大滑动量为7.4 m;破裂持续总时长为60 s,破裂速度为3.3 km·s-1,子断层上升时间在10 s内.MW7.3余震破裂区域位于主震东侧边缘,滑动量围绕震中扩散,扩展范围为30 km×20 km,最大滑动量约为4.4 m,总破裂持续时间为35 s.本次地震中静态和高频的GPS观测亦具备独立约束主震破裂扩展过程的能力.  相似文献   

8.
为分析2021年5月21日云南省漾濞MS6.4地震后震区应力变化对周围断层的影响,本文通过InSAR技术获得了漾濞地震的同震形变场,并联合小震分布数据建立断层破裂滑动模型,继而通过计算断层面上的同震库仑应力来评估此次地震对周边断层的影响,以便有效地分析地震破裂的时空解析度.结果显示:(1)在升降轨InSAR数据获得的精细同震形变场中,升轨最大视线向形变量约为5.00 cm,降轨最大视线向形变量约为7.80 cm;(2)余震精定位的主震震中为(99.89°E,25.67°N),震源深度为13.29 km,除主震之外震源深度主要集中在5—15 km;通过小震位置拟合出的发震断层走向为NW-SE(316.69°),断层倾角为88.56°,滑动角为177.97°;(3)基于InSAR同震形变场结果及小震拟合断层参数联合反演得到此次地震的断层滑动以右旋走滑为主,升轨断层最大滑动量为0.80 m,对应的深度为8.85 km,平均滑动量为0.22 m,矩震级为MW6.41;降轨的断层最大滑动量为0.30m,对应的深度为6.88 km,平均滑动量为0.05 ...  相似文献   

9.
利用欧空局Sentinel-1A SAR数据,重建了2020年1月19日新疆伽师县MS6.4地震InSAR同震形变场.以升降轨InSAR形变场联合约束,反演了发震断层参数与同震滑动分布.结果 表明,地震同震形变场(长轴走向近EW向)发生在柯坪塔格褶皱带与奥兹格尔它乌褶皱带之间的区域内,升降轨观测的视线向(LOS)形变量相同,反映出发震断层运动性质是以逆冲为主,最大LOS向形变量约7 cm,干涉形变场呈现非对称性分布.断层模型反演结果显示,破裂区域长度为24 km,宽8 km,集中于地下深度4~6km范围内,同震最大滑动量约0.34 m,平均滑动角85°,矩震级为MW6.0,北倾(倾角15°)逆冲推覆运动主导着断层破裂,兼具少量走滑运动分量.从发震断层模型、同震滑动深度分布及破裂运动学特征推测,这次伽师地震的发震构造是柯坪塔格褶皱带山前出露的柯坪塔格逆断裂,且支持柯坪塔格地区的薄皮构造模型.  相似文献   

10.
基于InSAR技术,利用欧空局升降轨Sentinel-1A/IW宽幅数据,获取了2017年8月8日四川九寨沟7.0级地震InSAR同震形变场,并以升降轨InSAR观测结果为约束,反演了断层滑动分布,基于三种不同接收断层计算了同震库仑应力变化.结果表明,同震形变场发生在塔藏断裂、岷江断裂和虎牙断裂交汇的三角地带,升降轨干涉位移均显示本次地震的形变场影响范围约为50 km×50 km,形变场长轴方向为NW向,升降轨观测的形变量相反,反映断层运动性质以走滑运动为主,升降轨数据观测得到的最大LOS (Line of Sight,视线向)形变量分别为~22 cm和~14 cm.非对称形变场反映出断层两侧的运动差异.反演结果显示,最大滑动量约为1 m,平均滑动角为-9°,矩震级为MW6.5,地震破裂主要集中在地下1~15 km深度范围内,但整体而言本次地震破裂较为充分,基本将该区域1973年及1976年4次 > MW6.0地震的破裂空区完全破裂.考虑到塔藏断裂和虎牙断裂的运动性质,可初步判定发震断层为虎牙断裂北侧延伸分支.基于三种不同接收断层模型的同震库仑应力变化计算结果反映出该区域以应力释放为主,进一步触发较大走滑型余震的可能性不大.  相似文献   

