首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a study of the influence of spatially variable ground motions on the longitudinal seismic response of a short, three-span, 30-degree skewed, reinforced concrete highway bridge. Linear and nonlinear finite element models are created for the bridge and linear elastic and nonlinear inelastic time history analyses conducted. Three different types of illustrative excitations are considered: The first utilizes spatially variable ground motions incorporating the effects of variable soil conditions, loss of coherency and wave passage as input motions at the structures' supports. The time history with the smallest peak displacement and the one with the largest peak displacement from the spatially variable ones are then used as uniform input motions at all bridge supports. The comparative analysis of the bridge model shows that the uniform ground motion input with the largest peak displacement cannot provide conservative seismic demands for all structural components—in a number of cases it results in lower response than that predicted by spatially variable motions. The present results indicate that there is difficulty in establishing uniform input motions that would have the same effect on the response of bridge models as spatially variable ones. Consequently, spatially variable input motions need to be applied as excitations at the bridge supports.  相似文献   

2.
In this paper, a comprehensive investigation of the effect of spatially varying earthquake ground motions on the stochastic response of bridges isolated with friction pendulum systems is performed. The spatially varying earthquake ground motions are considered with incoherence, wave-passage and site-response effects. The importance of the site-response effect, which arises from the difference in the local soil conditions at different support points of the isolated bridge, is investigated particularly. Mean of maximum and variance response values obtained from the spatially varying earthquake ground motions are compared with those of the specialised cases of the ground motion model. It is shown that site-response component of the spatially varying earthquake ground motion model has important effects on the stochastic response of the isolated bridges. Therefore, to be more realistic in calculating the isolated bridge responses, the spatially varying earthquake ground motions should be incorporated in the analysis.  相似文献   

3.
Spatial variability effects of ground motions on cable-stayed bridges   总被引:3,自引:0,他引:3  
In this paper, stochastic analysis of a cable-stayed bridge subjected to spatially varying ground motions is performed. While the ground motion is described by power spectral density (PSD) function, the spatial variability of ground motions is taken into account with the incoherence and the wave-passage effects. The incoherence effect is examined by taking into account two extensively used models. As the effect of the wave-passage effect is investigated by using various wave velocities, the effect of local soil conditions where the bridge supports are constructed is outlined by using homogeneous firm, medium and soft soil conditions. Solutions obtained for the spatially varying ground motions are compared with those of the specialised cases of the ground motion model. Stationary as well as the transient response analyses are performed for the considered bridge model. It is concluded that spatial variability and propagation effects of ground motions have important effects on the dynamic behaviour of the bridge and the variability of the ground motions should be included in the stochastic analysis of cable-stayed bridges.  相似文献   

4.
In this study, it is intended to determine the effects of soil–structure interaction (SSI) and spatially varying ground motion on the dynamic characteristics of cable-stayed bridges. For this purpose, ground motion time histories are simulated for spatially varying ground motions, depending on its components of incoherence, wave-passage and site-response effects. The substructure method, which partitions the total soil–structure system into the structural system and the soil system, is used to treat the soil–structure interaction problem. To emphasize the relative importance of the spatial variability effects of earthquake ground motion, bridge responses are determined for the fixed base bridge model, which neglects the soil–structure interaction (no SSI) and for the bridge model including the soil–structure interaction (SSI). This parametric study concerning the relative importance of the soil–structure interaction and spatially varying ground motion shows that these effects should be considered in the dynamic analyses of cable-stayed bridges.  相似文献   

5.
This paper presents a theoretical nonstationary stochastic analysis scheme using pseudo-excitation method (PEM) for seismic analysis of long-span structures under tridirectional spatially varying ground motions, based on which the local site effects on structural seismic response are studied for a high-pier railway bridge. An absolute-response-oriented scheme of PEM in nonstationary stochastic analysis of structure under tridirectional spatial seismic motions, in conjunction with the derived mathematical scheme in modeling tridirectional nonstationary spatially correlated ground motions, is proposed to resolve the drawbacks of conventional indirect approach. To apply the proposed theoretical approach readily in stochastic seismic analysis of complex and significant structures, this scheme is implemented and verified in a general finite element platform, and is then applied to a high-pier railway bridge under spatially varying ground motions considering the local site effect and the effect of ground motion nonstationarity. Conclusions are drawn and can be applied in the actual seismic design and analysis of high-pier railway bridges under tridirectional nonstationary multiple excitations.  相似文献   

