首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Overlap lengths, separations and throw gradients were measured on 132 relay zones recorded on coal-mine plans. Throws on the relay-bounding fault traces are usually ≤ 2 m and individual structures are recorded on only one seam. Throw gradients associated with relay zones are not always higher than on single faults, but asymmetry of throw profiles is diagnostic of relay zones. Bed geometries around larger faults in opencast mines are used to assess the displacement accommodated by shear in the vertical plane normal to the faults and displacement transfer accommodated by shear in the fault-parallel plane. Three-dimensional structure is defined for two relay zones, each recorded on five seam plans. These relay zones are effectively holes through the fault surfaces and overlap occurs between salients or lobes of the parent fault surfaces. Lobes initially terminated at tip-lines but, as the faults grew, gradually rejoined the main fault surfaces along branch lines. This type of relay zone originates by bifurcation of a single fault surface at a locally retarded tip-line and is an almost inevitable result of a tip-line irregularity.  相似文献   

2.
Antithetic fault linkages in a deep water fold and thrust belt   总被引:4,自引:0,他引:4  
Deep water fold and thrust belts consist of both forethrusts and backthrusts that can link along strike to form continuous folds in the overburden. The interaction of faults of opposing dip are termed ‘antithetic thrust fault linkages’ and share the common feature of a switch in vergence of overlying hangingwall anticlines. Using three-dimensional seismic data, on the toe-of-slope of the Niger Delta, linkages are classified into three distinct structural styles. This preliminary classification is based on the vertical extent of faulting within a transfer zones relative to the branch line of the antithetic faults. The stratigraphic level of the lateral tip of the fault, the shape of lateral tip region of a fault plane and the stratal deformation within the transfer zones is also distinctive in each type of fault linkage. A Type 1 linkage comprises faults that overlap exclusively above the level of the branch line. A ‘pop-up’ structure forms within the transfer zone with sediments below remaining planar. The lower tip lines of faults climb stratigraphically towards the linkage zone creating asymmetric, upward-tapering lateral tip regions. In Type 2 linkages fault overlap occurs lower than the level of the branch line such that lateral fault tips are located within the footwall of the counterpart fault. Faulting is thus limited to the deeper section within the transfer zone and creates unfaulted, symmetric, bell-shaped folds in the overburden. Upper tip lines of faults lose elevation within the transfer zone creating asymmetric, downwards-tapering lateral tip regions. In Type 3 linkages both faults continue above and below the branch line within the transfer zone resulting in cross-cutting fault relationships. Horizon continuity across the folds, through the transfer zones, varies significantly with depth and with the type of fault intersection.  相似文献   

3.
A detailed field study of 39 centimetre- to metre-scale relay ramps from two outcrops was performed to investigate the development of a linkage criterion for segmented normal faults. We analysed the displacement distribution and the geometry of fault arrays containing three types of relay ramp: open, linked, and fully breached, in order to identify which parameters are relevant to fault linkage, and to establish a linkage criterion. Each relay ramp geometry has a specific graphical field on a relay displacementseparation diagram. The field including all the linked geometries (initiation of linkage) separates open and fully breached relay ramps and is interpreted as a value of relay displacement to separation ratio for which faults link during their overlap. A ‘linkage threshold’, in each studied fault system, is defined as the best-fit linear trend of linked relays. We discuss the scaling and the variability of the linkage criterion using published datasets from a wide variety of settings and scales. The observed linkage threshold is linear, with a slope value varying less than one order of magnitude. This suggests that linking relay ramps have self-similar geometries from centimetre- to kilometre-scale and that normal fault linkage is governed by similar fault interaction across a broad range of scales. The linkage criterion, which can be an effective tool to estimate relay ramp geometry at depth or at the earth surface, could therefore be used to improve investigations in determining fluid entrapment or in the evaluation of potential surface of seismic ruptures.  相似文献   

