首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We studied the particle growth in a protoplanetary disk in a high-ionization environment and found that icy planet formation is inactive for a disk with an ionization rate 100 times higher than that of the present Solar System. In particular, in the case of M 10~(-7.4)M_☉yr~(-1), only rocky planet formation occurs. In such a case, all the solid materials in the disk drift inward, eventually reach the inner MRI front,and accumulate there. They form a dense, thin sub-disk of solid particles, which undergoes gravitational instability to form rocky planetesimals. The planetesimals rapidly grow into a planet through pebble accretion. Consequently, rocky planets tend to be much larger than planets formed through other regimes(tandem planet formation regime and dispersed planet formation regime), in which icy planet formation actively takes place. These rocky planets may evolve into hot Jupiters if they grow fast enough to the critical core mass of the runaway gas accretion before the dispersal of the disk gas, or they may evolve into super-Earths if the gas dispersed sufficiently early.  相似文献   

4.
5.
6.
7.
8.
9.
In situ X-ray diffraction was used to measure the isothermal bulk modulus at room conditions (KT0) of synthetic olivines with different iron contents. The chemical formulae of the olivine samples were (Fex,Mg1?x)2SiO4 with x = 0.45; 0.64; 0.82; 1, with 1% standard deviation (referenced as Fa45, Fa64, Fa82 and Fa100, respectively). All experiments were performed in the multi-anvil apparatus installed at NSLS beamline X17B2, to pressures up to about 7 GPa. Unit-cell volumes under hydrostatic conditions and differential stresses present in the samples were calculated using the method developed by Singh et al. (1998), and pressures measured using NaCl as a standard were then corrected for these stresses. Using a second-order Birch–Murnaghan equation of state, we obtained the isothermal bulk modulus of each composition: KT0Fa45=131.4±2.6 GPa, KT0Fa64=132.1±3.1 GPa, KT0Fa82=136.3±1.7 GPa and KT0Fa100=134.8±1.4 GPa. These values combined with data available in the literature show that the KT0 of Fe-rich olivines increases very slowly with the Fe content, but possibly not in a simple linear trend.  相似文献   

10.
11.
12.
13.
14.
We present a new united theory of planet formation,which includes magneto-rotational instability(MRl) and porous aggregation of solid particles in a consistent way.We show that the "tandem planet formation" regime is likely to result in solar system-like planetary systems.In the tandem planet formation regime,planetesimals form at two distinct sites:the outer and inner edges of the MRl suppressed region.The former is likely to be the source of the outer gas giants,and the latter is the source for the inner volatile-free rocky planets.Our study spans disks with a various range of accretion rates,and we find that tandem planet formation can occur for M = 10~(7.3)- 10~(-6.9)M_⊙yr~(-1).The rocky planets form between 0.4-2 AU,while the icy planets form between 6-30 All;no planets form in 2—6 AU region for any accretion rate.This is consistent with the gap in the solid component distribution in the solar system,which has only a relatively small Mars and a very small amount of material in the main asteroid belt from 2-6 AU.The tandem regime is consistent with the idea that the Earth was initially formed as a completely volatile-free planet.Water and other volatile elements came later through the accretion of icy material by occasional inward scattering from the outer regions.Reactions between reductive minerals,such as schreibersite(Fe-jP),and water are essential to supply energy and nutrients for primitive life on Earth.  相似文献   

15.
16.
17.
18.
Long-term creep tests have been performed under very small uniaxial loadings (σ=0.02 to 0.1 MPa). Testing devices were set in an underground gallery, where temperature fluctuations are in the order of one hundredth of a Celsius degree. The mechanical loading was provided by dead weights. The displacements were measured through special sensors whose resolution is Δ?=10?8. Strain rates as small as ?˙=10?12s?1 were measured. The tests prove that constitutive laws deduced from tests performed on rock salt samples under standard mechanical loadings cannot be extrapolated to very small loadings. To cite this article: P. Bérest et al., C. R. Geoscience 336 (2004).  相似文献   

19.
20.
In order to better understand the reactivity of plant phytoliths in soil solutions, we determined the solubility, surface properties (electrophoretic mobilities and surface charge) and dissolution kinetics of phytoliths extracted from fresh biomass of representative plant species (larch tree and elm, horsetail, fern, and four grasses) containing significant amount of biogenic silica. The solubility product of larch, horsetail, elm and fern phytoliths is close to that of amorphous silica and soil bamboo phytoliths. Electrophoretic measurements yield isoelectric point pHIEP = 0.9, 1.1, 2.0 and 2.2 for four grasses, elm, larch and horsetail phytoliths respectively, which is very close to that of quartz or amorphous silica. Surface acid–base titrations allowed generation of a 2-pK surface complexation model (SCM) for larch, elm and horsetail phytoliths. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 1  pH  8, were found to be very similar among the species, and close to those of soil bamboo phytoliths. Mechanistic treatment of all plant phytoliths dissolution rates provided three-parameters equation sufficient to describe phytoliths reactivity in aqueous solutions:R(mol/cm2/s)=6?10?16?aH++5.0?10?18+3.5?10?13?aOH?0.33Alternatively, the dissolution rate dependence on pH can be modeled within the concept of surface coordination theory assuming the rate proportional to concentration of > SiOH2+, > SiOH0 and > SiO? species. In the range of Al concentration from 20 to 5000 ppm in the phytoliths, we have not observed any correlation between their Al content and solubility, surface acid–base properties and dissolution kinetics.It follows from the results of this study that phytoliths dissolution rates exhibit a minimum at pH ~ 3. Mass-normalized dissolution rates are similar among all four types of plant species studied and these rates are an order of magnitude higher than those of typical soil clay minerals. The minimal half life time of larch and horsetail phytoliths in the interstitial soil solution ranges from 10–12 years at pH = 2–3 to < 1 year at pH above 6, comparable with mean residence time of phytoliths in soil from natural observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号