11.
On July 3rd, 2015, a MW6.4 earthquake occurred on Pishan County, Xinjiang, located in the front of western Kunlun thrust belt, which is the largest earthquake(MW6.0~7.0)in the past 40 years in this region. In this study, we collected both the near-filed geodetic coseismic deformation observations including 4 GPS sites and one high-resolution ALOS-2 InSAR imagery, and far-field teleseismic P waveforms from 25 stations provided by IRIS/USGS, to invert the fault parameters(strike and dip)and coseismic rupture model of 2015 MW6.4 Pishan earthquake. Using the finite fault theory, a non-linear simulated annealing algorithm was employed to resolve our joint inversion problem. The strike (120°~130°) and dip angle(35°~40°)of optimal models are different from that of some previous studies, and the dip change is strongly constrained by combined data than that of strike. In fixing the geometric parameters of optimal fault model, we also considered data weight(5)(geodetic data/teleseismic P waveforms)and constrained weight from moment and smooth factor(2.5). Clearly, our results indicate that the slip distribution mainly concentrates in the depth range from 9 to 16km and a length range of 20km along the strike direction, which is similar to the spatial distribution of the relocated aftershocks. The maximum slip is~95cm. The seismic moment release is 5.45×1018N·m, corresponding to MW6.42. Compared with the single data set, geodetic data or teleseismic waveform, our joint inversion model could simultaneously constrain the seismic moment and slip distribution well, thus avoiding effectively a lower-resolution rupture distribution determined by teleseismic-only inversion and a bias released moment estimated by the geodetic-only inversion. Importantly, we should consider both the near-field geodetic data and far-field teleseismic data in retrieving the rupture model for accurately describing the seismogenic structure of active fault in western Kunlun region.  相似文献   

12.
针对2010年4月14日玉树发生MS7.1地震,本文利用InSAR数据给出同震视线向位移确定出的发震断层空间展布,并以该同震位移为约束反演得到主震和最大余震的同震位错分布.结果表明,主震同震位错发生在东玉树断裂,最大余震同震位错发生在西玉树断裂东端;基于位错分布计算了同震库仑应力变化与西部余震集中区地震活动之间的关系,结果反映玉树主震后最为活跃的余震活动可能受控于近东西向的次级断层(走向约为85°),而非玉树主干断裂;玉树断裂带整体呈现为左旋走滑运动,但其具体断层运动形式表现出主干断裂典型走滑运动、走滑断裂间的拉张和逆冲性质的次级运动、次级断裂与主干断裂相互作用下更为复杂的多方向次级断层活动等等不同变形特征,而主震同震破裂与余震空间分布均与这些不同断层变形方式有着密切关系.  相似文献   

13.
2014年8月24日,在美国加州旧金山海湾北部的纳帕地区发生了MW6.1地震.发震断层是西纳帕断裂系统中的一部分,但是该断层之前并未被足够重视.本文利用欧洲空间局最近发射成功并刚刚投入使用的Sentinel-1A卫星获取的第一对同震干涉像对(20140807-20140831),得到了该地震的地表同震形变场,结合震后24h内区域GPS同震形变资料作为约束条件,反演了纳帕地震的断层几何参数以及滑动分布.Sentinel-1A干涉结果表明,此次地震造成了明显的地面形变,视线向最大抬升和最大沉降量均达到了10cm.联合反演结果表明,该发震断层的走向为344°,倾角为80°.主要破裂以右旋走滑为主,平均倾滑角为-146.5°,最大倾滑量达到了1.1m,位于地表下约4km,存在明显的滑动亏损现象.此次地震,累计释放地震矩达1.5×1018 N·m,约合矩震级MW6.1.该结果略小于InSAR单独约束结果,可能与Sentinel-1A像对中包含的快速震后形变分量有关.  相似文献   