4.
Bora Uzel 《Geodinamica Acta》2016,28(4):311-327
Linking of normal faults forms at all scales as a relay ramp during growth stages and represents the most efficient way for faults to lengthen during their progressive formation. Here, I study the linking of normal faulting along the active K?rka?aç Fault Zone within the west Anatolian extensional system to reconstruct fault interaction in time and space using both field- and computer-based data. I find that (i) connecting of the relay zone/ramp occurred with two breaching faults of different generations and that (ii) the propagation was facilitated by the presence of pre-existing structures, inherited from the ?zmir-Bal?kesir transfer zone. Hence, the linkage cannot be compared directly to a simple fault growth model. Therefore, I propose a combined scenario of both hangingwall and footwall fault propagation mechanisms that explain the present-day geometry of the composite fault line. The computer-based analyses show that the approximate slip rate is 0.38 mm/year during the Quaternary, and a NE–SW-directed extension is mainly responsible for the recent faulting along the K?rka?aç Fault Zone. The proposed structural scenario also highlights the active fault termination and should be considered in future seismic hazard assessments for the region that includes densely populated settlements.  相似文献   

5.
In this paper we determine the structure and evolution of a normal fault system by applying qualitative and quantitative fault analysis techniques to a 3D seismic reflection dataset from the Suez Rift, Egypt. Our analysis indicates that the October Fault Zone is composed of two fault systems that are locally decoupled across a salt-bearing interval of Late Miocene (Messinian) age. The sub-salt system offsets pre-rift crystalline basement, and was active during the Late Oligocene-early Middle Miocene. It is composed of four, planar, NW–SE-striking segments that are hard- linked by N–S-striking segments, and up to 2 km of displacement occurs at top basement, suggesting that this fault system nucleated at or, more likely, below this structural level. The supra-salt system was active during the Pliocene-Holocene, and is composed of four, NW–SE-striking, listric fault segments, which are soft-linked by unbreached relay zones. Segments in the supra-salt fault system nucleated within Pliocene strata and have maximum throws of up to 482 m. Locally, the segments of the supra-salt fault system breach the Messinian salt to hard-link downwards with the underlying, sub-salt fault system, thus forming the upper part of a fault zone composed of: (i) a single, amalgamated fault system below the salt and (ii) a fault system composed of multiple soft-linked segments above the salt. Analysis of throw-distance (T-x) and throw-depth (T-z) plots for the supra-salt fault system, isopach maps of the associated growth strata and backstripping of intervening relay zones indicates that these faults rapidly established their lengths during the early stages of their slip history. The fault tips were then effectively ‘pinned’ and the faults accumulated displacement via predominantly downward propagation. We interpret that the October Fault Zone had the following evolutionary trend; (i) growth of the sub-salt fault system during the Oligocene-to-early Middle Miocene; (ii) cessation of activity on the sub-salt fault system during the Middle Miocene-to-?Early Pliocene; (iii) stretching of the sub- and supra-salt intervals during Pliocene regional extension, which resulted in mild reactivation of the sub-salt fault system and nucleation of the segmented supra-salt fault system, which at this time was geometrically decoupled from the sub-salt fault system; and (iv) Pliocene-to-Holocene growth of the supra-salt fault system by downwards vertical tip line propagation, which resulted in downward breaching of the salt and dip-linkage with the sub-salt fault system. The structure of the October Fault Zone and the rapid establishment of supra-salt fault lengths are compatible with the predictions of the coherent fault model, although we note that individual segments in the supra-salt array grew in accordance with the isolated fault model. Our study thereby indicates that both coherent and isolated fault models may be applicable to the growth of kilometre-scale, basin-bounding faults. Furthermore, we highlight the role that fault reactivation and dip-linkage in mechanically layered sequences can play in controlling the three-dimensional geometry of normal faults.  相似文献   

