首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GERAINT OWEN 《Sedimentology》1996,43(2):279-293
The effects of liquefaction in saturated sand bodies under a variety of driving forces are described from shaking table experiments, and structures from the geological record are presented which are analogous to the experimental structures. The collapse of sloping heaps of cross-bedded sand under a gravitational body force generates low-angle, essentially uncontorted stratification. A basal zone of shearing may be present, with steepened and folded foresets. Stretching of foresets may be accommodated on normal faults, and bottomsets may be contorted into inclined folds. In natural systems the substrate may also liquefy, causing deformation driven by an unevenly distributed confining load. Stratification in the surface bedform is flattened, and stratification in the substratum contorted. Experiments failed to produce relative displacement at the interface between stacked sand bodies. Liquefaction of gravitationally unstable systems in sands generates load structures comparable to those from sand-mud systems. Recumbent-folded deformed cross-bedding is formed by current shear over a liquefied bed, as has been inferred from field and theoretical analyses. Shear of nonliquefied sand forms angular folds. Other deformation mechanisms, such as fluidization or seepage, may generate structures similar to all of these. Local water-escape structures driven by fluidization occur in the upper parts of some liquefied sand bodies. They include cusps, sand volcanoes and clastic dykes. Transient cavities formed in some experiments and seemed to be preserved as breached cusps. Although the experiments tried to isolate individual driving forces, driving forces may operate together, and there may be a continuum between deformation driven by water escape and deformation driven by loading. Different structures from those described here may form where liquefaction develops in a buried layer as opposed to at the sediment surface.  相似文献   

2.
New data on seismically triggered soft-sediment deformation structures in Pleniglacial to Late Glacial alluvial fan and aeolian sand-sheet deposits of the upper Senne area link this soft-sediment deformation directly to earthquakes generated along the Osning Thrust, which is one of the major fault systems in Central Europe. Soft-sediment deformation structures include a complex fault and fold pattern, clastic dikes, sand volcanoes, sills, irregular intrusive sedimentary bodies, flame structures, and ball-and-pillow structures. The style of soft-sediment deformation will be discussed with respect to brittle failure, liquefaction and fluidization processes, and was controlled by (1) the magnitude of the earthquake and (2) the permeability, tensile strength and flexural resistance of the alluvial and aeolian sediments. It is the first time in northern Germany that fluidization and liquefaction features can be directly related to a fault. The occurrence of seismicity in the Late Pleistocene and in the seventeenth century indicates ongoing crustal movements along the Osning Thrust and sheds new light on the seismic activity of northern Germany. The Late Pleistocene earthquake probably occurred between 15.9 ± 1.6 and 13.1 ± 1.5 ka; the association of soft-sediment deformation structures implies that it had a magnitude of at least 5.5.  相似文献   

3.
Soft-sediment deformation structures are common on passive continental margins, in trenches at subduction zones, and in strike-slip environments. Rocks from all these tectonic environments are incorporated into orogens, where soft-sediment deformation structures should be common. However, recognizing soft-sediment structures is difficult where superimposed tectonic structures are present. In seeking characteristic features of soft-sediment deformation, it is important to separate questions that relate to physical state (lithified or unlithified) from those that address the overall kinematic style (rooted or gravity driven). One recognizable physical state is liquefaction, which produces sand that has much lower strength than interbedded mud. Hence structures which indicate that mud was stronger than adjacent sand at the time of deformation can be used as indicators of soft-sediment deformation. These include angular fragments of mud surrounded by sand, dykes of sand cutting mud, and most usefully, folded sandstone layers displaying class 3 geometry interbedded with mud layers that show class 1 geometry. All these geometries have the potential to survive overprinting by later superimposed tectonic deformation; when preserved in deformed sedimentary rocks at low metamorphic grade they are indicators of liquefaction of unlithified sediment during deformation.  相似文献   