14.
利用于田震中300 km范围内的1个GPS连续站和12个GPS流动站数据,解算得到了2014年新疆于田MS7.3地震地表同震位移,并反演了发震断层滑动分布,探讨此次地震对周边断裂的影响.地表同震位移结果显示,GPS观测到的同震位移范围在平行发震断裂带的北东-南西向约210 km,垂直发震断裂带的北西-南东方向约为120 km,同震位移量大于10 mm的测站位于震中距约120 km以内;同震位移特征整体表现为北东-南西方向的左旋走滑和北西-南东方向的拉张特征,其中在北东-南西方向,I069测站位移最大,约为32.1 mm,在北西-南东方向,XJYT测站位移最大,约为28.1 mm;位错反演结果表明,最大滑动位于北纬36.05°,东经82.60°,位于深部约16.6 km,最大错动量为2.75 m,反演震级为MW7.0,同震错动呈椭圆形分布,以左旋走滑为主并具有正倾滑分量,两者最大比值约为2.5:1,同震错动延伸至地表,并向北东方向延伸,总破裂长度约50 km,地表最大错动约1.0 m;同震水平位移场模拟结果显示贡嘎错断裂、康西瓦断裂和普鲁断裂等不同位置主应变特征具有差异性,这种差异特征是否影响断裂带以及周围区域的应力构造特征,值得关注.  相似文献   

15.
A magnitude MW7.0 earthquake struck north of Anchorage, Alaska, USA on 1 December 2018. This earthquake occurred in the Alaska-Aleutian subduction zone, on a fault within the subducting Pacific slab rather than on the shallower boundary between the Pacific and North American plates. In order to better understand the earthquake source characteristics and slip distribution of source rupture process as well as to explore the effect of tectonic environment on dynamic triggering of earthquake, the faulting geometry, slip distribution, seismic moment, source time function are estimated from broadband waveforms downloaded from IRIS Data Management Center. We use the regional broadband waveforms to infer the source parameters with ISOLA package and the teleseismic body wave recorded by stations of the Global Seismic Network is employed to conduct slip distribution inversion with iterative deconvolution method. The focal mechanism solution indicates that the Alaska earthquake occurred as the result of tensile-type normal faulting, the estimated centroid depth from waveform inversion shows that the earthquake occurred at the depth of 56.5km, and the centroid location is 10km far away in northeast direction relative to the location of initial epicenter. We use the aftershock distribution to constrain the fault-plane strike of a normal fault to set up the finite fault model, the finite fault inversion shows that the earthquake slip distribution is concentrated mainly on a rectangular area with 30km×20km, and the maximum slip is up to 3.6m. In addition, the slip distribution shows an asymmetrical distribution and the range of possible rupture direction, the direction of rupture extends to the northeast direction, which is same as that of aftershock distribution for a period of ten days after the mainshock. It is interesting to note that a seismic gap appears in the southwest of the seismogenic fault, we initially determined that the earthquake was a typical normal fault-type earthquake that occurred in the back-arc extensional environment of the subduction collision zone between the Pacific plate and the North American plate, this earthquake was not related to tectonic movement of faults near the Earth's surface. Due to the influence of high temperature and pressure during the subduction of the Pacific plate toward to the north, the subduction angle of the Pacific plate becomes steep, causing consequently the backward bending deformation, thus forming to a tensile environment at the trailing edge of the collision zone and generating the MW7.0 earthquake in Alaska.  相似文献   