6.
Upper crustal strike-slip duplexes provide an excellent opportunity to address the fundamental question of fault zone development and strain partitioning in an evolving system. Detailed field mapping of the Mesozoic Atacama fault system in the Coastal Cordillera of Northern Chile documents the progressive development of second- and third-order faults forming a duplex at a dilational jog between two overstepping master faults: the sinistral strike-slip, NNW-striking, Jorgillo and Bolfin faults. These are constituted by a meter-wide core of foliated S-C ultracataclasite and cataclasite, flanked by a damage zone of protocataclasite, splay faults and veins. Lateral separation of markers along master faults is on the order of a few kilometers. Second-order, NW-striking, oblique-slip subsidiary fault zones do not show foliated ultracataclasite; lateral sinistral separations are in the range of  10 to 200 m with a relatively minor normal dip-slip component. In turn, third-order, east–west striking normal faults exhibit centimetric displacement. Oblique-slip (sinistral–normal) fault zones located at the southern termination of the Bolfin fault form a well-developed imbricate fan structure. They exhibit a relatively simple architecture of extensional and extensional-shear fractures bound by low displacement shear fractures. Kinematic analysis of fault slip data from mesoscopic faults within the duplex area, document that the NW-striking and the EW-striking faults accommodate transtension and extension, respectively. Examination of master and subsidiary faults of the duplex indicates a strong correlation between total displacement and internal fault structure. Faults started from arrays of en echelon extensional/extensional-shear fractures that then coalesced into throughgoing strike-slip faults. Further displacement leads to the formation of discrete bands of cataclasite and ultracataclasite that take up a significant part of the total displacement. We interpret that the duplex formed by progressive linkage of horsetail-like structures at the southern tip of the Bolfin fault that joined splay faults coming from the Jorgillo and Coloso faults. The geometry and kinematics of faults is compared with that observed in analog models to gain an insight into the kinematic processes leading to complex strike-slip fault zones in the upper crust.  相似文献   

7.
田巍  何敏  杨亚娟  刘海伦  袁勋  吴森  朱定伟  梅廉夫 《地球科学》2015,40(12):2037-2051
边界断裂控制断陷盆地的形成和构造格局,不同边界断裂联接模式对不同类型盆地演化具有差异性.基于井控高精度3D地震资料,通过对边界断裂几何学特征描述和“四级小层”刻画,结合裂陷Ⅰ幕边界断裂不同区段的活动差异性以及与沉积中心迁移的空间匹配关系,剖析珠江口盆地惠州凹陷北部边界断裂的形成和演化.惠州凹陷北部边界断裂始新世早期分段孤立发育,逐渐以纵向和横向双向联接的模式发展.纵向联接为断层软联接和硬联接复合联接和转换,形成转换斜坡和横向背斜,控制凹(洼)陷的结构与演化,制约沉积中心及层序的迁移.横向联接表现为转换斜坡内横向断层的多阶段联接,联接过程可划分为孤立正断层、同向叠置及硬联接3个阶段,控制转换斜坡带内沉积体系的发育和展布.研究给出了一个裂陷盆地边界断裂时空演化、复合联接和转换模式的独特案例,对丰富裂陷盆地边界断裂及其与沉积层序、凹陷演化和区域动力学机制的响应关系的研究具有积极的意义和价值.   相似文献   

8.
正断层的分段构造型式及其扩展演化机制的核心内容可以归结为正断层的中继构造模式。本文从正断层的断块变形、断裂扩展以及断裂力学特征等角度,总结了正断层中继构造的扩展演化机制。正断层的断块变形是指分段断层位移转换形成的中继斜坡,可分为内倾和外倾两种斜坡类型,位移曲线揭示了中继带变形的特征。正断层的断裂扩展有多种扩展方式,可分为断层内、断层间和断层系扩展,且可以形成不同型式的中继构造。正断层中继构造是在三维空间扩展的,将断层边缘的断裂力学性质和断层面的放射状扩展方向相结合,可完整描述中继构造的空间分布规律。正断层形成于伸展构造环境,是控制油气和金属矿产资源的重要构造型式,结合SEDEX型矿床同生断层和岩体侵位控制的正断层控矿研究实例,初步讨论了正断层中继构造扩展演化在SEDEX型矿床和正断层相关控矿断裂成矿构造研究中的作用。  相似文献   