4.
柴达木盆地为一新生代以来形成的叠合盆地,由于多期构造活动,盆内形成了多组断裂系统。受新近纪昆仑山北侧断裂活动的影响,盆地西南缘乌南地区地震活动强烈,发育一系列与地震有关的震积岩,形成多种类型的与地震活动有关的软沉积物变形构造。乌南油田新近系的软沉积物变形构造主要包括重荷模、火焰构造、震积砂枕、砂球构造、假结核、枕状层、液化砂泥岩脉、泄水构造、层内错断、地裂缝、串珠状构造、微褶皱纹理等。本区震积岩的岩石类型主要包括震褶岩、震裂岩、震塌岩、自碎屑角砾岩等。地震活动使岩层产生大量的微裂缝,裂缝沟通了原有的孔隙。尽管储集层孔隙度没有大幅度增加,但能够极大地改善储集层渗透性,使渗透率大幅度增加。震积岩特别是震裂岩和震碎角砾岩是一种潜在的油气储层,为油气勘探和开发提供了新的视角和领域。  相似文献   

5.
Earthquake, as disastrous events in geological history, can be recorded as soft-sediment deformation. In the Palaeogene of the East China Sea shelf, the soft-sediment deformation related to earthquake event is recognized as seismic micro-fractures, micro-corrugated laminations, liquefied veins, ‘vibrated liquefied layers’, deformed cross laminations and convolute laminations, load structures, flame structures, brecciation, slump structures and seismodisconformity. There exists a lateral continuum, the wide spatial distribution and the local vertical continuous sequences of seismites including slump, liquefaction and brecciation. In the Palaeogene of East China Sea shelf, where typical soft-sediment deformation structures were developed, clastic deposits of tidal-flat, delta and river facies are the main background deposits of Middle-Upper Eocene Pinghu Formation and Oligocene Huagang Formation. This succession also records diagnostic marks of event deposits and basinal tectonic activities in the form of seismites.  相似文献   

6.
秦雅东  张士贞  刘函  李勇 《地球科学》2020,45(8):2945-2956
湖相沉积古地震研究是对地表破裂古地震研究的重要补充.通过详细的野外地质调查,在西藏许如错地区全新统湖相地层内新发现大量地震触发软沉积物变形构造(震积岩),层内发育液化脉、液化曲卷变形、液化角砾岩、液化水压构造、滴状体与锥状体、砾石丘、负载构造和火焰构造等软沉积变形标志,还发育同震断层、震裂缝和同震褶皱等同震构造标志.根据软沉积变形标志与震级之间的关系,结合历史地震统计液化颗粒范围,通过C14和光释光年龄测定,推测古地震事件发生在±7.5 ka,MS>7.5级;填补了该区历史地震的空缺,为恢复青藏高原南北向地堑地震活动历史及迁移规律提供了素材.震积岩中见大量砾石液化现象,这对现阶段以砂土-粉砂土研究为主的砂土液化调查工作提出了新挑战.   相似文献   

7.
山东诸城晚白垩世古地震事件与恐龙化石埋藏   总被引:2,自引:0,他引:2  
在山东诸城库沟、龙骨涧、西见屯集群恐龙化石埋藏层——上白垩统王氏群辛格庄组与红土崖组中,发现存在脆性、塑性及液化等多种类型的软沉积物变形构造,主要包括负载构造、球一枕构造、挤入构造(火焰构造)、液化卷曲变形、液化脉状构造、混插沉积构造及地震断裂等典型的粗碎屑沉积物形成的古地震记录.多层的软沉积物变形构造及未变形沉积层间...  相似文献   

8.
Soft-sediment deformation structures are recognized as important diagnostic features in the rock record for determination of depositional environments and slope processes. The diagnostic value of these structures is reevaluated by analysis of the parameters controlling sediment deformation. Soft-sediment deformation is contemporaneous with deposition and occurs dominantly in course silt to fine sand. The high depositional rate, low permeability and low shear strength of grains within this sediment range maximize the occurrence of deformation. The dominant mechanisms responsible for sediment deformation include: (1) liquefaction or fluidization; (2) reverse density gradation; (3) slumping or slope failure; and (4) shear stress. In most cases a combination of these mechanisms occurs. The processes function in a continuum, producing features that are microscopic to megascopic in scale. It is shown that the processes, and thus the structures, are not environment specific. The true diagnostic value of the structures may be in defining hydrodynamic conditions, and in interpreting paleocurrents and paleoclimatic and paleoseismic events. Ultimately, for the best diagnostic results, soft-sediment deformation structures should be studied in association with all other available lithologic, structural and paleontological information.  相似文献   