16.
对2015年尼泊尔MS8.1地震的地壳均衡背景及其引起的地表形变特征进行了研究,结果表明:(1)尼泊尔MS8.1地震震中以南的印度板块岩石圈有效弹性厚度大约为9km,加载主要来自地幔;地震以北的拉萨地块岩石圈有效弹性厚度大约为2km,加载主要来自地表.(2)尼泊尔MS8.1地震震中以南地区的地壳均衡异常大约为-100mGal(10-5 m·s-2),但其北部的地壳均衡异常则为300~400mGal,尼泊尔MS8.1地震发生在地壳均衡负异常向正异常过渡的高梯度带上.(3)尼泊尔MS8.1地震使震中周围地区的地壳整体向南运动,最大水平位移超过1.5m,分布在震中东南.震中以北的同震垂向位移总体为负值,最大下降幅度超过0.5m,同震重力变化总体为正值,最大超过60μGal(10-8 m·s-2);震中以南的垂向位移总体为正值,最大升幅超过0.7m,同震重力变化总体为负值,最大降幅超过-120μGal.(4)尼泊尔MS8.1地震使"世界屋脊"喜马拉雅山脉产生沉降,最大同震降幅超过120mm,震后松弛效应将使"世界屋脊"持续缓慢下降.该强震使世界最高峰珠穆朗玛峰降低了2~3mm,有可能被GPS、InSAR等现代大地测量工具检测到.  相似文献   

17.
On November 18, 2017, a MS6.9 earthquake struck Mainling County, Tibet, with a depth of 10km. The earthquake occurred at the eastern Himalaya syntaxis. The Namche Barwan moved northward relative to the Himalayan terrane and was subducted deeply beneath the Lhasa terrane, forming the eastern syntaxis after the collision of the Indian plate and Asian plates. Firstly, this paper uses the far and near field broadband seismic waveform for joint inversion (CAPJoint method)of the earthquake focal mechanism. Two groups of nodal planes are obtained after 1000 times Bootstrap test. The strike, dip and rake of the best solution are calculated to be 302°, 76° and 84° (the nodal plane Ⅰ)and 138°, 27° and 104° (the nodal plane Ⅱ), respectively. This event was captured by interferometric synthetic aperture radar (InSAR)measurements from the Sentinel-1A radar satellite, which provide the opportunity to determine the fault plane, as well as the co-seismic slip distribution, and assess the seismic hazards. The overall trend of the deformation field revealed by InSAR is consistent with the GPS displacement field released by the Gan Wei-Jun's team. Geodesy (InSAR and GPS)observation of the earthquake deformation field shows the northeastern side of the epicenter uplifting and the southwestern side sinking. According to geodetic measurements and the thrust characteristics of fault deformation field, we speculate that the nodal plane Ⅰ is the true rupture plane. Secondly, based on the focal mechanism, we use InSAR data as the constraint to invert for the fine slip distribution on the fault plane. Our best model suggests that the seismogenic fault is a NW-SE striking thrust fault with a high angle. Combined with the slip distribution and aftershocks, we suggest that the earthquake is a high-angle thrust event, which is caused by the NE-dipping thrust beneath the Namche Barwa syntaxis subducted deeply beneath the Lhasa terrane.  相似文献   

18.
顾国华  王武星 《地震学报》2020,42(2):196-204
2016年11月22日日本本州东岸近海发生东日本MW9.0大地震的MS7.2强余震。本文利用美国内华达大学内华达大地测量实验室网站获得此次大地震周围共30多个GPS连续观测站及其它台站的IGS08全球参考框架坐标时间序列,采用北京附近的GPS连续观测站BJSH作为区域位移参考框架的核心站,获取了此次MS7.2强余震的同震水平位移和区域参考框架位移时间序列,得到了此次强余震前后的位移时空变化图像。结果显示:尽管本州东岸近海MS7.2地震作为东日本MW9.0地震的强余震,受其震后形变的影响强烈,但其地壳水平形变的前兆规律与已观测到的大地震一致;不同的是东日本MW9.0地震前的垂直位移无积累,而本州东岸近海MS7.2地震前后的垂直位移保持MW9.0地震后均匀而缓慢的衰减变化;临震前震中附近的GPS连续观测站的东西分量明显减速,有的甚至减至零,是明显的短期前兆异常。此外,本文还进一步讨论了两种同震位移及其成因,并推断地壳水平运动挤压是此次地震的成因。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号