9.
传递斜坡是调节区域构造应变平衡的一类重要的构造样式。根据新的三维地震资料解释和断层位移-距离关系以及相干体切片分析,探讨了渤海湾盆地辽西低凸起传递斜坡的特征,并简要分析传递斜坡与潜山油气聚集的关系。地震剖面解释表明,辽西低凸起潜山带的传递斜坡连接辽西1号断层的下盘和辽西2号断层的上盘;在数据体相干切片上,辽西1号和2号断层呈清晰的侧接形态;而位移-距离关系显示,辽西1号断层的位移沿着断层走向自南向北逐渐传递到辽西2号断层,断层位移在传递斜坡内部基本保持守恒。传递斜坡对潜山油气聚集的意义主要表现在对储层形成和改造方面,优质储层发育是JZ25-1S潜山大油气田的重要成藏要素。  相似文献   

10.
Basement-involved structures associated with reverse, vertical and normal faults commonly involve non-parallel shear within a triangular deformation (trishear) zone located on the front limbs of the structures. Deformation within the trishear zone is characterized by shear gradients and an associated decrease in the dips of the beds in stratigraphically higher units. Geometric models suggest that the layer-parallel strain within the trishear zone depends on the type of fault (normal, reverse, or vertical), the dip and throw of the fault, the dip of the anticlinal or synclinal axial surfaces, and the distance of any unit above the initial tip of the trishear zone, located at the basement-sediment contact. At any given location, reverse faults typically show increasing layer parallel shortening, followed by decreasing layer parallel shortening and a transition to extension, with increasing throw. The transition from contraction to extension occurs at lower values of throw for stratigraphically lower units and also for faults with smaller dips. Vertical and normal faults exhibit increasing layer-parallel extension of all units with increasing throw, with larger extension for stratigraphically lower units. Experimental models suggest that the trishear zone can expand with increasing fault throw. The strain within the trishear zones is accommodated largely by secondary faults, which are rotated with progressive deformation. The strain variations in the experiments closely mimic those predicted by the geometric models for reverse, vertical, and normal faults.  相似文献   

11.
Field investigations reveal spatial variations in fault zone width along strike-slip active faults of the Arima–Takatsuki Tectonic Line (ATTL) and the Rokko–Awaji Fault Zone (RAFZ) of southwest Japan, which together form a left-stepping geometric pattern. The fault zones are composed of damage zones dominated by fractured host rocks, non-foliated and foliated cataclasites, and a fault core zone that consists of cataclastic rocks including fault gouge and fault breccia. The fault damage zones of the ATTL are characterized by subsidiary faults and fractures that are asymmetrically developed on each side of the main fault. The width of the damage zone varies along faults developed within granitic rocks of the ATTL and RAFZ, from ∼50 to ∼1000 m. In contrast, the width of the damage zone within rhyolitic tuff on the northwestern side of the ATTL varies from ∼30 to ∼100 m. The fault core zone is generally concentrated in a narrow zone of ∼0.5–∼5 m in width, consisting mainly of pulverized cataclastic rocks that lack the primary cohesion of the host rocks, including a narrow zone of fault gouge (<0.5 m) and fault-breccia zones either side of the fault. The present results indicate that spatial variations in the width of damage zone and the asymmetric distribution of damage zones across the studied strike-slip faults are mainly caused by local concentrations in compressive stress within an overstep area between left-stepping strike-slip faults of the ATTL and RAFZ. The findings demonstrate that fault zone structures and the spatial distribution in the width of damage zone are strongly affected by the geometric patterns of strike-slip faults.  相似文献   