9.
Molina  Alfaro  Moretti  & Soria 《地学学报》1998,10(3):145-150
The identification of triggering agents for soft-sedimentation structures is an enigmatic geological problem. Mainly seismic-induced soft-sediment structures have been recognized in ancient sediments, rather than those resulting from storm waves. We analyse soft-sediment deformation structures in Upper Miocene calcarenitic tempestites of the Guadalquivir Basin (Southern Spain). The most common structures are load-casts which vary in height and width from 10 centimetres to several metres. The structures are always restricted to a small part of the stratigraphic sections, in exclusive association with tempestites. The analysed soft-deformation structures are interpreted to be the result of liquidization processes. Chiefly from their inferred depositional environment, and subordinately from the deformation style, we have devised basic criteria to identify the trigger mechanism. In these soft-sediment deformation structures the liquefaction was triggered by pore pressure changes induced by cyclic and residual stress of storm waves.  相似文献   

10.
2018年5月28日,吉林松原市宁江区毛都站镇牙木吐村发生M5.7级地震(45°16'12″N,124°42'35″E),震源深度13 km,震中位于郯庐断裂带西北侧的扶余/松原—肇东断裂带、第二松花江断裂带和扶余北断裂带交汇处。地震诱发震中距3 km范围内普遍的液化和地表裂缝,给当地居民带来严重灾害。可见液化构造以砂火山为主,其次为液化砂堆、液化砂脉和液化砂席等。液化砂火山又可分为有火山口型砂火山、无火山口型砂火山和无砂型(水)火山。地震液化伴生软沉积物变形构造有变形层理、负载构造和火焰构造、滑塌褶皱、碟状构造和包卷层理等。地震诱发液化砂火山形成过程包括液化层内超孔隙流体压力形成、上覆低渗透层破裂和水、砂喷出地表后砂涌3个阶段。液化和流化砂体在上涌过程中会注入低渗透黏土层形成各种形态的砂脉、砂席和多种类型的变形构造。垂向上地震液化结构可划分为底部松散可液化层、下部液化变形层、上部液化变形层和地表砂火山4层结构。液化层埋深2~5 m,液化层厚度2 m。松原M5.7级地震发震机制为NE-SW(35°~215°)方向挤压应力使断层活跃,推测扶余/松原—肇东断裂是主要的发震断层。松原地震液化构造研究为现代地震活动区和灾害易发区预测提供依据,为地震引发的现代软沉积物变形构造研究提供丰富的素材,兼具将今论古意义,为揭示本世纪以来郯庐断裂带北段进入了一个强断裂和地震活跃阶段提供了最新的实际资料。  相似文献   

11.
新疆西南天山下侏罗统软沉积物变形研究   总被引:6,自引:0,他引:6       下载免费PDF全文
乔秀夫  郭宪璞 《地质论评》2011,57(6):761-769
新疆西南天山乌恰地区早侏罗世软沉积物变形位于湖相砂岩中;由地震触发的软沉积物变形有三个层位,位于下侏罗统康苏组的顶部.变形主要类型为负载( load)、球-枕(ball-and-pillow)、滴状体(droplet)、锥形体(cusps)、液化均一层(homogeneous layer)和液化不整合(liquefie...  相似文献   