6.
Due to the inherent difficulty in directly recording the rotational ground motions, torsional ground motions have to be estimated from the recorded spatially varying translational motions. In this paper, an empirical coherency function, which is based on the recorded motions at the SMART-1 array, is suggested to model the spatial variation of translational motions. Then, the torsional ground motion power spectral density function is derived. It depends on the translational motion power spectral density function and the coherency function. Both the empirical coherency function and the torsional motion power spectral density function are verified by the recorded motions at the SMART-1 array. The response spectra of the torsional motions are also estimated. Discussion on the relations between the torsional motion response spectrum and the corresponding translational motion response spectrum is made. Numerical results presented can be used to estimate the torsional ground motion power spectral density function and response spectrum.  相似文献   

7.
A general procedure is presented to study the dynamic soil–structure interaction effects on the response of long-span suspension and cable-stayed bridges subjected to spatially varying ground motion at the supporting foundations. The foundation system is represented by multiple embedded cassion foundations and the frequency-dependent impedance matrix for the multiple foundations system takes into account also the cross-interaction among adjacent foundations through the soil. To illustrate the potential implementation of the analysis, a numerical example is presented in which the dynamic response of the Vincent–Thomas suspension bridge (Los Angeles, CA) subjected to the 1987 Whittier earthquake is investigated. Although both kinematic and inertial effects are included in the general procedure, only the kinematic effects of the soil–structure interaction are considered in the analysis of the test case. The results show the importance of the kinematic soil–foundation interaction on the structural response. These effects are related to the type, i.e. SH-, SV-, P- or Rayleigh waves and to the inclination of the seismic wave excitation. Moreover, rocking components of the foundation motion are emphasized by the embedment of the foundation system and greatly alter the structural response.  相似文献   

8.
A new response spectrum method, which is named complex multiple-support response spectrum (CMSRS) method in this article, is developed for seismic analysis of non-classically damped linear system subjected to spatially varying multiple-supported ground motion. The CMSRS method is based on fundamental principles of random vibration theory and properly accounts for the effect of correlation between the support motions as well as between the modal displacement and velocity responses of structure, and provides an reasonable and acceptable estimate of the peak response in term of peak seismic ground motions and response spectra at the support points and the coherency function. Meanwhile, three new cross-correlation coefficients or cross covariance especially for the non-classically damped linear structures with multiple-supports excitations are derived under the same assumptions of the MSRS method of classically damped system. The CMSRS method is examined and compared to the results of time history analyses in two numerical examples of non-classically damped structures in consideration of the coherences of spatially variable ground motion. The results show that for non-classically damped structure, the cross terms representing the cross covariance between the pseudo-static and dynamic component are also quite small just as same as classically damped system. In addition, it is found that the usual way of neglecting all the off-diagonal elements in transformed damping matrix in modal coordinates in order to make the concerned non-classically damped structure to become remaining proportional damping property will bring some errors in the case of subjected to spatially excited inhomogeneous ground motion.  相似文献   

9.
The objective of this paper is to describe the lessons learned and actions that have been taken related to the seismic design of bridge structures after the Chi-Chi, Taiwan earthquake. Much variable near-fault ground motion data was collected from the rupture of Chelungpu fault during the Chi-Chi earthquake, allowing the seismic response of bridge structures subjected to these near-fault ground motions to be carefully examined. To study the near-fault ground motion effect on bridge seismic design codes, a two-level seismic design of bridge structures was developed and implemented. This design code reflects the near-fault factors in the seismic design forces. Finally, a risk assessment methodology, based on bridge vulnerability, is also developed to assist in decisions for reducing seismic risk due to failure of bridges. Director of Center for Research on Earthquake Engineering. Supported by: the Science Council, Chinese Taipei, under grant no. SC 90-2211-E-002-028.  相似文献   