12.
川东-鄂西郁江逆冲断层轨迹结构及扩展过程   总被引:2,自引:0,他引:2       下载免费PDF全文
野外地质调查和剖面测量揭示:郁江断层带的轨迹结构整体上表现为南北分段、东西分带的后展式叠瓦状逆冲断层结构;其中,底板缓倾角逆冲断层多层次(区域尺度、露头尺度和微观尺度)的断坪、断坡轨迹,特别是沿断坡方向的破裂分解,是分支断层呈上叠后展式扩展增殖的基础。根据运动学标志,郁江逆冲断层从北西向南东逆冲,最大断距小于1km,一般断距为10~100m级;后缘高倾角正断层的累计断距与前缘逆冲断距基本对应。结合区域构造分析,郁江逆冲断层轨迹结构定型于燕山期,轨迹扩展过程表现为:上叠分支断层沿底板逆冲断层的断坡方向逐次从前缘向后缘扩展增殖,属于典型的上叠后展式逆冲扩展结构;其中,后缘正断层的形成是断层轨迹结构反馈、运动调整和断层自组织行为的必然结果;而喜马拉雅主期区域应力场的激发,只是强化和加速了后缘正断层的扩展规模和进程。  相似文献   

13.
High quality seismic reflection data acquired during hydrocarbon exploration activities provide evidence for the subsurface structure and evolution of one of England's most well known structures at outcrop: the Isle of Wight Monocline. It is generally seen as a major northerly verging monoclinal structure linked to the Purbeck Monocline to the west. The Isle of Wight Monocline is the result of the interplay between two inverted east-west trending, southerly dipping and overlapping down-to-the-south major syndepositional normal faults that were active during Triassic and Jurassic times: the Needles and Sandown faults. The area between the two faults tips forms an easterly-dipping relay ramp, down which sequences of all ages thicken. Both of these major normal faults were inverted during Cenozoic (Miocene: Alpine) compressional events, folding the overlying post-rift sequences of early Cretaceous to early Cenozoic (Palaeogene) age. Interpretation of the seismic reflection data suggest that previously unknown high angle, down-to-the-north reverse faults cut the northern limbs of both anticlines forming the composite monocline and are likely to come to crop in the steeply-dipping Chalk and/or the drift-covered Cenozoic sequences. Their identification marked a period of discussions and testing of the model by detailed field mapping. The existence and location of such faulting was proved through an iterative process with the result that a reverse fault zone is now mapped along the northern limb of the northern Sandown Anticline section of the Monocline. The main reverse faults on the Brighstone and Sandown anticlines result in up to circa 550 m of displacement at top Chalk level. It is thought that a series of smaller footwall short-cut faults affect the Cenozoic strata to the north of the main reverse fault, producing up-faulted sections of flatter-lying Cenozoic strata. Reverse displacements and the severity of folding on the inverted faults decreases on each fault segment in a complementary fashion in the area of the relay ramp as one fault takes up the movement at the expense of the other. The swing in strike of the Chalk in the area of shallowly dipping strata between Calbourne and Garstons is a result of deformation of the post-rift sequences across the relay ramp established between the overlapping fault tips of the Needles and Sandown faults and the interaction of the folds developed at the tips of the reverse faults.  相似文献   

14.
The Halten Terrace, offshore mid-Norway, is underlain by a Triassic evaporitic package that is rheologically weak, and led to decoupling of fault systems during Middle Jurassic to Early Cretaceous rifting. We use 2D and 3D reflection seismic data, constrained by wells, from the southern Bremstein Fault Complex of the Halten Terrace to map faults and key stratigraphic horizons, and analyse throw variations along faults, allowing us to constrain patterns of fault segmentation and linkage within the complex. The Bremstein Fault Complex has an overall tilted monoclinal geometry with localised fault systems at base salt level associated with overlying, highly distributed systems of normal faults. Vertical strain partitioning across the evaporite package means that sub-evaporite and supra-evaporite fault populations acted as semi-independent fault systems. Supra-evaporite faults are partly gravity-driven, and controlled by sub-evaporite faulting and consequent tilting of the evaporitic package. This behaviour leads to a wide variety of possible vertical linkage patterns of faults across the evaporite package. A greater variety of lateral segment linkage patterns occurs in evaporite-detached normal fault systems than in normal fault systems developed in the absence of evaporite units. Segment boundary styles can also be modified by migration of evaporite. Some segment boundaries are associated with a footwall anticline and hanging-wall syncline, in contrast to the footwall synclines and hanging-wall anticlines widely described in studies of normal fault systems.  相似文献   