12.
The Lower Devonian (Lochkovian‐Emsian) Cosheston Group of south Pembrokeshire is one of the most enigmatic units of the Old Red Sandstone of Wales. It consists of a predominantly green, exceptionally thick succession (up to 1.8 km) within the red c. 3 km‐thick fill of the Anglo‐Welsh Basin, but occupies a very small area (27 km2). Four formations—Llanstadwell (LLF), Mill Bay (MBF), Lawrenny Cliff (LCF) and New Shipping (NSF)—group into lower (LLF + MBF) and upper (LCF + NSF) units on stratigraphical and sedimentological criteria. Two palynostratigraphic associations (Hobbs Point and Burton Cliff) are recognised in the LLF. Overall, the Cosheston succession comprises a fluvial, coarsening‐upward megasequence, mostly arranged in fining‐upward rhythms. It is interpreted as the fill of an east‐west graben bounded by faults to the north and south of the Benton and Ritec faults, respectively. Both ‘lower Cosheston’ formations were deposited by east‐flowing, axial river systems draining a southern Irish Sea landmass. Drainage reversal, early in the deposition of the LCF, resulted in ‘upper Cosheston’ lateral, SW‐flowing rivers which carried predominantly second‐ and multi‐cycle detritus. The ‘lower Cosheston’ is characterized by an abundance of soft‐sediment deformation structures, probably seismically triggered by movements along the graben's northern bounding fault. A minimum average (≥ mesoseismic) earthquake recurrence interval of c. 4000 yr is estimated for the MBF. This and the correlative Senni Formation of south‐central Wales form a regionally extensive green‐bed development that represents a pluvial climatic interval. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
王熙  王明镇 《地球学报》2012,33(1):49-56
安徽寿县新元古界四十里长山组底部粉砂岩层中发现了一个滑塌-滑脱软沉积物变形复合构造,剖面观察显示,该沉积变形构造经历了滑塌变形、滑脱变形、震动液化变形等3次以上的变形过程,很好地保存了原始沉积面貌和沉积变形特征;分析该沉积变形构造的成因,发现变形构造属于软沉积物变形构造类型,形成于浅海陆棚边缘斜坡相带。引起软沉积物变形的动力是地震事件产生的多次震动波作用,造成软沉积物滑塌、滑脱褶皱、震动液化泄水等变形作用,形成了具有复杂变形特征的软沉积物变形复合体,是一次地震事件多次地震活动的沉积记录。  相似文献   

14.
We study earthquake-induced soft-sediment deformation (seismites) in reference Quaternary sections of southeastern Altai. Sediments in the sections bear signature of liquefaction and fluidization and deformation is localized in thin (few centimeters to 0.5–1.0 m) continuously striking and frequently repeated layers sandwiched between undeformed sediments. The soft-sediment deformation records coseismic motion of different slip geometries. Seismic origin is also inferred for layers and lenses of coarse colluvium slid into the lake bottom from the slopes, which intrude plane-bedded silt and sand and vary in thickness from a few centimeters to one meter. The occurrence of seismic soft-sediment deformation at different stratigraphic levels of the Quaternary and in the Upper Pliocene Beken Formation confirms the high seismicity of southeastern Altai in Quaternary time.  相似文献   

15.
北京地区中元古界雾迷山组是太古界至中生界中出露面积最广、沉积厚度最大的地层单元,岩性以白云岩为主,其次为硅化白云岩。雾迷山组层序稳定,形成于相对广阔、持续且稳定沉降的浅水沉积环境。在永定河流域自庄户洼村溯河而上直至珍珠湖景区,在不同层位的雾迷山组露头中集中发现了多个期次、不同规模、由古地震引发的软沉积物变形构造,包括液化变形(液化混插、底辟、液化脉及液化卷曲层理等)、挤压变形(紧密褶皱、板刺状角砾和丘—槽构造等)、拉伸变形(环状层、拉伸布丁)以及脆性变形(地裂缝、层间断层和震裂岩)。文中对这些软沉积物变形的分布和表面特征做了系统描述,对典型的液化变形、挤压变形及拉伸变形的形成机制从形态学上进行了计算机模拟。结合该区的构造背景和前人研究资料,认为该区雾迷山组沉积期古地震系沿中元古代燕辽裂陷槽轴部的断裂活动触发的;根据软沉积物变形的出现频率,对古地震发生频率(地震周期)进行了初步估算,约为3.2至2万年。  相似文献   

16.
新疆境内塔拉斯-费尔干纳断裂早侏罗世走滑的古地震证据   总被引:11,自引:2,他引:9  
在野外考察过程中,于新疆乌恰地区早侏罗世康苏组沼泽相砂岩层中,发现并识别出软沉积物液化变形层,变形包括负载构造,球-枕构造及卷曲变形构造。通过模拟试验的对比研究认为,该软沉积物变形机制与液化作用有关,触发沉积物液化的动力是古地震,并且根据地震震级与液化最大震中距的关系,推测出造成早侏罗世软沉积物变形的里氏地震震级为6相似文献   