10.
The performance‐based design of lifeline systems requires spatially variable seismic excitations at the structures' supports that are consistent with prescribed seismic ground motion characteristics and an appropriate spatial variability model—such motions can be obtained through conditional simulation. This work revisits the concept of conditional simulation and critically examines the conformity of the generated motions with the characteristics of the target random field and observations from data recorded at dense instrument arrays. Baseline adjustment processing techniques for recorded earthquake accelerograms are extended to fit the requirements of simulated and conditionally simulated spatially variable ground motions. Emphasis is placed on the use of causal vs acausal filtering in the data processing. Acceleration, velocity and displacement time histories are evaluated in two example applications of the approach. The first application deals with a prescribed synthetic time history that incorporates nonstationarity in the amplitude and frequency content of the motions and depends on earthquake magnitude, source–site distance and local soil conditions; this example results in zero residual displacements. The second application considers as prescribed time history a recording in the vicinity of a fault and yields nonzero residual displacements. It is shown that the conditionally simulated time histories preserve the characteristics of the prescribed ones and are consistent with the target random field. The results of this analysis suggest that the presented methodology provides a useful tool for the generation of spatially variable ground motions to be used in the performance‐based design of lifeline systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
A method is presented for simulating arrays of spatially varying ground motions, incorporating the effects of incoherence, wave passage, and differential site response. Non‐stationarity is accounted for by considering the motions as consisting of stationary segments. Two approaches are developed. In the first, simulated motions are consistent with the power spectral densities of a segmented recorded motion and are characterized by uniform variability at all locations. Uniform variability in the array of ground motions is essential when synthetic motions are used for statistical analysis of the response of multiply‐supported structures. In the second approach, simulated motions are conditioned on the segmented record itself and exhibit increasing variance with distance from the site of the observation. For both approaches, example simulated motions are presented for an existing bridge model employing two alternatives for modeling the local soil response: i) idealizing each soil‐column as a single‐degree‐of‐freedom oscillator, and ii) employing the theory of vertical wave propagation in a single soil layer over bedrock. The selection of parameters in the simulation procedure and their effects on the characteristics of the generated motions are discussed. The method is validated by comparing statistical characteristics of the synthetic motions with target theoretical models. Response spectra of the simulated motions at each support are also examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Various components including wave scattering, wave passage, and site amplification effects cause the ground motion to vary spatially. The spatially varying ground motion can significantly influence the dynamic response of longitudinal structures such as bridges and tunnels. While its effect on bridges has been extensively studied, there is a lack of study on its effect on underground tunnels. This paper develops a new procedure for simulating the tunnel response under spatially varying ground motion. The procedure utilizes the longitudinal displacement profile, which is developed from spatially variable ground motion time histories. The longitudinal displacement profile is used to perform a series of pseudo-static three-dimensional finite-element analyses. Results of the analyses show that the spatially variable ground motion causes longitudinal bending of the tunnel and can induce substantial axial stress on the tunnel lining. The effect can be significant at boundaries at which the properties of the ground change in the longitudinal direction.  相似文献   

13.
During the recent major earthquakes, some bridges suffered severe damage due to the pull-off-and-drop collapse of their decks. This is due to the large differential movements of the adjacent spans of bridges during strong shaking compared to the seating lengths provided. The differential movements are primarily due to the different vibration properties of adjacent spans and non-uniform ground excitations at the bridge supports. This paper analyses the effects of various bridge and ground motion parameters on the required seating lengths for bridge decks to prevent the pull-off-and-drop collapse. The random vibration method is used in the analysis. A two-span bridge model with different span lengths and vibration frequencies and subjected to various spatially varying ground excitations is analysed. Non-uniform spatial ground motions are modelled by the filtered Tajimi–Kanai power spectral density function and an empirical coherency function. Ground motions with different intensities, different cross-correlations and different site conditions are considered in the study. The required seating lengths for bridge decks are calculated. Numerical results are presented and discussed with respect to different bridge vibration and ground motion properties. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Seismic risk analysis and mitigation of spatially extended structures require the synthesis of spatially varying ground motions in the response history analysis of these structures. These synthetic motions are usually desired to be spatially correlated, site reflected, nonstationary, and compatible with target design response spectra. In this paper, a method is presented for simulating spatially varying ground motions considering the nonstationarity, local site effects, and compatibility of response spectra. The scheme for generating spatially varying and response spectra compatible ground motions is first established for spatial locations on the ground surface with varying site conditions. The design response spectrum is introduced as the “power” spectrum at the base rock. The site amplification approach is then derived based on the deterministic wave propagation theory, by assuming that the base rock motions consist of out-of-plane SH wave or in-plane combined P and SV waves propagating into the site with assumed incident angles, from which tri-directional spatial ground motions can be generated. The phase difference spectrum is employed to model ground motions exhibiting nonstationarity in both frequency and time domains with different site conditions. The proposed scheme is demonstrated with numerical examples.  相似文献   