15.
伸展盆地区断裂构造特征与成因   总被引:4,自引:0,他引:4  
近十年来断裂构造研究进展迅速,研究思路发生了重大转变,强调应变与应力在断裂形成过程中的同等重要性。重点论述了断裂位移特征及影响因素,断裂位移在断层中部最大,端部最小至零,具有与断层规模无关的特征,但它受断裂分段、连接、近端过程等影响而发生变化。位移作为应变的结果,控制着横向褶皱的形成和分布、沉积中心的迁移(断裂单侧扩展时)或沉积位置不变但范围扩大(断裂双侧扩展时)以及沉积充填结构等。探讨了断裂三维几何形态分类及断裂形成与形态的控制因素:深部与浅部耦合(基底构造的活化与沉积盖层的响应),建造与改造的耦合,边界条件与构造应力场,沉积压实和埋藏作用等。提出了断裂分级和组合规律,总体上伸展区断裂可分五级,一级控盆,二级控坳,三级控带,四级控圈,五级复杂化;不同级别的断裂三维组合规律可分为软连接组合和硬连接组合。伸展区断裂生长史可划分为成核、扩展、释压、连接、消亡和活化6个阶段。  相似文献   

16.
The geometry and architecture of a well exposed syn-rift normal fault array in the Suez rift is examined. At pre-rift level, the Nukhul fault consists of a single zone of intense deformation up to 10 m wide, with a significant monocline in the hanging wall and much more limited folding in the footwall. At syn-rift level, the fault zone is characterised by a single discrete fault zone less than 2 m wide, with damage zone faults up to approximately 200 m into the hanging wall, and with no significant monocline developed. The evolution of the fault from a buried structure with associated fault-propagation folding, to a surface-breaking structure with associated surface faulting, has led to enhanced bedding-parallel slip at lower levels that is absent at higher levels. Strain is enhanced at breached relay ramps and bends inherited from pre-existing structures that were reactivated during rifting. Damage zone faults observed within the pre-rift show ramp-flat geometries associated with contrast in competency of the layers cut and commonly contain zones of scaly shale or clay smear. Damage zone faults within the syn-rift are commonly very straight, and may be discrete fault planes with no visible fault rock at the scale of observation, or contain relatively thin and simple zones of scaly shale or gouge. The geometric and architectural evolution of the fault array is interpreted to be the result of (i) the evolution from distributed trishear deformation during upward propagation of buried fault tips to surface faulting after faults breach the surface; (ii) differences in deformation response between lithified pre-rift units that display high competence contrasts during deformation, and unlithified syn-rift units that display low competence contrasts during deformation, and; (iii) the history of segmentation, growth and linkage of the faults that make up the fault array. This has important implications for fluid flow in fault zones.  相似文献   

17.
The stratigraphic architecture, structure and Cenozoic tectonic evolution of the Tan-Lu fault zone in Laizhou Bay, eastern China, are analyzed based on interpretations of 31 new 2D seismic lines across Laizhou Bay. Cenozoic strata in the study area are divided into two layers separated by a prominent and widespread unconformity. The upper sedimentary layer is made up of Neogene and Quaternary fluvial and marine sediments, while the lower layer consists of Paleogene lacustrine and fluvial facies. In terms of tectonics, the sediments beneath the unconformity can be divided into four main structural units: the west depression, central uplift, east depression and Ludong uplift. The two branches of the middle Tan-Lu fault zone differ in their geometry and offset: the east branch fault is a steeply dipping S-shaped strike-slip fault that cuts acoustic basement at depths greater than 8 km, whereas the west branch fault is a relatively shallow normal fault. The Tan-Lu fault zone is the key fault in the study area, having controlled its Cenozoic evolution. Based on balanced cross-sections constructed along transverse seismic line 99.8 and longitudinal seismic line 699.0, the Cenozoic evolution of the middle Tan-Lu fault zone is divided into three stages: Paleocene–Eocene transtension, Oligocene–Early Miocene transpression and Middle Miocene to present-day stable subsidence. The reasons for the contrasting tectonic features of the two branch faults and the timing of the change from transtension to transpression are discussed.  相似文献   