17.
The north–south-trending upper reaches of the Minjiang River run along the Longmen Shan–Min Shan fault zone, a zone of abrupt topographic change along the eastern margin of the Tibetan Plateau. Multiple levels of well-preserved soft-sediment deformation structures (seismites) occur in sediments deposited in paleo-dammed lakes in the upper part of the Minjiang River Valley. These deformation structures include liquefied convolute deformation, water-escape structures, flame structures, pseudonodules, ball-and-pillow structures, sedimentary dykes, mud lenses, and large-scale folds. Several kilometers from the barrier bar of the Diexi paleo-dammed lakes, seven deformed structural layers were identified at different heights in late Quaternary stratigraphic sequences near Shawan Village, Maoxian County. Analyses of the deformation structures, landforms, and the structural environment indicate that these deformation structures were caused by earthquakes, slumps, and landslides.OSL (optical stimulated luminescence) and 14C dating of soft-sediment layers from the Shawan site indicate that intense earthquakes occurred during the period 25–20 ka B.P. Therefore, accurate geological dating of deformed features in dammed lake deposits in high mountains and canyons enables the record of moderate- to large-magnitude earthquakes to be extended to the late Pleistocene–Holocene upon the eastern Tibetan Plateau.  相似文献   

18.
济阳坳陷早第三纪震积岩的发现及其意义   总被引:46,自引:3,他引:46  
济阳坳陷下第三系沙河街组三段及四段地层中发现了大量与地震活动有关的变形构造,如微断层、层内小褶皱、液化砂岩脉、振动液化卷曲变形和火焰构造等。通过牛110、利 981、车古 201和义 377等井的系统观察,发现震积岩的垂向序列自下而上依次为震裂岩和震塌岩层段、阶梯状正断层层段、振动卷曲变形层段、液化砂岩脉层段、碎块层段和均一层段,分别对应于强震期、地震衰减期和余震期。震积岩的发现不但有助于分析判断控盆边界断裂的强烈活动时期,震积岩自身也可能是一种潜在的油气储集体,因而地震事件沉积具有重要的研究意义。  相似文献   

19.
鄂尔多斯盆地三叠系延长组震积岩特征研究   总被引:17,自引:2,他引:15  
震积岩是具有古地震记录的岩层。根据大量岩心观察,鄂尔多斯盆地三叠系延长组广泛发育震积岩沉积标志,如液化砂岩脉、阶梯状小断层、液化卷曲变形、砂球枕构造、泥岩撕裂屑、滑揉构造等。详细分析了各种震积岩特征及其分布,初步建立了鄂尔多斯盆地延长组震积岩垂向沉积序列,包括:A段为下伏未震层;B段为微同沉积断裂层;C段为振动液化卷曲变形层;D段为液化砂岩脉和砂岩墙段;E段为砂球枕及碎块层;F段为液化均一层和G段上覆未震层。震积岩的首次发现为研究盆地周边构造演化强度和期次提供了佐证,同时震积岩也是一种潜在的有利储层。  相似文献   

20.
The lack of earthquake-induced liquefaction features in Late Wisconsin and Holocene sediments in Genesee, Wyoming, and Allegany Counties suggests that the Clarendon–Linden fault system (CLF) did not generate large, moment magnitude, M≥6 earthquakes during the past 12,000 years. Given that it was the likely source of the 1929 M 4.9 Attica earthquake, however, the Clarenden–Linden fault system probably is capable of producing future M5 events. During this study, we reviewed newspaper accounts of the 1929 Attica earthquake, searched for earthquake-induced liquefaction features in sand and gravel pits and along tens of kilometers of river cutbanks, evaluated numerous soft-sediment deformation structures, compiled geotechnical data and performed liquefaction potential analysis of saturated sandy sediments. We found that the 1929 M 4.9 Attica earthquake probably did not induce liquefaction in its epicentral area and may have been generated by the western branch of the Clarendon–Linden fault system. Most soft-sediment deformation structures found during reconnaissance did not resemble earthquake-induced liquefaction features, and even the few that did could be attributed to non-seismic processes. Our analysis suggests that the magnitude threshold for liquefaction is between M 5.2 and 6, that a large (M≥6) earthquake would liquefy sediments at many sites in the area, and that a moderate earthquake (M 5–5.9) would liquefy sediments at some sites but perhaps not at enough sites to have been found during reconnaissance. We conclude that the Clarendon–Linden fault system could have produced small and moderate earthquakes, but probably not large events, during the Late Wisconsin and Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号