16.
The response of continuous two- and three-span beams of various lengths subjected to spatially varying seismic ground motions is evaluated. Stochastic representations of the seismic ground motions are used as input at the supports of the structures, and sensitivity analyses of the response with respect to the degree of correlation between the support motions are performed. The validity of the commonly used assumption of equal support motion is examined. Square-roots of mean-square values of total displacements, bending moments and shear forces are outputs of the analyses. The results indicate that fully correlated motions may produce higher or lower response than partially correlated motions, depending on the dynamic characteristics of the structure, the response quantity (bending moment or shear force) that is evaluated, the position along the axis of the beam where the response quantity is evaluated, the separation between the natural frequencies of the structure and the dominant frequencies of the input motions, and on the degree of partial correlation between the support motions.  相似文献   

17.
The characteristics of seismic ground motions in southern China are difficult to determine statistically due to a lack of strong ground motion data. In this study, a stochastic finite-fault ground motion model was adopted to simulate the seismic ground motions at bedrock for southern China, based on parameters derived from small and medium earthquakes that have occurred in the region. From these, the response spectra was estimated. A set of ground motion attenuation relationships was then developed based on simulated peak ground motions and response spectral parameters through regression, which would be applicable for use in engineering practice. Through comparisons, it was demonstrated that the proposed ground motion relationships are generally consistent with those obtained from other reported ground motion attenuation models for southern China.  相似文献   

18.
In order to examine the effect of the spatial variation of ground motion on the response of an indeterminate structure, the stochastic responses of a two-span beam to spatially varying support excitations are analysed. A space-time earthquake ground motion model that accounts for both coherency decay and seismic wave propagation is used to specify the support motions, and the results are compared with those for various simplified excitations that are commonly used in practice. The response is computed through a linear random vibration approach with the structure being modelled by finite elements. The results of the study indicate that, even for moderate lengths, the effect of the spatial variation of ground motion can be significant. The assumption of fully coherent support motions (same excitations at all supports or delayed excitations allowing only for wave propagation) may be overconservative for some beams and unconservative for others.  相似文献   

19.
Shear keys are used in the bridge abutments and piers to provide transverse restraints for bridge superstructures. Owing to the relatively small dimensions compared to the main bridge components (girders, piers, abutments, piles), shear keys are normally regarded as secondary component of a bridge structure, and their influences on bridge seismic responses are normally neglected. In reality, shear keys are designed to restrain the lateral displacements of bridge girders, which will affect the transverse response of the bridge deck, thus influence the overall structural responses. To study the influences of shear keys on bridge responses to seismic ground excitations, this paper performs numerical simulations of the seismic responses of a two-span simply-supported bridge model without or with shear keys in the abutments and the central pier. A detailed 3D finite element (FE) model is developed by using the explicit FE code LS-DYNA. The bridge components including bridge girders, piers, abutments, bearings, shear keys and reinforcement bars are included in the model. The non-linear material behaviour including the strain rate effects of concrete and steel rebar are considered. The seismic responses of bridge structures without and with shear keys subjected to bi-axial spatially varying horizontal ground motions are calculated and compared. The failure mode and damage mechanism of shear keys are discussed in detail. Numerical results show that shear keys restrain transverse movements of bridge decks, which influence the torsional–lateral responses of the decks under bi-axial spatially varying ground excitations; neglecting shear keys in bridge response analysis may lead to inaccurate predictions of seismic responses of bridge structures.  相似文献   

20.
A new response spectrum method is developed for seismic analysis of linear multi-degree-of-freedom, multiply supported structures subjected to spatially varying ground motions. Variations of the ground motion due to wave passage, loss of coherency with distance and variation of local soil conditions are included. The method is based on fundamental principles of random vibration theory and properly accounts for the effects of correlation between the support motions as well as between the modes of vibration of the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号