18.
3D field data on mesoscale normal faults were collected to examine the geometries and growth of faults in multilayer systems. Observation and analysis of the fractures include the collection of geometric attributes such as fault dips and fault zone thicknesses, detailed mapping in cross-sections and plan views, and the construction of individual and cumulative displacement profiles. Fault zone growth is consistent with a “coherent model” and is strongly influenced by the multilayer system. In the limestone layers, faults grew in several steps, including opening and frictional sliding on 80° dipping segments. Faulting in clay layers was in the form of 40° dipping faults and sub-horizontal faults, the latter being mostly early features developed under the same extensional regime as normal faults and disturbing the fault architecture. The fault zone thickness increases with the limestone thickness and the presence of sub-horizontal faults in clay beds. Numerous connections occur in clay units. The moderate (≈0.08) and low (<0.03) mean displacement gradients in clays and in limestones respectively indicate that the vertical propagation of faults is inhibited in clay layers. Analysis of displacement along fault strike indicates that a 0.08 displacement gradient is associated with the horizontal propagation of fault segments in limestones. According to this value, the fault zones are much longer than expected. It is associated with ‘flat topped’ displacement profiles along some fault segments and connection between segments to form complex fault zones.  相似文献   

19.
Crustal deformation due to fault slip depends strongly on fault geometry, and fault geometry is changed by the deformation of the crust. This feedback mechanism causes the geometrical evolution of the fault system. We have studied the progress of the geometrical evolution of a plate interface–branch fault system through numerical simulation, based on elastic–viscoelastic dislocation theory. If the plate interface is smooth, no significant change occurs in fault geometry. If the plate interface has a ramp, we observe the gradual horizontal motion of the ramp toward the hanging-wall side of the interface at half the plate convergence rate. The offset of the ramp decreases with time. The dip-angle of thrust faults branching from the plate interface increases more rapidly as the dip of the fault increases. We have applied these results to the plate interface–branch fault system at the India–Eurasia collision boundary and obtained a scenario for the tectonic development of the Himalayas for the last 30 Myr.  相似文献   

20.
The stratigraphic architecture, structure and Cenozoic tectonic evolution of the Tan-Lu fault zone in Laizhou Bay, eastern China, are analyzed based on interpretations of 31 new 2D seismic lines across Laizhou Bay. Cenozoic strata in the study area are divided into two layers separated by a prominent and widespread unconformity. The upper sedimentary layer is made up of Neogene and Quaternary fluvial and marine sediments, while the lower layer consists of Paleogene lacustrine and fluvial facies. In terms of tectonics, the sediments beneath the unconformity can be divided into four main structural units: the west depression, central uplift, east depression and Ludong uplift. The two branches of the middle Tan-Lu fault zone differ in their geometry and offset: the east branch fault is a steeply dipping S-shaped strike-slip fault that cuts acoustic basement at depths greater than 8 km, whereas the west branch fault is a relatively shallow normal fault. The Tan-Lu fault zone is the key fault in the study area, having controlled its Cenozoic evolution. Based on balanced cross-sections constructed along transverse seismic line 99.8 and longitudinal seismic line 699.0, the Cenozoic evolution of the middle Tan-Lu fault zone is divided into three stages: Paleocene–Eocene transtension, Oligocene–Early Miocene transpression and Middle Miocene to present-day stable subsidence. The reasons for the contrasting tectonic features of the two branch faults and the timing of the change from transtension to transpression are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号